TIGER

Journal Articles: 54 results
The Electrochemical Synthesis of Transition-Metal Acetylacetonates  S. R. Long, S. R. Browning, and J. J. Lagowski
The electrochemical synthesis of transition-metal acetylacetonates can assist in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but each student has a personal responsibility for the synthesis and characterization of a specific compound.
Long, S. R.; Browning, S. R.; Lagowski, J. J. J. Chem. Educ. 2008, 85, 1429.
Coordination Compounds |
Electrochemistry |
IR Spectroscopy |
Physical Properties |
Synthesis |
Transition Elements |
UV-Vis Spectroscopy
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Using Metals To Change the Colors of Natural Dyes  Jennifer E. Mihalick and Kathleen M. Donnelly
Metal salts (mordants) are used to produce different colors in fabrics dyed with tea leaves or marigold flowers. This experiment is especially suitable for nonscience majors and can be used to introduce polymers.
Mihalick, Jennifer E.; Donnelly, Kathleen M. J. Chem. Educ. 2006, 83, 1550.
Applications of Chemistry |
Dyes / Pigments |
Transition Elements
A Colorful Look at the Chelate Effect  Donald C. Bowman
The relative stabilities of several copper(II) and nickel(II) complexes are visually compared by noting color changes due to ligand exchange reactions. The demonstration illustrates the chelate effect┬Łthe increased stability of bi- and tetradentate ligands.
Bowman, Donald C. J. Chem. Educ. 2006, 83, 1158.
Coordination Compounds |
Transition Elements
The Synthesis of Copper(II) Carboxylates Revisited  Kevin Kushner, Robert E. Spangler, Ralph A. Salazar, Jr., and J. J. Lagowski
Describes an electrochemical synthesis of copper(II) carboxylates for use in the general chemistry laboratory course for chemistry majors.
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J. J. Chem. Educ. 2006, 83, 1042.
Carboxylic Acids |
Coordination Compounds |
Electrochemistry |
Metals |
Solutions / Solvents |
Transition Elements |
Undergraduate Research |
Synthesis
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
The Meaning of d-Orbital Labels  Guy Ashkenazi
Orbital labels are the angular part of the wave function, expressed in Cartesian coordinates. The mathematical relation between the labels and the shapes of the orbitals is discussed.
Ashkenazi, Guy. J. Chem. Educ. 2005, 82, 323.
Atomic Properties / Structure |
Transition Elements |
Quantum Chemistry
Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet  Charles J. Malerich and Patrica K. Ruff
A method for demonstrating and measuring the magnetic attraction between a paramagnetic substance and a neodymium magnet is described and evaluated. The experiment measures the maximum angle that the magnet can deflect a paramagnetic compound from the vertical. The apparatus to make this measurement is easy to set up and is low-cost.
Malerich, Charles J.; Ruff, Patrica K. J. Chem. Educ. 2004, 81, 1155.
Magnetic Properties |
Metals |
Transition Elements |
Computational Chemistry
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Simple Measurement of Magnetic Susceptibility with a Small Permanent Magnet and a Top-Loading Electronic Balance  Yoshinori Itami and Kozo Sone
Measuring magnetic susceptibility of solid transition metal salts using a simple, inexpensive, and easy-to-handle device.
Itami, Yoshinori; Sone, Kozo. J. Chem. Educ. 2002, 79, 1002.
Atomic Properties / Structure |
Magnetic Properties |
Transition Elements |
Laboratory Equipment / Apparatus |
Metals
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Metal Complexes of Trifluoropentanedione. An Experiment for the General Chemistry Laboratory  Robert C. Sadoski, David Shipp, and Bill Durham
Investigation of the transition-metal complexes produced by the reactions of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with 1,1,1-trifluoro-2,4-pentanedione; mass spectroscopy is used to determine the stoichiometry of the reaction products.
Sadoski, Robert C.; Shipp, David; Durham, Bill. J. Chem. Educ. 2001, 78, 665.
Coordination Compounds |
Synthesis |
Mass Spectrometry |
Transition Elements |
Stoichiometry
Letters  
Better treatment of the inner transition elements.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 1064.
Periodicity / Periodic Table |
Inner Transition Elements
Designing a Self-Contained Qualitative Analysis Test for Transition Metal Ions  Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor
A challenging self-contained qualitative analysis test for transition metal compounds comprising nine unknowns whereby the unknown solutions can be systematically identified, without relying on external reagents, by inter-mixing the unknown samples. The names of the samples are made known, but their correspondence with the samples is concealed. A representative range of transition metal compounds was selected, together with two complementary main-group compounds. This "9-bottle" test encourages logical deduction and analytical thinking.
Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor. J. Chem. Educ. 1998, 75, 456.
Qualitative Analysis |
Transition Elements |
Metals
What Is a "Heavy Metal"?  Stephen J. Hawkes
Heavy metals are the transition and post-transition metals.
Hawkes, Stephen J. J. Chem. Educ. 1997, 74, 1374.
