TIGER

Journal Articles: 36 results
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
The Chemical Composition of Maple Syrup  David W. Ball
Explores the complex chemical composition of maple syrup.
Ball, David W. J. Chem. Educ. 2007, 84, 1647.
Descriptive Chemistry |
Food Science |
Plant Chemistry |
Natural Products |
Solutions / Solvents
Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (Ksp) of Potassium Hydrogen Phthalate  Frazier W. Nyasulu, William Cusworth III, David Lindquist, and John Mackin
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate. From these data the solubility products, the Gibbs free energies of solution, the standard enthalpy of solution, and the standard entropy of solution are calculated.
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John. J. Chem. Educ. 2007, 84, 456.
Acids / Bases |
Atomic Properties / Structure |
Spectroscopy |
Equilibrium |
Quantitative Analysis |
Thermodynamics |
Titration / Volumetric Analysis |
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Spectroscopy
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Intermolecular and Intramolecular Forces: A General Chemistry Laboratory Comparison of Hydrogen Bonding in Maleic and Fumaric Acids  Frazier W. Nyasulu and John Macklin
This article presents a simple laboratory experiment that is designed to enhance students' understanding of inter- and intramolecular hydrogen bonding by demonstrating the comparative effect of these phenomena on some chemical and physical properties.
Nyasulu, Frazier W.; Macklin, John. J. Chem. Educ. 2006, 83, 770.
Acids / Bases |
Hydrogen Bonding |
Noncovalent Interactions |
Thermodynamics |
Titration / Volumetric Analysis
Computer Simulations of Salt Solubility  Victor M. S. Gil and João C. M. Paiva
Computer Simulations of Salt Solubility provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution: configurational disorder and thermal disorder.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 173.
Thermodynamics |
Equilibrium |
Solutions / Solvents |
Precipitation / Solubility |
Computational Chemistry
A New Java Animation in Peer-Reviewed JCE WebWare  William F. Coleman and Edward W. Fedosky
Just added to JCE WebWare, Computer Simulations of Salt Solubility uses a Java applet and Web browser to present an animated illustration of differences in the solubility of salts due to differences in the entropy of solvation.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 173.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
What Should We Teach Beginners about Solubility and Solubility Products?  Stephen J. Hawkes
Solubility equilibria are best taught qualitatively in introductory chemistry, leaving the calculations to higher level courses.
Hawkes, Stephen J. J. Chem. Educ. 1998, 75, 1179.
Solutions / Solvents |
Equilibrium |
Precipitation / Solubility
Vapor Pressure Lowering by Nonvolatile Solutes  Gavin D. Peckham
This short article highlights a fundamental error that is entrenched in introductory chemistry textbooks. It is true that the addition of a nonvolatile solute causes a lowering in the vapor pressure of a solution. The error lies in attributing this vapor pressure lowering to the "blocking" of surface sites by nonvolatile particles. This is a totally fallacious argument for a number of reasons and the true explanation is to be found in the entropy changes that occur as a nonvolatile solute is added to a solution.
Peckham, Gavin D. J. Chem. Educ. 1998, 75, 787.
Gases |
Solutions / Solvents |
Thermodynamics
The Real Reason Why Oil and Water Don't Mix  Todd P. Silverstein
Authors should remove from their textbooks the incorrect enthalpic/hydrogen-bond explanation for the hydrophobic effect. Because aspects of the correct entropic/clathrate "cage" explanation lie beyond the scope of introductory or organic chemistry courses, it may be wisest to omit any detailed physical explanation of the "like dissolves like" phenomenon.
Silverstein, Todd P. J. Chem. Educ. 1998, 75, 116.
Theoretical Chemistry |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solutions / Solvents
Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  Chinhyu Hur, Sally Solomon, and Christy Wetzel
Heat changes can be observed by using a culture dish and a thermometer that is projected onto a screen using an overhead projector.
Hur, Chinhyu; Solomon, Sally; Wetzel, Christy. J. Chem. Educ. 1998, 75, 51.
Calorimetry / Thermochemistry |
Solutions / Solvents |
Thermodynamics |
Laboratory Equipment / Apparatus
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
An Analogy To Illustrate Miscibility of Liquids  Thornton, Barry K.
Using inter-school rivalries to illustrate the concept of "like dissolves like".
Thornton, Barry K. J. Chem. Educ. 1994, 71, 156.
Solutions / Solvents
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
Small-scale thermochemistry experiment   Brouwer, Henry
An inexpensive calorimeter that uses approximately 1/10 of the reagents required for the foam coffee cup.
Brouwer, Henry J. Chem. Educ. 1991, 68, A178.
Heat Capacity |
Thermodynamics |
Microscale Lab
The Australian Academy of Science School Chemistry Project: A new-generation secondary school chemistry course  Bucat, R. B.; Cole, A. R. H.
The purpose of this paper is to summarize the philosophies behind the courses described in this paper and the consequent design decisions regarding the selection and sequence of the chemistry content.
Bucat, R. B.; Cole, A. R. H. J. Chem. Educ. 1988, 65, 777.
Atmospheric Chemistry |
Metabolism |
Thermodynamics
A new road to reactions: Part III. Teaching the heat effect of reactions  de Vos, Wobbe; Verdonk, Adri H.
This series of work summarizes the authors' work on the concept of chemical reactions as a teaching and learning problem.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1986, 63, 972.
Thermodynamics |
Reactions |
Solutions / Solvents |
Acids / Bases
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Le Châtelier's principle, temperature effects, and entropy  Campbell, J. Arthur
A useful extension of Le Chatelier's Principle to predict concentration, pressure, and temperature effects solely from the equation for the net reaction.
Campbell, J. Arthur J. Chem. Educ. 1985, 62, 231.
Equilibrium |
Thermodynamics
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
On the misuse of Le Châtelier's principle for the prediction of the temperature dependence of the solubility of salts  Bodner, George M.
Explores why Le Châtelier's principle often fails to predict the temperature dependence of the solubility of salts.
Bodner, George M. J. Chem. Educ. 1980, 57, 117.
Equilibrium |
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Definition of standard states  Lukens, David C.
A suggested sequence of definitions for the standard state.
Lukens, David C. J. Chem. Educ. 1972, 49, 654.
Thermodynamics |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Solutions / Solvents
The effervescence of ocean surf  Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B.
A pure liquid will not foam, but all true solutions will, as dictated by the fundamental concepts of surface thermodynamics enunciated by Gibbs.
Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 29.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Solutions / Solvents |
Thermodynamics
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
Indirect calorimetry by computer in the general chemistry course  DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel
Describes the use of a Fortran IV program to stimulate student interest in the applications and potential of computer techniques in chemistry.
DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1969, 46, 398.
Calorimetry / Thermochemistry |
Thermodynamics
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics