TIGER

Journal Articles: 50 results
A Simplified Model To Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean  Brian J. Bozlee, Maria Janebo, and Ginger Jahn
The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. It is found that calcium carbonate may become unsaturated in cold surface seawater by the year 2100, resulting in the destruction of calcifying organisms such as coral.
Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger. J. Chem. Educ. 2008, 85, 213.
Applications of Chemistry |
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Equilibrium |
Green Chemistry |
Water / Water Chemistry
Experimental Determination of Ultraviolet Radiation Protection of Common Materials  Susana C. A. Tavares, Joaquim C. G. Esteves de Silva, and João Paiva
The oxidation of iodide is used as an indicator for the degree of exposure to UV radiation and to investigate the protection given by a simulation of ozone using plexiglass plates, sunscreen lotions, cotton cloth with different colors, and aqueous solutions with different concentrations of natural organic matter.
Tavares, Susana C. A.; Esteves de Silva, Joaquim C. G.; Paiva, João. J. Chem. Educ. 2007, 84, 1963.
Atmospheric Chemistry |
Consumer Chemistry |
UV-Vis Spectroscopy
"Holes" in Student Understanding: Addressing Prevalent Misconceptions Regarding Atmospheric Environmental Chemistry  Sara C. Kerr and Kenneth A. Walz
This study evaluated the misconception that global warming is caused by holes in the ozone layer, other ideas surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and ozone depletion in students' conceptual frameworks, and the effectiveness of computer-based online data-analysis exercises to address these shortcomings.
Kerr, Sara C.; Walz, Kenneth A. J. Chem. Educ. 2007, 84, 1693.
Atmospheric Chemistry |
Student-Centered Learning
Geographical Information Systems (GIS) Mapping of Environmental Samples across College Campuses  Kathleen L. Purvis-Roberts, Harriet P. Moeur, and Andrew Zanella
In this laboratory experiment, students take environmental samples (concentrations of nitrogen dioxide) and geospatial coordinates with a global position systems unit at various locations around campus, map their data on a geo-referenced map with geographical information systems software, and compare their results to those observed by governmental agencies.
Purvis-Roberts, Kathleen L.; Moeur, Harriet P.; Zanella, Andrew. J. Chem. Educ. 2007, 84, 1691.
Applications of Chemistry |
Atmospheric Chemistry |
Gases |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy
A Simple Calorimetric Experiment That Highlights Aspects of Global Heat Retention and Global Warming  Joel D. Burley and Harold S. Johnston
In this laboratory experiment, general chemistry students verify that heat is consumed in the melting of ice, with no increase in temperature until all the ice has melted. The fundamental calorimetric principles demonstrated by the lab results are then developed to help students better assess and understand the experimental evidence associated with global warming.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2007, 84, 1686.
Atmospheric Chemistry |
Calorimetry / Thermochemistry
Response to "Keeping Our Cool"  Roy W. Clark
General chemistry teachers should teach general chemistry. They should teach neither the appreciation of the wonders of modern science, nor should they teach the evil consequences of modern science.
Clark, Roy W. J. Chem. Educ. 2007, 84, 232.
Atmospheric Chemistry
Greenhouse Gases and Non-gray Behavior  J. C. Jones
Greenhouse gases feature in many courses in applied chemistry as well as in courses on environmental science, atmospheric chemistry, and so on. We hear a great deal about such matters from the media. A more classical topic which first-year chemistry students will learn about in the physical chemistry component of their program is the black body concept and the StefanĀBoltzmann law. Recently in teaching about greenhouse gases to MSc students I have thought of a link between the topical and classical matters that is pedagogically interesting and might be of value to others teaching in this subject area.
Jones, J. C. J. Chem. Educ. 2005, 82, 837.
Atmospheric Chemistry |
Gases
Water in the Atmosphere  Joel M. Kauffman
None of eight college-level general chemistry texts gave a mean value for water in the atmosphere, despite its being the third most prevalent constituent at about 1.5% by mass as vapor and about 2% if clouds and ice crystals are included. The importance of water as a greenhouse gas was omitted or marginalized by five of the eight texts. An infrared spectrum of humid air was determined to demonstrate that water vapor, because of its higher concentration, was more absorptive than carbon dioxide. The cooling effect of clouds, or other influences on the Earth's albedo, were not mentioned in most of the texts. These pervasive errors should be corrected in new or future editions of textbooks.
Kauffman, Joel M. J. Chem. Educ. 2004, 81, 1229.
Atmospheric Chemistry |
Gases |
Green Chemistry |
IR Spectroscopy
Mass Spectrometry for the Masses  Jared D. Persinger, Geoffrey C. Hoops, and Michael J. Samide
In this article, we describe an experiment for an introductory chemistry course that incorporates the use of mass spectrometry for sample analysis. Several different air samples are collected that represent various chemical processes, and the composition of the air sample is predicted on the basis of known chemical principles. A gas chromatograph-mass spectrometer is used to analyze these samples, and the relative quantities of nitrogen, oxygen, carbon dioxide, water, and argon are calculated. On the basis of the data, the hypothesized sample composition is validated.
Persinger, Jared D.; Hoops, Geoffrey C.; Samide, Michael J. J. Chem. Educ. 2004, 81, 1169.
Mass Spectrometry |
Atmospheric Chemistry |
Green Chemistry |
Nonmajor Courses |
Oxidation / Reduction |
Photosynthesis |
Gases
National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere  Erica K. Jacobsen
This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item.
Jacobsen, Erica K. J. Chem. Educ. 2003, 80, 1106.
Atmospheric Chemistry |
Applications of Chemistry
A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide  Lisa M. Goss
Demonstration of the wet deposition of sulfur dioxide in the atmosphere.
Goss, Lisa M. J. Chem. Educ. 2003, 80, 39.
Acids / Bases |
Atmospheric Chemistry
Effects of Changing Climate on Weather and Human Activities (by Kevin E. Trenberth, Kathleen Miller, Linda Mearns, and Steven Rhodes)  Evan T. Williams
A short supplement focussed on the effects of changing climate on weather and human activities.
Williams, Evan T. J. Chem. Educ. 2002, 79, 433.
Atmospheric Chemistry |
Nonmajor Courses |
Applications of Chemistry
Stratospheric Ozone Depletion (by Ann M. Middlebrook and Margaret A. Tolbert)  Evan T. Williams
A short supplement focussed on stratospheric ozone depletion.
Williams, Evan T. J. Chem. Educ. 2002, 79, 433.
Atmospheric Chemistry |
Nonmajor Courses |
Applications of Chemistry
Naturally Dangerous: Surprising Facts about Food, Health, and the Environment (by James P. Collman)   Harold H. Harris
Chemist's perspective on the topics of food, vitamins and minerals, herbal remedies, cancer and the environment, global warming, acid rain, ozone, and radiation.
Harris, Harold H. J. Chem. Educ. 2002, 79, 35.
Nonmajor Courses |
Consumer Chemistry |
Food Science |
Atmospheric Chemistry |
Nuclear / Radiochemistry |
Vitamins |
Applications of Chemistry
Identifying Deficiencies in the Environmental Chemistry Educational Literature  Thi Hoa Tran, Stephen W. Bigger, Tony Kruger, John D. Orbell, Saman Buddhadasa, and Sebastian Barone
Study of chemistry textbooks and literature for materials relating to environmental chemistry, including water, air , and soil; and degree of integration of four traditional areas of chemistry (analytical, physical, inorganic, and organic) into environmental chemistry laboratory experiments.
Tran, Thi Hoa; Bigger, Stephen W.; Kruger, Tony; Orbell, John D.; Buddhadasa, Saman; Barone, Sebastian. J. Chem. Educ. 2001, 78, 1693.
Agricultural Chemistry |
Learning Theories |
Atmospheric Chemistry
Cigarette Smoke Analysis Using an Inexpensive Gas-Phase IR Cell  N. Garizi, A. Macias, T. Furch, R. Fan, P. Wagenknecht, and K. A. Singmaster
A PVC gas cell used to collect and analyze cigarette smoke and car exhaust through IR spectroscopy.
Garizi, N.; Macias, A.; Furch, T.; Fan, R.; Wagenknecht, P.; Singmaster, K. A. J. Chem. Educ. 2001, 78, 1665.
Atmospheric Chemistry |
IR Spectroscopy |
Fourier Transform Techniques |
Laboratory Equipment / Apparatus |
Qualitative Analysis
Correction to The Bobbing Bird: Correction to J. Chem. Educ. 1996, 73, 355  H. D. Gesser
Difficulties in improving safety of original demonstration.
Gesser, Hyman D. J. Chem. Educ. 1999, 76, 757.
Atmospheric Chemistry
Advertising in this Issue  
Caution when burning hydrogen / oxygen mixtures.
J. Chem. Educ. 1999, 76, 757.
Atmospheric Chemistry
Thermal Physics (and Some Chemistry) of the Atmosphere  Stephen K. Lower
An exploration of how the temperature of the atmosphere varies with altitude can serve as a useful means of illustrating some important principles relating to the behavior of gases and to the absorption and transformation of radiant energy.
Lower, Stephen K. J. Chem. Educ. 1998, 75, 837.
Atmospheric Chemistry |
Gases
Saving Your Students' Skin. Undergraduate Experiments that Probe UV Protection by Sunscreens and Sunglasses  James R. Abney and Bethe A. Scalettar
This article describes absorption spectroscopy experiments that illustrate the mechanism of action of sunscreens and sunglasses and that highlight the differences between different products. The experiments are well suited to incorporation into an undergraduate science laboratory and will expose students to absorption phenomena in a familiar context with substantial environmental and medical relevance.
