TIGER

Journal Articles: 25 results
The A1c Blood Test: An Illustration of Principles from General and Organic Chemistry  Robert C. Kerber
The glycated hemoglobin blood test is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1541.
Applications of Chemistry |
Bioinorganic Chemistry |
Carbohydrates |
Mechanisms of Reactions |
Proteins / Peptides |
Bioorganic Chemistry
The Fluorescence of Lignum nephriticum: A Flash Back to the Past and a Simple Demonstration of Natural Substance Fluorescence  Mark Muyskens
This article describes a simple but visually striking demonstration of fluorescence from the aqueous extract of the tropical hardwood Pterocarpus indicus.
Muyskens, Mark. J. Chem. Educ. 2006, 83, 765.
Acids / Bases |
Fluorescence Spectroscopy |
Natural Products |
pH |
Solutions / Solvents |
UV-Vis Spectroscopy
The Discovery and Development of Cisplatin  Rebecca A. Alderden, Matthew D. Hall, and Trevor W. Hambley
Cisplatin is currently one of the most widely used anticancer drugs in the world. The unlikely events surrounding the discovery of its anticancer activity, subsequent introduction into the clinic, and the continuing research into platinum compounds is the subject of this review.
Alderden, Rebecca A.; Hall, Matthew D.; Hambley, Trevor W. J. Chem. Educ. 2006, 83, 728.
Bioinorganic Chemistry |
Coordination Compounds |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Metallic Bonding |
Oxidation State |
Synthesis
An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll a and b from Spinach  Hao T. Quach, Robert L. Steeper, and G. William Griffin
A direct method of extracting plant pigments from spinach leaves into a dry organic solvent is presented. This method avoids liquidliquid extractions and subsequent drying as is found in previously reported methods.
Quach, Hao T.; Steeper, Robert L.; Griffin, G. William. J. Chem. Educ. 2004, 81, 385.
Chromatography |
Natural Products |
Plant Chemistry |
Separation Science |
Thin Layer Chromatography
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
Application of Datalogger in Observing Photosynthesis  Martin M. F. Choi, Pui Shan Wong, and Tak Pong Yiu
Using a datalogger and dissolved-oxygen sensor to monitor the liberation of dissolved oxygen in the photosynthesis of seaweed.
Choi, Martin M. F.; Wong, Pui Shan; Yiu, Tak Pong. J. Chem. Educ. 2002, 79, 980.
Plant Chemistry |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
Student Understanding of Chromatography: A Hands-On Approach  Robert D. Curtright, Randy Emry, and John Markwell*
This exercise sets up a collaborative activity that challenges students to develop a chromatographic solvent with the appropriate polarity to separate leaf chlorophyll and anthocyanin pigments by TLC. The suggested activity has been tested with both high-school advanced-chemistry students and with undergraduate students in an introductory biochemistry class.
Curtright, Robert D.; Emry, Randy; Markwell, John. J. Chem. Educ. 1999, 76, 249.
Chromatography |
Natural Products |
Separation Science |
Undergraduate Research |
Thin Layer Chromatography
The Art and Science of Organic and Natural Products Synthesis  K. C. Nicolaou, E. J. Sorensen, and N. Winssinger
In this article, the history of the art and science of organic and natural products synthesis is briefly reviewed and the state of the art is discussed. The impact of this discipline on biology and medicine is amply demonstrated with examples, and projections for future developments in the field are made.
Nicolaou, K. C.; Sorensen, E. J.; Winssinger, N. J. Chem. Educ. 1998, 75, 1225.
Natural Products |
Synthesis |
Medicinal Chemistry |
Applications of Chemistry |
Drugs / Pharmaceuticals
Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  Greg P. Smestad and Michael Gratzel
A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer.
Smestad, Greg P.; Grtzel, Michael. J. Chem. Educ. 1998, 75, 752.
Photochemistry |
Plant Chemistry |
Electrochemistry |
Atomic Properties / Structure |
Dyes / Pigments |
Nanotechnology |
Separation Science |
Spectroscopy
Chem-Is-Tree  Dana M. Barry
Trees are woody plants that contain chemicals and undergo chemical reactions. They consist of cellulose, volatile oils, fatty acids, and more.
Barry, Dana M. J. Chem. Educ. 1997, 74, 1175.
Plant Chemistry |
Natural Products
Iron as Nutrient and Poison  N. M. Senozan and M. P. Christiano
Iron containing compounds of the body and the ingestion and elimination of iron, the function and transport of this metal among different sites and substances of the body, and biochemical defects and nutritional habits that lead to excessive accumulation of iron and some unexpected consequences of this accumulation are described.
Senozan, N. M.; Christiano, M. P. J. Chem. Educ. 1997, 74, 1060.
Bioinorganic Chemistry |
Bioorganic Chemistry |
Food Science |
Metals |
Vitamins |
Toxicology |
Nutrition |
Applications of Chemistry |
Descriptive Chemistry
The Inorganic Illustrator: A 3-D Graphical Supplement for Inorganic and Bioinorganic Chemistry Courses Distributed on CD-ROM  Scott L. Childs and Karl S. Hagen
As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing.
Childs, Scott L.; Hagen, Karl S. J. Chem. Educ. 1996, 73, 917.
Molecular Modeling |
Enrichment / Review Materials |
Bioinorganic Chemistry |
Coordination Compounds |
Organometallics |
Main-Group Elements |
Solid State Chemistry
Supermarket column chromatography of leaf pigments  Kimbrough, Doris R.
Simple and effective method of column chromatography of leaf pigments using chemicals and equipment that can be purchased at most grocery, hardware, and/or drugstores.
Kimbrough, Doris R. J. Chem. Educ. 1992, 69, 987.
Chromatography |
Separation Science |
Plant Chemistry |
Dyes / Pigments
Biochemistry laboratory for the freshman chemistry curriculum  Falk, Peter M.
Intended to introduce students to two important biochemical principles: the study of biomolecules and metabolism.
Falk, Peter M. J. Chem. Educ. 1989, 66, 944.
Metabolism |
Carbohydrates |
Lipids |
Proteins / Peptides |
Plant Chemistry
An indigo plant as a teaching material  Torimoto, Norboru
Procedures for dyeing using both green and dried leaves.
Torimoto, Norboru J. Chem. Educ. 1987, 64, 332.
Dyes / Pigments |
Plant Chemistry |
Applications of Chemistry
The energy relationships of corn production and alcohol fermentation  Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J.
The production of alcohol from corn lends itself well to illustrating the practical applications of scientific principles that deal with energy transformations and inefficiencies.
Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J. J. Chem. Educ. 1987, 64, 11.
Natural Products |
Applications of Chemistry |
Plant Chemistry |
Green Chemistry |
Alcohols |
Calorimetry / Thermochemistry |
Photosynthesis
Chlorophyll separation and spectral identification  Diehl-Jones, Susan M.
Extracting chlorophyl a and b from spinach and separating them using thin-layer and column chromatography.
Diehl-Jones, Susan M. J. Chem. Educ. 1984, 61, 454.
Separation Science |
Spectroscopy |
Plant Chemistry |
Photosynthesis |
Dyes / Pigments |
Thin Layer Chromatography |
Chromatography
Questions [and] Answers  Campbell, J. A.
309-314. Six questions involving practical applications of chemistry.
Campbell, J. A. J. Chem. Educ. 1977, 54, 437.
Enrichment / Review Materials |
Toxicology |
Alcohols |
Gases |
Natural Products
Nitrogen Fixation. An interdisciplinary frontier  Schneller, Stewart W.
Examines biological nitrogen fixation, inorganic complexes related to N2ase, and non-enzymatic nitrogen fixation.
Schneller, Stewart W. J. Chem. Educ. 1972, 49, 786.
Plant Chemistry
The chlorophyll cat  Hardcastle, J. E.
A short poem and cartoon representation of the chlorophyll structure.
Hardcastle, J. E. J. Chem. Educ. 1972, 49, 364.
Plant Chemistry |
Photosynthesis |
Molecular Properties / Structure |
Proteins / Peptides
Modifications of solution chromatography illustrated with chloroplast pigments  Strain, Harold H.; Sherma, Joseph
Using plant pigments to demonstrate various chromatographic techniques, including column adsorption, paper adsorption, paper partition, column partition, and thin layer chromatography.
Strain, Harold H.; Sherma, Joseph J. Chem. Educ. 1969, 46, 476.
Chromatography |
Separation Science |
Plant Chemistry |
Dyes / Pigments |
Natural Products |
Thin Layer Chromatography
Thin layer chromatographic separation of leaf pigments: A rapid demonstration  Rollins, Charles
Eleven pigment spots can be detected from an extract of grass leaves by a rapid TLC separation on silicic acid.
Rollins, Charles J. Chem. Educ. 1963, 40, 32.
Plant Chemistry |
Dyes / Pigments |
Separation Science |
Chromatography |
Thin Layer Chromatography
Separation of plant pigments by thin layer chromatography  Anwar, M. H.
Describes a lab activity to separate chloroplast pigments over a thin layer of silicic acid.
Anwar, M. H. J. Chem. Educ. 1963, 40, 29.
Separation Science |
Plant Chemistry |
Thin Layer Chromatography |
Chromatography
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
Photosynthesis  Bassham, J. A.
Provides a detailed review of what is known about photosynthesis and recent developments in methods of investigation.
Bassham, J. A. J. Chem. Educ. 1959, 36, 548.
Photosynthesis |
Plant Chemistry |
Photochemistry