TIGER

Journal Articles: 51 results
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Reaction Order Ambiguity in Integrated Rate Plots  Joe Lee
This article provides a theoretical and statistical justification for the necessity of monitoring a reaction to a substantial fraction of completion if integrated rate plots plots are to yield unambiguous orders.
Lee, Joe. J. Chem. Educ. 2008, 85, 141.
Chemometrics |
Kinetics |
Rate Law
Visualizing the Transition State: A Hands-on Approach to the Arrhenius Equation  Thomas S. Kuntzleman, Matthew S. Swanson, and Deborah K. Sayers
Pennies and dice are used to simulate the kinetics of two irreversible "reactions" with a hands-on, Monte Carlo approach. Arrhenius plots of the data generated yield activation energies comparable to assigned values and pre-exponential factors close to what would be expected based on the probability of a "reactant" achieving the correct orientation for conversion into "product". A comparison of the values obtained for the pre-exponential factors for the different simulations allows students to semi-quantitatively discuss the orientational requirement that is contained within this factor.
Kuntzleman, Thomas S.; Swanson, Matthew S.; Sayers, Deborah K. J. Chem. Educ. 2007, 84, 1776.
Kinetics |
Rate Law
A Student Laboratory Experiment Based on the Vitamin C Clock Reaction  Ed Vitz
Describes an adaptation of the vitamin C clock reaction to a student laboratory experiment in which the orders with respect to peroxide and iodide, the rate constant, and the activation energy are determined by the method of initial rates.
Vitz, Ed. J. Chem. Educ. 2007, 84, 1156.
Consumer Chemistry |
Kinetics |
Mechanisms of Reactions |
Rate Law
An Inexpensive Kinetic Study: The Reaction of FD&C Red #3 (Erythrosin B) with Hypochlorite  Maher M. Henary and Arlene A. Russell
Students use a desktop visible spectrophotometer to quantitatively follow the rate of disappearance of FD&C Red #3 with hypochlorite. The first-order reaction in both dye and bleach yields simple data that students can easily process and graph using spreadsheet software to obtain the rate constant and the rate law.
Henary, Maher M.; Russell, Arlene A. J. Chem. Educ. 2007, 84, 480.
Dyes / Pigments |
Kinetics |
Rate Law |
UV-Vis Spectroscopy
Textbook Deficiencies: Ambiguities in Chemical Kinetics Rates and Rate Constants  Keith T. Quisenberry and Joel Tellinghuisen
Recommends that textbook authors make it clear that (i) the reaction rate and rate constant cannot be defined unambiguously without explicitly stating the reaction for which they apply and therefore (ii) the relation between the half-life, which is a physical property of the reaction system, and the rate constant depends upon how the reaction is written.
Quisenberry, Keith T.; Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 510.
Kinetics |
Rate Law
An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps  Laura D. Jennings and Steven W. Keller
An interactive classroom activity is described that allows visualization of microscopic reaction mechanisms via the macroscopic process of unwrapping and eating chocolate candies.
Jennings, Laura D.; Keller, Steven W. J. Chem. Educ. 2005, 82, 549.
Reactions |
Rate Law |
Kinetics
Don't Be Tricked by Your Integrated Rate Plot  Edward Urbansky
Reply to comments on original article.
Urbansky, Edward. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Reaction order Ambiguity  Sue Le Vent
Integrated rate equations (for constant reaction volume) may be given in terms of relative reactant concentration, C (= concentration/initial concentration) and relative time, T (= time/half-life); in these forms, the equations are independent of rate constants and initial concentrations.
Le Vent, Sue. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Flipping Pennies and Burning Candles: Adventures in Kinetics  Michael J. Sanger
Activity in which students collect data to determine whether two processes, flipping pennies and burning candles, follow zeroth- or first-order rate laws.
Sanger, Michael J. J. Chem. Educ. 2003, 80, 304A.
Kinetics |
Rate Law
Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide  Tiffany A. Vetter and D. Philip Colombo Jr.
