TIGER

Journal Articles: 41 results
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
A-DNA and B-DNA: Comparing Their Historical X-ray Fiber Diffraction Images  Amand A. Lucas
This paper provides a comparative explanation of the structural content of the diffraction diagrams of A-DNA and B-DNA that facilitated the discovery of the double-helical structure of DNA by Watson and Crick in 1953. This analysis is supported a method that simulates both A-DNA and B-DNA X-ray images optically.
Lucas, Amand A. J. Chem. Educ. 2008, 85, 737.
Biophysical Chemistry |
Conformational Analysis |
Crystals / Crystallography |
X-ray Crystallography |
Nucleic Acids / DNA / RNA
Using Two-Dimensional Colloidal Crystals To Understand Crystallography   Stephanie A. Bosse and Nikolaus M. Loening
Describes a simple experiment that uses micrometer-sized latex spheres to form two-dimensional colloidal crystals. Diffraction patterns formed by passing a laser beam through these crystals reveal their symmetry and allow the determination of the size of the particles that make up the crystal.
Bosse, Stephanie A.; Loening, Nikolaus M. J. Chem. Educ. 2008, 85, 93.
Colloids |
Crystals / Crystallography |
Lasers |
X-ray Crystallography
Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Close-Packed Structure  John A. Hawkins, Linda M. Soper, Jeffrey L. Rittenhouse, and Robert C. Rittenhouse
Examines the pedagogical advantages in presenting the primitive rhombohedral unit cell as a means of helping students to gain greater insight into the nature of the cubic close-packed structure.
Hawkins, John A.; Soper, Linda M.; Rittenhouse, Jeffrey L.; Rittenhouse, Robert C. J. Chem. Educ. 2008, 85, 90.
Crystals / Crystallography |
Metals |
Solids
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Crystal Models Made from Clear Plastic Boxes and Their Use in Determining Avogadro's Number  Thomas H. Bindel
Construction and use of unit cell / crystal lattice models made from clear plastic boxes.
Bindel, Thomas H. J. Chem. Educ. 2002, 79, 468.
Crystals / Crystallography |
X-ray Crystallography |
Stoichiometry |
Molecular Modeling
A Picture Is Worth 1000 Words: The BLT in Teaching Crystal Structure  Arthur M. Lesk
In explaining descriptions of crystals, many authors have emphasized the idea that Nature makes crystals, but human beings draw unit cell boundaries. The accompanying figure contains a useful classroom demonstration to drive this point home.
Lesk, Arthur M. J. Chem. Educ. 2000, 77, 1423.
Crystals / Crystallography
Cubic Unit Cell Construction Kit  Bruce Mattson
This article provides plans for the construction of a student-interactive cubic unit cell model kit. Plans allow for the kit to be constructed on any scale. The kit is used in classroom activities or by students working alone or in small groups to construct the entire family of cubic lattices.
Mattson, Bruce. J. Chem. Educ. 2000, 77, 622.
Coordination Compounds |
Crystals / Crystallography |
Descriptive Chemistry |
Solid State Chemistry |
Molecular Modeling
Kixium Monolayers: A Simple Alternative to the Bubble Raft Model for Close-Packed Spheres  Keenan E. Dungey
This model focuses on the two-dimensional sheets, which are spontaneously formed from cereal pieces. The structure of the cereal rafts can be presented with an overhead projector.
Dungey, Keenan E. J. Chem. Educ. 2000, 77, 618.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry
Use of Pom Pons To Illustrate Cubic Crystal Structures  Susan G. Cady
Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons.
Cady, Susan G. J. Chem. Educ. 1997, 74, 794.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
Cubic and Related Structures of Many Types of Crystals: A Single Illuminated Model  Rich, Ronald L.
Instructions for constructing a three-dimensional, lighted model to illustrate the positions of atoms in many different crystalline structures.
Rich, Ronald L. J. Chem. Educ. 1995, 72, 172.
Crystals / Crystallography |
Laboratory Equipment / Apparatus |
Geochemistry |
Molecular Modeling |
Molecular Properties / Structure
Mechanical Properties of Metals: Experiments with Steel, Copper, Tin, Zinc, and Soap Bubbles  Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S.
Annealing, hardening, and tempering of metals; using bubbles to model the crystalline structure of metals.
Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S. J. Chem. Educ. 1994, 71, 254.
Physical Properties |
Metals |
Crystals / Crystallography
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
Direct visualization of Bragg diffraction with a He-Ne laser and an ordered suspension of charged microspheres  Spencer, Bertrand H.; Zare, Richard N.
Bragg diffraction from colloidal crystals proves to be an excellent teaching tool. Only modest equipment and lab skill are needed to produce a diffraction pattern to provide students with an in-depth understanding of what ordered structure is and how it can be probed by diffraction techniques.
Spencer, Bertrand H.; Zare, Richard N. J. Chem. Educ. 1991, 68, 97.
X-ray Crystallography |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
Calculation of Madelung constants in the first year chemistry course  Elert, Mark; Koubek, Edward
76. Bits and pieces, 31. A computer program aids in understanding the nature of the Madelung constants.
Elert, Mark; Koubek, Edward J. Chem. Educ. 1986, 63, 840.
Crystals / Crystallography |
Chemometrics
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
A 3-dimensional animated videocassette on the unit cell  Gelder, J. I.; Liu, C. F.; O'Donnell, T. J.
This 7.5 minute videocassette introduces the macroscopic properties of crystals as they relate to the regularity of the crystalline lattice and shows the relationship between the extended lattice and the cubic cell.
Gelder, J. I.; Liu, C. F.; O'Donnell, T. J. J. Chem. Educ. 1980, 57, 590.
Crystals / Crystallography
Chemical symbolism and the solid state. A proposal  Jensen, William B.
