TIGER

Journal Articles: 29 results
Teaching Avogadro's Hypothesis and Helping Students to See the World Differently  Brett Criswell
This article uses a model from educational psychologyChi's theory of ontological misclassificationto explain the source of students' difficulties in understanding Avogadro's hypothesis and provide a method to successfully teach this fundamental concept.
Criswell, Brett. J. Chem. Educ. 2008, 85, 1372.
Atomic Properties / Structure |
Gases
Examining Quantum Oddities within the Context of Other Major Scientific Theories  Pablo A. Molina
This article presents an epistemological discussion on the conceptual hurdles shared by quantum theory and evolution, gravity, and special relativity, and offers students a logical structure to deal with waveparticle duality, the uncertainty principle, boundary conditions, and the quantization of energy.
Molina, Pablo A. J. Chem. Educ. 2008, 85, 1229.
Quantum Chemistry |
Theoretical Chemistry
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
E = mc2: An Intuitive Derivation  James J. Leary and William H. Ingham
Einstein's famous equation E = mc2 is derived using a thought experiment that can easily be understood by any serious student of chemistry.
Leary, James J.; Ingham, William H. J. Chem. Educ. 2007, 84, 1651.
Atomic Properties / Structure |
Instrumental Methods
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Einstein Revisited  Leonard Fine
Examines Einstein's contributions to chemistry, particularly his work on the photoelectric effect, molecular dimensions, and Brownian motion.
Fine, Leonard. J. Chem. Educ. 2005, 82, 1601.
Quantum Chemistry |
Kinetic-Molecular Theory
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
Getting Close with the Instructional Scanning Tunneling Microscope  Carl Steven Rapp
This state-of-the-art instrumentation is making it possible for students to actually view atoms in their own classroom. What is truly amazing, however, is that the ISTM can be set up and atomic resolution images obtained in about an hour.
Rapp, Carl Steven. J. Chem. Educ. 1997, 74, 1087.
Instrumental Methods |
Atomic Properties / Structure |
Nanotechnology |
Surface Science |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The H2 + Cl2 explosion as a chemical analogue of the photoelectric effect: A true quantum mechanical demonstration  Knox, Kerro
The photochemical hydrogen-chlorine reaction affords a good example of the quantum aspect of light and its interaction with matter.
Knox, Kerro J. Chem. Educ. 1990, 67, 897.
Reactions |
Quantum Chemistry |
Photochemistry
How do electrons get across nodes? A problem in the interpretation of the quantum theory  Nelson, P. G.
Suggested responses to the question "How do electrons get across nodes?".
Nelson, P. G. J. Chem. Educ. 1990, 67, 643.
Quantum Chemistry |
Atomic Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Why doesn't the electron fall into the nucleus?  Mason, Franklin P.; Richardson, Robert W.
This paper presents a simple, yet essentially correct model of the atom that can be used to answer the title question for even beginning students of chemistry.
Mason, Franklin P.; Richardson, Robert W. J. Chem. Educ. 1983, 60, 40.
Atomic Properties / Structure |
Quantum Chemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
Illustrating the problem described by Heisenberg's uncertainty principle  Cosser, Ronald C.
A simple overhead projector demonstration illustrating Heisenberg's Uncertainty Principle.
Cosser, Ronald C. J. Chem. Educ. 1982, 59, 300.
Atomic Properties / Structure
Particles, waves, and the interpretation of quantum mechanics  Christoudouleas, N. D.
A brief description of the conceptual basis of quantum mechanics and the Copenhagen interpretation.
Christoudouleas, N. D. J. Chem. Educ. 1975, 52, 573.
Quantum Chemistry
Quantum mechanics in a course required of all freshmen  Barnes, Donald G.
The author describes a new courses which provides a common introductory experience for student who will eventually major in science and those who will not.
Barnes, Donald G. J. Chem. Educ. 1974, 51, 396.
Quantum Chemistry
The stability of the hydrogen atom  Rioux, Frank
The Kimball-Neumark-Kleiss model of the atom is conceptually correct, requires only simple mathematics, and clearly explains the stability of the hydrogen atom.
Rioux, Frank J. Chem. Educ. 1973, 50, 550.
Atomic Properties / Structure
The Planck radiation law and the efficiency of a light bulb  Lehman, Thomas A.
This experiment uses the Planck equation to determine the efficiency of an ordinary light bulb, expressed as the ratio of visible light energy to total emitted energy.
Lehman, Thomas A. J. Chem. Educ. 1972, 49, 832.
Quantum Chemistry |
Photochemistry
Heat capacity and the equipartition theorem  Dence, Joseph B.
Describes the classical equipartition theorem, its modifications due to quantum mechanics, and its application to some substances.
Dence, Joseph B. J. Chem. Educ. 1972, 49, 798.
Quantum Chemistry
Transparent 3-D models of electron probability distributions  McClellan, A. L.
The authors describe transparent, three-dimensional models in which regions of high electron probability seem to float in space, without definite boundaries and with the "internal" variations of probability density clearly visible.
McClellan, A. L. J. Chem. Educ. 1970, 47, 761.
Atomic Properties / Structure |
Molecular Modeling
On the discovery of the electron  Morrow, B. A.
Thomson's experiment resolved the controversy concerning the corpuscular or wave nature of cathode rays, while Millikan's experiment resolved the controversy concerning the continuous or discrete nature of electrical phenomena.
Morrow, B. A. J. Chem. Educ. 1969, 46, 584.
Atomic Properties / Structure
Basic concepts in quantum mechanics (Kompaneyets, Alexander)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1967, 44, A80.
Quantum Chemistry
The spectrum of atomic hydrogen: A freshman laboratory experiment  Hollenberg, J. Leland
This experiment allows more precise measurements of the wavelengths of the emission spectrum of atomic hydrogen with a spectrophotometer than those previously published.
Hollenberg, J. Leland J. Chem. Educ. 1966, 43, 216.
Atomic Spectroscopy |
Atomic Properties / Structure
The language of quantum mechanics  Maybury, Robert H.
Presents background material for teaching students important concepts regarding quantum mechanics that forms the basis of much of chemistry.
Maybury, Robert H. J. Chem. Educ. 1962, 39, 367.
Quantum Chemistry
The structure of the nucleus  Flowers, B. H.
Describes the liquid drop, shell, and optical models of the atomic nucleus.
Flowers, B. H. J. Chem. Educ. 1960, 37, 610.
Atomic Properties / Structure
An introduction to the electron theory of metals  Lefever, Robert A.
This discussion is intended to provide a general background for the understanding of metal physics as well as a basis for more advanced study.
Lefever, Robert A. J. Chem. Educ. 1953, 30, 486.
Metals |
Atomic Properties / Structure