Determining the order and rate constant of the catalyzed decomposition of hydrogen peroxide using AOSEPT contact lens cleaning and a platinum-coated AOSEPT disc.
Vetter, Tiffany A.; Colombo, D. Philip, Jr. J. Chem. Educ. 2003, 80, 788.
Catalysis |
Consumer Chemistry |
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
LIMSport: Optimizing a Windows-Based Computer Data Acquisition and Reduction System for the General Chemistry Laboratory  Ed Vitz and Brenda P. Egolf
Project to develop a Windows/Excel data acquisition system for LIMSport (a mechanism for automatically acquiring data from a variety of sensors into a spreadsheet so that teachers and students only need spreadsheet skills to acquire and analyze data) and evaluate its effectiveness in promoting student learning.
Vitz, Ed; Egolf, Brenda P. J. Chem. Educ. 2002, 79, 1060.
Laboratory Computing / Interfacing |
Learning Theories |
Chemometrics
Rate Law Determination of Everyday Processes  Michael J. Sanger, Russell A. Wiley Jr., Erwin W. Richter, and Amy J. Phelps
Laboratory to determine whether burning a candle and flipping pennies follow zero-, first-, or second-order rate laws.
Sanger, Michael J.; Wiley, Russell A., Jr.; Richter, Erwin W.; Phelps, Amy J. J. Chem. Educ. 2002, 79, 989.
Kinetics |
Rate Law
Don't Be Tricked by Your Integrated Rate Plot!  Edward T. Urbansky
Using integrated rate plots to determine reaction order.
Urbansky, Edward T. J. Chem. Educ. 2001, 78, 921.
Kinetics |
Mechanisms of Reactions |
Learning Theories |
Chemometrics |
Rate Law
An Experiment to Demonstrate How a Catalyst Affects the Rate of a Reaction  Christine L. Copper and Edward Koubek
This experiment, which is a modified version of the traditional iodine clock reaction, allows students to calculate rates of reaction, orders of reactants, and activation energies. It also lets students discover that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having a lower activation energy.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1999, 76, 1714.
Catalysis |
Physical Properties |
Rate Law
Using CBL Technology and a Graphing Calculator To Teach the Kinetics of Consecutive First-Order Reactions  José E. Cortés-Figueroa and Deborah A. Moore
This work proposes a demonstration to introduce first-order reactions using the CBL system. It then presents the analysis of two consecutive first-order reactions. The values of the rate constants that govern each reaction's rate are determined using the graphing and statistical capabilities of a TI-83 calculator.
Cortés-Figueroa, José E.; Moore, Deborah A. J. Chem. Educ. 1999, 76, 635.
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
An Analogy to Help Students Understand Reaction Orders  Charles J. Marzzacco
This article describes a simple analogy to help students understand the concept of the rate law for a chemical reaction. The analogy involves the mathematical relationships between various characteristics of a cube and the length of its edge.
Charles J. Marzzacco. J. Chem. Educ. 1998, 75, 482.
Learning Theories |
Kinetics |
Rate Law
The Coupling of Related Demonstrations to Illustrate Principles in Chemical Kinetics and Equilibrium  Richard A. Pacer
Two very simple lecture demonstrations, both involving the reaction of magnesium with one or more dilute acids, are linked together to illustrate principles in chemical kinetics and equilibrium.
Pacer, Richard A. J. Chem. Educ. 1997, 74, 543.
Learning Theories |
Acids / Bases |
Equilibrium |
Kinetics |
Rate Law |
Reactions
Inflation Rates, Car Devaluation, and Chemical Kinetics  Lionello Pogliani, Màrio N. Berberan-Santos
The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions.
Pogliani, Lionello; Berberan-Santos, Màrio N. J. Chem. Educ. 1996, 73, 950.
Kinetics |
Rate Law
Introducing Spreadsheet Data Analysis in the First-Semester Laboratory  Bushey, Michelle M.
Massing a collection of pennies in order to introduce statistical concepts about small and large data sets as well as introduce students to the use of spreadsheets.