Metals |
Transition Elements
Elements of and in the Chemical Literature: An Undergraduate Course  Novick, Sabrina Godfrey
Synopsis of a descriptive chemistry course designed to familiarize students with the chemistry of the elements, as well as the wide variety of resources containing information on the properties of the elements and their associated compounds; includes examples of homework and other assessments used in the course.
Novick, Sabrina Godfrey J. Chem. Educ. 1995, 72, 297.
Main-Group Elements |
Transition Elements |
Descriptive Chemistry
Studying Activity Series of Metals: Using Deep-Learning Strategies  Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai
Uses a unit of the activity series of metals to demonstrate the teaching of the interrelationships between chemical concepts by linking new information to previously known material.
Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai J. Chem. Educ. 1995, 72, 51.
Metals |
Periodicity / Periodic Table |
Transition Elements
Rare Earth Iron Garnets: Their Synthesis and Magnetic Properties  Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J.
A general synthesis for compositions in the solid solution series YxGd3-xFe5O12 (x = 0, 1, 2, 3) and a simple demonstration that illustrates the differing magnetic properties of these materials.
Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J. J. Chem. Educ. 1994, 71, 696.
Metals |
Transition Elements |
Magnetic Properties |
Synthesis |
Solid State Chemistry
Vanadium Ions as Visible Electron Carriers in a Redox System  Bare, William D.; Resto, Wilfredo
Demonstration using a column to display the four, differently colored, oxidation states of vanadium simultaneously.
Bare, William D.; Resto, Wilfredo J. Chem. Educ. 1994, 71, 692.
Oxidation / Reduction |
Transition Elements |
Metals |
Oxidation State
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
Collecting and Using the Rare Earths  Solomon, Sally; Lee, Alan
Prices, sources, handling tips, and specific suggestions about how to use the lanthanide elements in the classroom and the laboratory.
Solomon, Sally; Lee, Alan J. Chem. Educ. 1994, 71, 247.
Metals |
Transition Elements |
Physical Properties
Fast and slow reactions of chromium compounds  Knox, Kerro
The inertness of ligand substitution by chromium(III) ions is compared with other reactions that do proceed at reasonably fast rates, and an outcome is obtained in which two solutions of identical compositions contain different chromium species of different colors.
Knox, Kerro J. Chem. Educ. 1990, 67, 700.
Coordination Compounds |
Transition Elements
Transition metal configurations and limitations of the orbital approximation  Scerri, Eric R.
Points out a misconception concerning the "building up" of the transition elements and their first ionization energies that is reinforced by many chemistry texts.
Scerri, Eric R. J. Chem. Educ. 1989, 66, 481.
Transition Elements |
Atomic Properties / Structure
Hemoglobinometry: A biochemistry experiment that utilizes the principles of transition metal chemistry  Giuliano, Vincenzo
Colorimetric measurements are used to determine the concentration of hemoglobin in blood and the effect of the effect that the presence of cyanide ions has on the formation of cyanomethemoglobin.
Giuliano, Vincenzo J. Chem. Educ. 1987, 64, 354.
Transition Elements |
Metals |
Medicinal Chemistry |
Spectroscopy
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
Qualitative analysis of some transition metals  Kilner, Cary
Students are asked to determine which test or or sequence of tests unambiguously identifies each of several cations (iron, nickel, cobalt, and copper) and to use their results to identify several unknowns.
Kilner, Cary J. Chem. Educ. 1985, 62, 80.
Qualitative Analysis |
Transition Elements |
Metals
Electronic structure prediction for transition metal ions  Nance, Lewis E.
A useful mnemonic for the electronic structure for M (II) elements.
Nance, Lewis E. J. Chem. Educ. 1984, 61, 339.
Transition Elements |
Metals |
Oxidation State |
Atomic Properties / Structure
The precipitation of ferrous hydroxide: A lecture demonstration  Lau, O. W.
This demonstration can illustrate such topics as the solubility of ionic compounds, electrode potentials of transition elements and their modification by formation of either an insoluble compound of a complex ion, and mixed valence compounds.
Lau, O. W. J. Chem. Educ. 1979, 56, 474.
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry |
Transition Elements |
Metals |
Oxidation / Reduction |
Oxidation State
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
Vanadium for high school students  Grant, A. Ward, Jr.
After the instructor performs the reduction of vanadium(V) as a demonstration, students can perform the oxidation of the vanadium(II) back to its original state.
Grant, A. Ward, Jr. J. Chem. Educ. 1977, 54, 500.
Titration / Volumetric Analysis |
Oxidation State |
Oxidation / Reduction |
Metals |
Transition Elements
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
The effect of ligands on hydrolysis constants of transition metal ions  Morrow, Jack I.
This procedure examines the effect that ligands in the inner coordination sphere have upon the chemical behavior of transition metal ions.
Morrow, Jack I. J. Chem. Educ. 1972, 49, 748.
Coordination Compounds |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Aqueous Solution Chemistry
A simple, effective demonstration of magnetic properties of materials  Burke, John A., Jr.