Abney, James R.; Scalettar, Bethe A. J. Chem. Educ. 1998, 75, 757.
Photochemistry |
UV-Vis Spectroscopy |
Atmospheric Chemistry |
Applications of Chemistry |
Spectroscopy
Photocatalytic Degradation of a Gaseous Organic Pollutant  Jimmy C. Yu and Linda Y. L. Chan
A simple and effective method to demonstrate the phenomenon of photocatalytic degradation of a gaseous organic pollutant was developed. Titanium dioxide (anatase) was used as the photocatalyst, and sunlight was found to be an effective light source for the activation of TiO2. The organic pollutant degrade in this demonstration was a common indoor air pollutant, dichloromethane.
Yu, Jimmy C.; Chan, Linda Y. L. J. Chem. Educ. 1998, 75, 750.
Catalysis |
Photochemistry |
Atmospheric Chemistry |
Applications of Chemistry
Chemical Behavior  Paul G. Jasien
In order to increase student understanding of the seemingly confusing behavior of chemical substances involved in environmental chemistry, an analogy between chemical and human behavior is presented. The analogy focuses on how the same individual can behave differently due to his/her social surroundings.
Jasien, Paul G. J. Chem. Educ. 1997, 74, 943.
Molecular Properties / Structure |
Nonmajor Courses |
Consumer Chemistry |
Atmospheric Chemistry
A Simple and Low-Cost Air Sampler  Sashi Saxena Ratna and Pramrod Upadhyay
In this article, an air sampler kit is presented that can be assembled from locally available household materials. The reliability of the sampler kit is also established.
Ratna, Shashi Saxena; Upadhyay, Pramod. J. Chem. Educ. 1996, 73, 787.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Quantitative Analysis
The Environmental Chemistry of Trace Atmospheric Gases  William C. Trogler
Information regarding the composition of trace gases in the Earth's atmosphere, changes in these amounts, their sources, and potential future impact on the environment.
Trogler, William C. J. Chem. Educ. 1995, 72, 973.
Gases |
Atmospheric Chemistry
Introducing Atmospheric Reactions: A Systematic Approach for Students  Baird, N. Colin
Outline of the dominant reactions that occur in air, particularly with regard to atmospheric pollutants.
Baird, N. Colin J. Chem. Educ. 1995, 72, 153.
Photochemistry |
Free Radicals |
Atmospheric Chemistry
Inventory Control: Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools  Rockwell, Dean M.; Hansen, Tony
Two variations of an air sampler and analyzer that are inexpensive, easy to construct, and highly accurate.
Rockwell, Dean M.; Hansen, Tony J. Chem. Educ. 1994, 71, 318.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Quantitative Analysis
Acid rain experiment and construction of a simple turbidity meter  Betterton, Eric A.
Construction of a simple turbidity meter in order to furnish more atmospheric chemistry experiments in the freshman and sophomore level chemistry lab.
Betterton, Eric A. J. Chem. Educ. 1991, 68, 254.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Green Chemistry
The absorption of UV light by ozone   Koubek, Edward
Using a low-pressure mercury vapor UV lamp and a recently laundered white cotton sheet as a background, one can produce a shadowgraph of ozone emerging from an ozonator.
Koubek, Edward J. Chem. Educ. 1989, 66, 338.
Atmospheric Chemistry
Demonstrating the chemistry of air pollution  Hollenberg, J. Leland; Stephens, Edgar R.; Pitts, James N., Jr.
Demonstrations regarding the three essential conditions or ingredients for the formation of photochemical smog and involving NO, NO2, unsaturated hydrocarbons, and O3.
Hollenberg, J. Leland; Stephens, Edgar R.; Pitts, James N., Jr. J. Chem. Educ. 1987, 64, 893.
Atmospheric Chemistry |
Photochemistry
A convenient, low-cost method for determining sulfate in acid rain  Johns, Nicholas; Longstaff, Stephen J.
Adapting the thoron colorimetric method for determining low sulfate concentrations quickly, simply, and accurately.
Johns, Nicholas; Longstaff, Stephen J. J. Chem. Educ. 1987, 64, 449.
Acids / Bases |
Atmospheric Chemistry |
Quantitative Analysis
Acid rain effects on stone monuments  Charola, A. Elena
What is acid rain? Which stones are used to make mountains? How are the stones affected by acid rain?
Charola, A. Elena J. Chem. Educ. 1987, 64, 436.
Acids / Bases |
Applications of Chemistry |
Atmospheric Chemistry |
Geochemistry
Acid rain analysis by standard addition titration  Ophardt, Charles E.
A simple standard addition titration method for determining the acidity of a rain or snow sample.
Ophardt, Charles E. J. Chem. Educ. 1985, 62, 257.