Bushey, Michelle M. J. Chem. Educ. 1994, 71, A90.
Chemometrics
KineticsLab: The Crystal Violet/Sodium Hydroxide Reaction  Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R.
A computer-assisted experiment to collect and analyze data for a kinetic study of the decolorization of crystal violet in basic solution.
Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R. J. Chem. Educ. 1994, 71, 238.
Kinetics |
Rate Law |
Reactions
Three methods for studying the kinetics of the halogenation of acetone.  Birk, James P.; Walters, David L.
Three methods for carrying out a kinetic study of the reaction between propanone and elemental iodine.
Birk, James P.; Walters, David L. J. Chem. Educ. 1992, 69, 585.
Aldehydes / Ketones |
Kinetics |
Spectroscopy |
Rate Law
Some provocative opinions on the terminology of chemical kinetics  Reeve, John C.
Textbooks perpetuate a misunderstanding to students that reaction rates are inherent to the reaction, rather than being the product of experiments.
Reeve, John C. J. Chem. Educ. 1991, 68, 728.
Kinetics |
Rate Law
A study of some 2-chloro-2-methylpropane kinetics using a computer interface  Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot
Examining the effects of a few variables on the rate of a chemical reaction using specialized software.
Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot J. Chem. Educ. 1991, 68, 609.
Kinetics |
Rate Law |
Acids / Bases |
Laboratory Computing / Interfacing
A demonstration illustrating the factors determining rates of chemical reactions   Holmes, L. H., Jr.
This demonstration qualitatively illustrates factors determining reaction rates for first-year chemistry students.
Holmes, L. H., Jr. J. Chem. Educ. 1991, 68, 501.
Rate Law |
Kinetics
Computer simulation of chemical equilibrium  Cullen, John F., Jr.
108. The "Great Chemical Bead Game" requires no instruments and presents the concepts of equilibrium and kinetics more clearly than an experiment. [October and November Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Cullen, John F., Jr. J. Chem. Educ. 1989, 66, 1023.
Equilibrium |
Kinetics |
Rate Law
Catalysis: New reaction pathways not just a lowering of the activation energy  Haim, Albert
The explanation that the increased rate associated with a catalyzed reaction is the result of a lowering of the activation energy cannot always be correct.
Haim, Albert J. Chem. Educ. 1989, 66, 935.
Catalysis |
Rate Law
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
The study of a simple redox reaction as an experimental approach to chemical kinetics  Elias, Horst; Zipp, Arden P.
The authors present a kinetics experiment based on the oxidation of iodide ions that, like the iodine clock, is quick and easy to perform but has the advantage of being followed directly rather than indirectly.
Elias, Horst; Zipp, Arden P. J. Chem. Educ. 1988, 65, 737.
Kinetics |
Reactions |
Rate Law
Interactive program system for integration of reaction rate equations  Chesick, Jobn P.
93. The authors describe here a Pascal-language kinetics rate law integration package for the desktop microcomputer.
Chesick, Jobn P. J. Chem. Educ. 1988, 65, 599.
Rate Law |
Laboratory Computing / Interfacing |
Kinetic-Molecular Theory
Kinetics and mechanism of the iodine azide reaction: A videotaped experiment  Haight, Gilbert P.; Jones, Loretta L.
A clock reaction suitable for videotaping and presenting to a large lecture class of general chemistry for analysis.
Haight, Gilbert P.; Jones, Loretta L. J. Chem. Educ. 1987, 64, 271.
Kinetics |
Mechanisms of Reactions |
Rate Law
A comment on "The order of CH3CHO decomposition"  Liu, Michael T. H.
The order of the decomposition of acetaldehyde is 3/2 or 1.5.
Liu, Michael T. H. J. Chem. Educ. 1985, 62, 399.
Aldehydes / Ketones |
Rate Law |
Kinetics
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Kinetics and mechanism-a games approach  Harsch, Gunther
Using statistical games to simulate and illustrate a variety of chemical kinetics.