A proposed symbolism for representing the solid state.
Jensen, William B. J. Chem. Educ. 1977, 54, 277.
Solid State Chemistry |
Crystals / Crystallography
Some structural principles for introductory chemistry  Wells, A. F.
Unit cells in repeating patterns and descriptions of simple structures.
Wells, A. F. J. Chem. Educ. 1977, 54, 273.
Solids |
Crystals / Crystallography
Models for simple, close-packed crystal structures  Mann, A. W.
This paper describes some simple crystallographic models made from styrofoam balls.
Mann, A. W. J. Chem. Educ. 1973, 50, 652.
Molecular Modeling |
Crystals / Crystallography |
Solids
Demonstration of close-packing phenomena  Birnbaum, Edward R.
Relies in layers of styrofoam balls and an overhead projector for illustrating close-packed structure.
Birnbaum, Edward R. J. Chem. Educ. 1972, 49, 674.
Crystals / Crystallography |
Solids
Demonstration of 2-dimensional crystal lattice  Morrison, James D.; Driscoll, Jerry A.
A laser passing through wire cloth produces a characteristic interference pattern.
Morrison, James D.; Driscoll, Jerry A. J. Chem. Educ. 1972, 49, 558.
Crystals / Crystallography |
Solids
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Construction and use of atomic and molecular models (Bassow, H.)  Martins, George

Martins, George J. Chem. Educ. 1969, 46, 623.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
Pictorial representation of the Fourier method of x-ray crystallography  Waser, Jurg
It is possible to gain an understanding of the Fourier method with the aid of diagrams.
Waser, Jurg J. Chem. Educ. 1968, 45, 446.
Fourier Transform Techniques |
X-ray Crystallography |
Crystals / Crystallography
The teaching of crystal geometry in the introductory course  Livingston, R. L.
It is the purpose of this paper to outline an approach to the teaching of crystal structure at the elementary level that will prepare the student for more advanced work in this field or that could be used as the beginning in a more advanced course.
Livingston, R. L. J. Chem. Educ. 1967, 44, 376.
Crystals / Crystallography |
Solids
Lattice energy and chemical prediction: Use of the Kapustinskii equations and the Born-Haber cycle  Moody, G. J.; Thomas, J. D. R.
It is clear that the Kapustinskii method of estimating the lattice energy from ionic radii, together with subsequent application of the Born-Haber cycle, has proved to be extremely useful in inorganic chemistry.
Moody, G. J.; Thomas, J. D. R. J. Chem. Educ. 1965, 42, 204.
Crystals / Crystallography |
Crystal Field / Ligand Field Theory
Crystals, minerals and chemistry  McConnell, Duncan; Verhoek, Frank H.
Considers stoichiometry and isomorphism, isomorphic substitutions, coupled substitution, the substitution of anions, and oxygen atoms per unit cell.
McConnell, Duncan; Verhoek, Frank H. J. Chem. Educ. 1963, 40, 512.
Crystals / Crystallography |
Geochemistry |
Stoichiometry
Some models of close packing  Sime, Rodney J.
Presents models constructed from styrofoam balls and connected with toothpicks.
Sime, Rodney J. J. Chem. Educ. 1963, 40, 61.
Crystals / Crystallography |
Solids |
Molecular Modeling
Standard ionic crystal structures  Gehman, William G.
Examines the topics of cubic and hexagonal closest packed atom lattices; interstice lattices; standard crystal structures of type MaXb; standard CCP and HCP crystal structures; and deviations from ideal closest packing.
Gehman, William G. J. Chem. Educ. 1963, 40, 54.
Crystals / Crystallography |
Solids |
Molecular Modeling |
Solid State Chemistry
Hollow lantern slides illustrating crystal structure  Kenney, Malcolm E.; Skinner, Selby M.
The structure of simple crystals can be illustrated by enclosing a layer of bearing balls in a hollow lantern slide and projecting the shadow pattern.
Kenney, Malcolm E.; Skinner, Selby M. J. Chem. Educ. 1959, 36, 495.
Crystals / Crystallography |
Solids
Chemical geometryApplication to salts  Gibb, Thomas R. P., Jr.; Winnerman, Anne
It is the purpose of this article to illustrate how one may delve rather deeply into some aspects of crystal structure that are of special interest chemically without becoming involved in the symbology and semantic complexities of conventional crystallography.
Gibb, Thomas R. P., Jr.; Winnerman, Anne J. Chem. Educ. 1958, 35, 578.
Crystals / Crystallography |
Solids
Letters  Fisher, D. Jerome
A spirited discussion regarding terminology for crystal classes.
Fisher, D. Jerome J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Letters  Donohue, Jerry
A spirited discussion regarding terminology for crystal classes.
Donohue, Jerry J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
A new type of crystal model  Westbrook, J. H.; DeVries, R. C.
Describes the design and construction of a crystal model in which the positions of atoms are represented by colored lights that can be lit to illustrate various structures.
Westbrook, J. H.; DeVries, R. C. J. Chem. Educ. 1957, 34, 220.
Crystals / Crystallography |
Solids |
Molecular Modeling
Some simple solid models  Campbell, J. A.
Describes the use of hard spheres to illustrate a variety of concepts with respect solids, including closest packing and the effects of temperature and alloying.
Campbell, J. A. J. Chem. Educ. 1957, 34, 210.
Solids |
Crystals / Crystallography |
Molecular Modeling
Growing crystals: A survey of laboratory methods  Fehlner, Francis P.
The purpose of this article is to provide basic information and readily available references for anyone wishing to begin the production of crystals.
Fehlner, Francis P. J. Chem. Educ. 1956, 33, 449.
Crystals / Crystallography |
Solids