A simple demonstration of diamagnetism that requires only a magnet of a few kilogauss in strength.
Burke, John A., Jr. J. Chem. Educ. 1972, 49, 568.
Magnetic Properties |
Physical Properties |
Metals |
Transition Elements
Model to illustrate bonding and symmetry of transition metal complexes  Betteridge, D.
Describes a physical model used to demonstrate the combination of atomic orbitals of the transition metal ion with those on surrounding ligands to give molecular orbitals.
Betteridge, D. J. Chem. Educ. 1970, 47, 824.
Transition Elements |
Metals |
Coordination Compounds |
Molecular Modeling |
Atomic Properties / Structure |
Group Theory / Symmetry
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Role of f electrons in chemical binding  Johnson, O.
Data presented suggests that f electrons, by their ineffective screening of the nuclear charge, exert an indirect effect on the binding strength of actions.
Johnson, O. J. Chem. Educ. 1970, 47, 431.
Atomic Properties / Structure |
Metals |
Transition Elements
Isomerism in transition metal complexes: An experiment for freshman chemistry laboratory  Foust, Richard D., Jr.; Ford, Peter C.
In this experiment students synthesize two isomers, cis- and trans-dichlorobis(ethylenediamine)-cobalt(III) chloride.
Foust, Richard D., Jr.; Ford, Peter C. J. Chem. Educ. 1970, 47, 165.
Molecular Properties / Structure |
Transition Elements |
Metals |
Coordination Compounds |
Diastereomers |
Synthesis
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
The oxidation states of molybdenum  Stark, J. G.
This experiment involves a titrimetric determination of the oxidation states of molybdenum.
Stark, J. G. J. Chem. Educ. 1969, 46, 505.
Oxidation State |
Titration / Volumetric Analysis |
Transition Elements
Hybrid orbitals in molecular orbital theory  Cohen, Irwin; Del Bene, Janet
Reviews, for the nonspecialist, the basis of hybrid orbitals in terms of molecular orbital theory, to show how the chemical bond is most closely approximated in orbital theory, and to present some new orbital diagrams.
Cohen, Irwin; Del Bene, Janet J. Chem. Educ. 1969, 46, 487.
MO Theory |
Transition Elements
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Anticipating "valences" from electron configurations  Eichinger, Jack W., Jr.
Describes a procedure for predicting "valences" from electron configurations that works well for most metals.
Eichinger, Jack W., Jr. J. Chem. Educ. 1967, 44, 689.
Atomic Properties / Structure |
Metals |
Transition Elements
I - Ligand field theory  Cotton, F. Albert
Examines the causes and consequences of inner orbital splittings, stereochemical consequences, and the visible spectra of transition metal compounds. [Debut]
Cotton, F. Albert J. Chem. Educ. 1964, 41, 466.
Crystal Field / Ligand Field Theory |
Coordination Compounds |
Transition Elements
Crystal field splitting diagrams  Companion, A. L.; Komarynsky, M. A.
Presents a method for determining crystal field splitting patterns within the ionic model without the use of formal group theory.
Companion, A. L.; Komarynsky, M. A. J. Chem. Educ. 1964, 41, 257.
Crystal Field / Ligand Field Theory |
Transition Elements |
Group Theory / Symmetry
Preparation and analysis of a complex compound  Sebera, Donald K.
A cobalt/ammonia complex is prepared and analyzed in a freshman chemistry laboratory.
Sebera, Donald K. J. Chem. Educ. 1963, 40, 476.
Synthesis |
Coordination Compounds |
Transition Elements
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
Letters  Ferreira, Ricardo Carvalho
The author points out earlier work associated with a recent Journal article dealing with the periodic table and the transition elements.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1952, 29, 372.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Transition Elements
The periodic table: The 6d-5f mixed transition group  Coryell, Charles D.
With relatively few modifications, the Bohr-type periodic table presented by Glocker and Popov can be made to reflect more instructively the rather complex relationships obtained in the neighborhood of the 4f or gadolinium transition group and, more importantly, in the 6d-5f sequence extending from actinium through the region of uranium and the synthetic earths to element 103.
Coryell, Charles D. J. Chem. Educ. 1952, 29, 62.
Periodicity / Periodic Table |
Transition Elements |
Atomic Properties / Structure
The lanthanide contraction as a teaching aid  Keller, R N.
This paper presents a modified form of the atomic volume curve that illustrates graphically the lanthanide contraction; a number of chemical consequences of this effect are also discussed.
Keller, R N. J. Chem. Educ. 1951, 28, 312.
Transition Elements |
Periodicity / Periodic Table
Valency and the periodic table  Glockler, George; Popov, Alexander I.
Presents a modification of the Bohr-Thomsen-Akhumov periodic table stressing patterns to found among the rare earth elements.
Glockler, George; Popov, Alexander I. J. Chem. Educ. 1951, 28, 212.
Periodicity / Periodic Table |
Oxidation State |
Transition Elements |
Atomic Properties / Structure