TIGER

Journal Articles: 14 results
Quantum Analogies on Campus  Ngai Ling Ma
By using examples drawn from daily life of students, simple analogies are used to illustrate a few quantum concepts which include: wave function, quantum numbers, states, degeneracy of states, transitions, selection rules, probability and probability density, operators and wave-particle dualism.
Ma, Ngai Ling. J. Chem. Educ. 1996, 73, 1016.
Quantum Chemistry
The nature of the chemical bond-Once more (2).  Scott, J. M. W.
The mathematical description of chemical phenomena via quantum mechanics is no less obscure than its purely verbal counterpart, for at some point, the abstract mathematics must be translated into terms familiar to chemists or remain at a level of abstraction that is virtually useless to the chemist working at the bench.
Scott, J. M. W. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry
The nature of the chemical bond-Once more (1).  Edmiston, Clyde.
The original article is a classic case of incorrect conclusions drawn from largely correct facts.
Edmiston, Clyde. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry |
MO Theory
How do electrons get across nodes? A problem in the interpretation of the quantum theory  Nelson, P. G.
Suggested responses to the question "How do electrons get across nodes?".
Nelson, P. G. J. Chem. Educ. 1990, 67, 643.
Quantum Chemistry |
Atomic Properties / Structure
"The Dancing Wu Li Masters"  Stapleton, George W.
After reading "The Dancing Wu Li Masters", this author became convinced that the right person can explain the most difficult ideas in a clear, refreshing, and logical manner.
Stapleton, George W. J. Chem. Educ. 1981, 58, 574.
Quantum Chemistry |
Atomic Properties / Structure
Particles, waves, and the interpretation of quantum mechanics  Christoudouleas, N. D.
A brief description of the conceptual basis of quantum mechanics and the Copenhagen interpretation.
Christoudouleas, N. D. J. Chem. Educ. 1975, 52, 573.
Quantum Chemistry
Quantum mechanics in a course required of all freshmen  Barnes, Donald G.
The author describes a new courses which provides a common introductory experience for student who will eventually major in science and those who will not.
Barnes, Donald G. J. Chem. Educ. 1974, 51, 396.
Quantum Chemistry
Forces and quantum field theory  Brescia, Frank
This article seeks to explain the nature of forces between nucleons in terms of the quantum field theory for the general reader using a simple analogy.
Brescia, Frank J. Chem. Educ. 1970, 47, 642.
Quantum Chemistry |
Atomic Properties / Structure
Demonstration of the uncertainty principle  Laurita, William
Describes a conceptual demonstration of Heisenberg's uncertainty principle.
Laurita, William J. Chem. Educ. 1968, 45, 461.
Quantum Chemistry
Observation of stationary waves  Yamana, Shukichi
A convenient way of observing standing waves.
Yamana, Shukichi J. Chem. Educ. 1967, 44, A465.
Quantum Chemistry
Mathematics for scientists. Mathematical methods in the physical sciences. Mathematics for quantum chemistry (Bak, Thor A.; Lichtenberg, Jonas; Boas, Mary L.; Anderson, Jay Martin)  Moore, Walter J.

Moore, Walter J. J. Chem. Educ. 1967, 44, 246.
Mathematics / Symbolic Mathematics |
Quantum Chemistry |
Enrichment / Review Materials
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
Behavior of electrons in atoms: Structure, spectra, and photochemistry of atoms (Hochstrasser, Robin M.)  Gregory, N. W.

Gregory, N. W. J. Chem. Educ. 1965, 42, 62.
Atomic Properties / Structure |
Photochemistry |
Spectroscopy |
Quantum Chemistry
The language of quantum mechanics  Maybury, Robert H.
Presents background material for teaching students important concepts regarding quantum mechanics that forms the basis of much of chemistry.
Maybury, Robert H. J. Chem. Educ. 1962, 39, 367.
Quantum Chemistry