Titration / Volumetric Analysis |
Atmospheric Chemistry |
Acids / Bases |
Qualitative Analysis
Why isn't my rain as acidic as yours?  Zajicek, O. T.
Calculating of pH values of acid rain and comparisons to uncontaminated samples.
Zajicek, O. T. J. Chem. Educ. 1985, 62, 158.
Acids / Bases |
Atmospheric Chemistry |
pH |
Chemometrics
The chemical oceanographer   Abel, Robert B.
Oceanography holds fascinating subject matter for students learning chemistry.
Abel, Robert B. J. Chem. Educ. 1983, 60, 221.
Water / Water Chemistry |
Food Science |
Geochemistry |
Atmospheric Chemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry
Gasoline vapor: An invisible pollutant  Stephens, Edgar R.
An apparatus and procedure to demonstrate the substantial contribution vaporized gasoline makes to hydrocarbon pollution.
Stephens, Edgar R. J. Chem. Educ. 1977, 54, 682.
Physical Properties |
Gases |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
330-333. Four questions and their answers; includes comments made by readers on earlier questions 130, 153, 154, 171, 172, 181.
Campbell, J. A. J. Chem. Educ. 1977, 54, 678.
Enrichment / Review Materials |
Atmospheric Chemistry |
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals |
pH
Ultraviolet absorption of ozone  Driscoll, Jerry A.
A demonstration of the absorption of ultraviolet radiation by ozone.
Driscoll, Jerry A. J. Chem. Educ. 1977, 54, 675.
Gases |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
315-322. Eight questions on subjects related to environmental chemistry and their answers.
Campbell, J. A. J. Chem. Educ. 1977, 54, 498.
Enrichment / Review Materials |
Applications of Chemistry |
Water / Water Chemistry |
Atmospheric Chemistry
Great spray can debate  Bassow, Herb
A curriculum scenario that takes the problems raised by the technological, economic, and political contexts of the fluorocarbon controversy as its point of focus.
Bassow, Herb J. Chem. Educ. 1977, 54, 371.
Atmospheric Chemistry |
Gases |
Enrichment / Review Materials |
Applications of Chemistry
Nitric acid in rain water  Gleason, Geoffrey I.
This trace analysis experiment is based on the conversion of nitrate to nitrite using a cadmium amalgam reductor column.
Gleason, Geoffrey I. J. Chem. Educ. 1973, 50, 718.
Acids / Bases |
Water / Water Chemistry |
Atmospheric Chemistry
The chemistry of pollution - An experimental course  Frank, David L.
Briefly outlines the goals and topics of a course entitled "Chemistry of Air Pollution."
Frank, David L. J. Chem. Educ. 1973, 50, 209.
Atmospheric Chemistry |
Water / Water Chemistry
Questions [and] Answers  Campbell, J. A.
Eight questions regarding the application of chemistry and their solutions.
Campbell, J. A. J. Chem. Educ. 1973, 50, 62.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 707.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry |
Astrochemistry
Student flowmeters and an air pollution experiment  Kohn, Harold W.
Using glass wool as an absorbent for atmospheric contaminants and three simple devices for measuring flow rates of gases.
Kohn, Harold W. J. Chem. Educ. 1972, 49, 643.
Atmospheric Chemistry |
Gases |
Laboratory Equipment / Apparatus
Questions [and] Answers  Campbell, J. A.
Eight questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 624.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry |
Gases
Air pollution measurements in the freshman laboratory  Suplinkas, Raymond J.
Summarizes the equipment and procedures used to measure air pollution (NO, NO2, and O3) in a freshman chemistry laboratory.
Suplinkas, Raymond J. J. Chem. Educ. 1972, 49, 24.
Atmospheric Chemistry |
Quantitative Analysis
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
Environmental chemistry in the classroom  Day, Jean W.
The environmental sciences is an especially good vehicle for relating chemistry to other disciplines in courses for nonscientists.
Day, Jean W. J. Chem. Educ. 1970, 47, 260.
Nonmajor Courses |
Atmospheric Chemistry |
Applications of Chemistry
Stable isotopes of the atmosphere  Eck, C. F.
This article briefly presents the composition of air, the discovery of isotopes, their concentration in air, and reviews their current enrichment status.
Eck, C. F. J. Chem. Educ. 1969, 46, 706.
Atmospheric Chemistry |
Isotopes |
Nuclear / Radiochemistry
Radioisotopes on your rooftop  Lockhart, Luther, B., Jr.
The collection, recovery, and measurement of radioactive materials from atomic testing can be done through the use of relatively simple procedures and is a good exercise in tracer chemistry.
Lockhart, Luther, B., Jr. J. Chem. Educ. 1957, 34, 602.
Nuclear / Radiochemistry |
Atmospheric Chemistry |
Isotopes