TIGER

Journal Articles: 22 results
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
Mistake of Having Students Be Mendeleev for Just a Day  Brett Criswell
This article discusses several conceptual features underlying a genuine understanding of the periodic table and describes a set of activities focused on promoting such awareness in students using the FERA (focus, explore, reflect, and apply) learning cycle model.
Criswell, Brett. J. Chem. Educ. 2007, 84, 1140.
Periodicity / Periodic Table
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Why Gold and Copper Are Colored but Silver Is Not  Ariel H. Guerrero, Héctor J. Fasoli, and José Luis Costa
Interpretation of the yellow color of gold based on an adequate external electronic configuration (s1d10/s2d9) and s and d sublevels close enough to allow transition between them to proceed significantly.
Guerrero, Ariel H.; Fasoli, Hctor J.; Costa, Jos Luis. J. Chem. Educ. 1999, 76, 200.
Periodicity / Periodic Table |
Metals |
Descriptive Chemistry
Using Balls of Different Sports To Model the Variation of Atomic Sizes  Gabriel Pinto
In this article, an analogy is described about the order of magnitude of the variation of atomic sizes that can be used for discussion in introductory chemistry classes. The order of magnitude of this variation, involving microscopic magnitudes, is difficult for students to imagine.
Pinto, Gabriel. J. Chem. Educ. 1998, 75, 725.
Atomic Properties / Structure
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
A Student's Travels, Close Dancing, Bathtubs, and the Shopping Mall: More Analogies in Teaching Introductory Chemistry   Rayner-Canham, Geoff
Four analogies are described for use in introductory chemistry classes.
Rayner-Canham, Geoff J. Chem. Educ. 1994, 71, 943.
Atomic Properties / Structure |
Molecular Properties / Structure |
Equilibrium
Periodic properties in a family of common semiconductors: Experiments with light emitting diodes  Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B.
The prevalence of LED's and their low cost make LED's ideal for classroom demonstrations or laboratory experiments showing the connection between periodic trends in physical/chemical properties and a common high tech device.
Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B. J. Chem. Educ. 1992, 69, 151.
Periodicity / Periodic Table |
Semiconductors
A simple laboratory experiment illustrating the relative nature of atomic weights  Huff, Randolph B.; Evans, David W.
The concept of atomic weight scale remains a source of confusion for beginning chemistry students. This paper proposes a simple lab experience that could help students better understand this idea.
Huff, Randolph B.; Evans, David W. J. Chem. Educ. 1991, 68, 675.
Atomic Properties / Structure |
Periodicity / Periodic Table
A formula for calculating atomic radii of metals  Ping, Mei; Xiubin, Lei; Yuankai, Wen
In this paper, the authors present a theoretical formula for calculating metallic radii.
Ping, Mei; Xiubin, Lei; Yuankai, Wen J. Chem. Educ. 1990, 67, 218.
Atomic Properties / Structure |
Metals
Designing a periodic table: A laboratory approach  Irons, Mary E.
What follows is a laboratory approach to help students gain some insight to the relationship of the elements on the table and also to help students review the scientific method.
Irons, Mary E. J. Chem. Educ. 1989, 66, 155.
Periodicity / Periodic Table
Periodic law (Curry,E.; Chandler, J.; Mackay, L.)  Lechner, Joseph H.; Gardlund, Sharon L.
Two reviews of a software program which serves as a data base for 20 items of information on the first 103 elements.
Lechner, Joseph H.; Gardlund, Sharon L. J. Chem. Educ. 1988, 65, A333.
Periodicity / Periodic Table |
Descriptive Chemistry
The squeezed-earth problem   Rhodes, Gale
This take-home-exam question promotes a discussion in class and demonstrates the conceptual difficulties in understanding protons and neutrons.
Rhodes, Gale J. Chem. Educ. 1986, 63, 970.
Atomic Properties / Structure |
Solid State Chemistry
Regularities and relations among ionization potentials of nontransition elements  Liebman, Joel F.
Provides several semiempirical procedures for investigating ionization potentials.
Liebman, Joel F. J. Chem. Educ. 1973, 50, 831.
Atomic Properties / Structure |
Periodicity / Periodic Table
The Rutherford scattering experiment: CAI in the laboratory  Garbarino, John R.; Wartell, M. A.
Briefly describes a computer generated Rutherford scattering experiment.
Garbarino, John R.; Wartell, M. A. J. Chem. Educ. 1973, 50, 792.
Atomic Properties / Structure
Electronegativities and group IVA chemistry  Payne, Dwight A., Jr.; Fink, Frank Hall
The teacher of inorganic chemistry should present the representative elements of group IVA and their properties as an intellectual and empirical form of investigation rather than as a mere collection of information.
Payne, Dwight A., Jr.; Fink, Frank Hall J. Chem. Educ. 1966, 43, 654.
Atomic Properties / Structure |
Periodicity / Periodic Table
A complete table of electronegativities  Little, Elbert J., Jr.; Jones, Mark M.
Provides a complete periodic table of electronegativity values.
Little, Elbert J., Jr.; Jones, Mark M. J. Chem. Educ. 1960, 37, 231.
Periodicity / Periodic Table |
Atomic Properties / Structure
A periodic table and new periodic functions  Szabo, Z. G.; Lakatos, B.
A theoretically correct yet simple periodic system may be obtained by rearranging the long periodic table in such a way that the inert gases are situated in the middle.
Szabo, Z. G.; Lakatos, B. J. Chem. Educ. 1957, 34, 429.
Periodicity / Periodic Table
A new periodic chart with electronegativities  Sanderson, R. T.
This paper describes a new chart that has been designed to portray clearly and vividly patterns in relative atomic radius, electronic configuration, and electronegativity.
Sanderson, R. T. J. Chem. Educ. 1956, 33, 443.
Periodicity / Periodic Table |
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State