Journal Articles: 13 results
Modern Sport and Chemistry: What a Golf Fanatic Should Know  Scott E. McKay, Timothy Robbins, and Renée S. Cole
This paper focuses on golf and examines some of the structures and properties of materials that have led to significant changes in the skills required to excel at the highest levels of the game.
McKay, Scott E.; Robbins, Timothy; Cole, Renée S. J. Chem. Educ. 2008, 85, 1319.
Consumer Chemistry |
Applications of Chemistry |
Materials Science
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Benchtop Nanoscale Patterning Using Soft Lithography  Viswanathan Meenakshi, Yelizaveta Babayan, and Teri W. Odom
This paper outlines several nanoscale patterning experiments designed to use readily available and inexpensive materials such as compact discs, glass microscope slides, and curable polymers, and supplemented by an online video lab manual. These labs allow students to generate polymeric and metallic structures with feature sizes as small as 110 nm.
Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W. J. Chem. Educ. 2007, 84, 1795.
Materials Science |
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Spectacular Pseudo-Exfoliation of an Exfoliated–Compressed Graphite  M. Comet, L. Schreyeck, S. Verdan, G. Burato, and H. Fuzellier
This kind of reaction has been called pseudo-exfoliation of carbonaceous material. This demonstration spectacularly illustrates the layered nature of graphite.
Comet, M.; Schreyeck, L.; Verdan, S.; Burato, G.; Fuzellier, H. J. Chem. Educ. 2004, 81, 819.
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue  V. de Zea Bermudez, P. Passos de Almeida, and J. Féria Seita
The general behavior of Newtonian, shear-thinning, shear-thickening, thixotropic, negative thixotropic, and viscoelastic fluids is characterized and briefly discussed in terms of existing theoretical models. Whenever possible, examples of these types of fluids taken from everyday life are given for better understanding.
de Zea Bermudez, Verónica; de Almeida, P. Passos; Seita, J. Féria. J. Chem. Educ. 1998, 75, 1410.
Alcohols |
Buoyancy measurements for teaching and research  Miller, Bernard
The following examination of the venerable buoyancy principle can serve as a simple but rigorous illustration of a falsification test that not only clears up a possible misconception but also points the way to a number of practical uses of buoyancy measurements that have not generally been recognized.
Miller, Bernard J. Chem. Educ. 1989, 66, 267.
Liquids |
Physical Properties
Illustrating chemical concepts through food systems: Introductory chemistry experiments  Chamber, IV, E.; Setser, C. S.
Illustrating the vaporization of liquids, reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration using foods.
Chamber, IV, E.; Setser, C. S. J. Chem. Educ. 1980, 57, 312.
Food Science |
Applications of Chemistry |
Liquids |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Colloids |
Acids / Bases
A course for engineering and science students. Materials science in freshman chemistry  Companion, A.; Schug, K.
Description of a materials science in freshman chemistry.
Companion, A.; Schug, K. J. Chem. Educ. 1973, 50, 618.
Materials Science
Flow of glass under its own weight  Dingledy, David
A common misconception of the nature of glass found in general chemistry texts is that ordinary glass will flow under its own weight at room temperatures.
Dingledy, David J. Chem. Educ. 1962, 39, 84.