Harsch, Gunther J. Chem. Educ. 1984, 61, 1039.
Kinetics |
Mechanisms of Reactions |
Catalysis |
Rate Law
A statistical note on the time lag method for second-order kinetic rate constants  Schwartz, Lowell M.
A clever method for finding second-order kinetic rate constants by using a time lag method that avoids direct measurement of the end point reading P(infinity) can easily be programmed.
Schwartz, Lowell M. J. Chem. Educ. 1981, 58, 588.
Chemometrics |
Kinetics |
Rate Law
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
An introductory level kinetics investigation  McGarvey, J. E. B.; Knipe, A. C.
A kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid.
McGarvey, J. E. B.; Knipe, A. C. J. Chem. Educ. 1980, 57, 155.
Kinetics |
Rate Law |
Mechanisms of Reactions
The kinetics of running  Larsen, Russell D.
The consideration of running as a rate process has several advantages for a student studying chemical kinetics for the first time.
Larsen, Russell D. J. Chem. Educ. 1979, 56, 651.
Kinetics |
Rate Law
Kinetics simulation program  Breneman, G. L.
A Basic program that simulates the spectrophotometric study of a reaction and allows the determination of rate law values from absorbance data.
Breneman, G. L. J. Chem. Educ. 1975, 52, 106.
Kinetics |
Rate Law
Programmable calculators. Simulated experiments  Runquist, O.; Olsen, Rodney; Snadden, Bruce
Describes how titration and reaction rate experiments can be simulated on a programmable calculator.
Runquist, O.; Olsen, Rodney; Snadden, Bruce J. Chem. Educ. 1972, 49, 265.
Acids / Bases |
Titration / Volumetric Analysis |
Quantitative Analysis |
Rate Law |
Kinetics |
pH
A study of the physical and chemical rates of CaCO3 dissolution in HCl  Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben
The authors describe the experimental procedure and a discussion of results for a study of the physical and chemical rates of CaCO3 dissolution in HCl.
Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben J. Chem. Educ. 1971, 48, 327.
Acids / Bases |
Kinetics |
Reactions |
Rate Law
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
The revolution in elementary kinetics and freshman chemistry  Wolfgang, Richard
New developments in kinetics so fundamentally affect our most elementary conception of chemical change that they must inevitably be reflected in beginning courses in chemistry; includes an outline for freshmen on elementary chemical dynamics.
Wolfgang, Richard J. Chem. Educ. 1968, 45, 359.
Kinetics |
Rate Law |
Mechanisms of Reactions
A kinetics experiment for first year chemistry  Shaefer, William P.
The exchange of iodine atoms between organic and inorganic iodides serves as a kinetics experiment for first year chemistry.
Shaefer, William P. J. Chem. Educ. 1964, 41, 558.
Kinetics |
Isotopes |
Rate Law
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
Colorimetric chemical kinetics experiment  Corsaro, Gerald
This article describes an experiment in which a photocolorimetric technique is employed to follow a bimolecular reaction rate; the reactants are crystal violet and the hydroxide ion.
Corsaro, Gerald J. Chem. Educ. 1964, 41, 48.
Kinetics |
Rate Law |
Reactions
Radioactive decay calculations without calculus  Guenther, William B.
Presents a method for half-life calculations that does not rely on the use of calculus.
Guenther, William B. J. Chem. Educ. 1958, 35, 414.
Chemometrics |
Nuclear / Radiochemistry
On the second order rate equation  Said, Abdel S.
Presents a derivation of the rate equation of a second order reaction.
Said, Abdel S. J. Chem. Educ. 1957, 34, 251.
Kinetics |
Rate Law |
Chemometrics
Textbook errors: VII. The laws of reaction rates and of equilibrium  Mysels, Karol J.
Examines the frequently misplaced emphasis on the rate law of mass action, its fallacious use to prove the existence and form of equilibrium constants, and the occasional confusion of the two concepts.
Mysels, Karol J. J. Chem. Educ. 1956, 33, 178.
Kinetics |
Rate Law |
Equilibrium