TIGER

Journal Articles: 84 results
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics  Frank B. Ellis and David C. Ellis
This article details demonstrations that show how equilibrium changes with temperature, energy, and entropy and involve exothermic and endothermic reactions, the dynamic nature of equilibrium, and Le Châtelier's principle.
Ellis, Frank B.; Ellis, David C. J. Chem. Educ. 2008, 85, 78.
Equilibrium |
Kinetics |
Statistical Mechanics |
Thermodynamics
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria  Thomas H. Bindel
This activity explores the thermodynamics of simultaneous, consecutive equilibria and is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing) reaction can be caused to happen if it is coupled with a product-favored reaction of sufficient entropy production.
Bindel, Thomas H. J. Chem. Educ. 2007, 84, 449.
Acids / Bases |
Equilibrium |
Thermodynamics
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
No "Driving Forces" in General Chemistry  Evguenii I. Kozliak
A simple and easy-to-remember explanation, that precipitation of a solid and/or formation of water are driving forces of those reactions or drive them to completion, still occurs among instructors.
Kozliak, Evguenii I. J. Chem. Educ. 2006, 83, 702.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Edward F. Duhr, Allison S. Soult, John G. Maijub, and Fitzgerald B. Bramwell
The procedure for Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom! can lead to watch glass breakage and thereby a fire hazard.
Duhr, Edward F.; Soult, Allison S.; Maijub, John G.; Bramwell, Fitzgerald B. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Computer Simulations of Salt Solubility  Victor M. S. Gil and João C. M. Paiva
Computer Simulations of Salt Solubility provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution: configurational disorder and thermal disorder.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 173.
Thermodynamics |
Equilibrium |
Solutions / Solvents |
Precipitation / Solubility |
Computational Chemistry
A New Java Animation in Peer-Reviewed JCE WebWare  William F. Coleman and Edward W. Fedosky
Just added to JCE WebWare, Computer Simulations of Salt Solubility uses a Java applet and Web browser to present an animated illustration of differences in the solubility of salts due to differences in the entropy of solvation.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 173.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  Norman C. Craig
I am pleased that Campbells rule for estimating entropy changes in gas-consuming and gas-producing chemical reactions has attracted immediate interest.
Craig, Norman C. J. Chem. Educ. 2004, 81, 1571.
Gases |
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  William B. Jensen
In a recent article Norman Craig has proposed the rule-of-thumb that the approximate value of the entropy of reaction is related to the net moles of gas consumed or generated in the reaction .
Jensen, William B. J. Chem. Educ. 2004, 81, 1570.
Gases |
Thermodynamics
Entropy and Constraint of Motion  Frank L. Lambert
William Jensen's presentation of entropy increase as solely due to kinetic energy dispersion is stimulating.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 640.
Thermodynamics
Entropy and Constraint of Motion   William B. Jensen
I would like to make several observations supplementing and supporting the article by Frank Lambert on entropy as energy dissipation, since this is an approach that I have also used for many years when teaching a qualitative version of the entropy concept to students of general and introductory inorganic chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 639.
Thermodynamics
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Another Variation on the "Whoosh Bottle" Theme  Edward G. Senkbeil
Description of a similar demonstration and additional safety considerations.
Senkbeil, Edward G. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Thermodynamics
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Visualizing Entropy  Joseph H. Lechner
This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations.
Lechner, Joseph H. J. Chem. Educ. 1999, 76, 1382.
Statistical Mechanics |
Thermodynamics
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
Solution-Phase Thermodynamics: A "Spontaneity" Activity  Bindel, Thomas H.
Experimental procedure for verifying the concept of spontaneity using solution chemistry; includes data and analysis.
Bindel, Thomas H. J. Chem. Educ. 1995, 72, 34.
Aqueous Solution Chemistry |
Thermodynamics
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics
Calculating entropy changes at different extents of reaction  Brosnan, Tim
The Revised Nuffield Chemistry course uses a simple statistical approach to entropy a a unifying idea in its treatment of thermodynamics. It was for these students that the author developed this method of calculating entropy changes at different extents of reaction which are listed here.
Brosnan, Tim J. Chem. Educ. 1990, 67, 48.
Thermodynamics
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
Self-organization in chemistry: The larger context   Soltzberg, Leonard J.
The following three papers in this symposium will serve the reader as a good introduction to self-organization in chemical systems.
Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 187.
Thermodynamics
Two multipurpose thermochemical experiments for general chemistry  Wentworth, R. A. D.
Two multipurpose thermochemical experiments are described in this paper.
Wentworth, R. A. D. J. Chem. Educ. 1988, 65, 1022.
Thermodynamics
The Australian Academy of Science School Chemistry Project: A new-generation secondary school chemistry course  Bucat, R. B.; Cole, A. R. H.
The purpose of this paper is to summarize the philosophies behind the courses described in this paper and the consequent design decisions regarding the selection and sequence of the chemistry content.
Bucat, R. B.; Cole, A. R. H. J. Chem. Educ. 1988, 65, 777.
Atmospheric Chemistry |
Metabolism |
Thermodynamics
Converting sunlight to mechanical energy: A polymer example of entropy  Mathias, Lon J.
Demonstrating entropy using an elastomer and a virtual foolproof "light engine".
Mathias, Lon J. J. Chem. Educ. 1987, 64, 889.
Thermodynamics
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Thermodynamics
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Le Châtelier's principle, temperature effects, and entropy  Campbell, J. Arthur
A useful extension of Le Chatelier's Principle to predict concentration, pressure, and temperature effects solely from the equation for the net reaction.
Campbell, J. Arthur J. Chem. Educ. 1985, 62, 231.
Equilibrium |
Thermodynamics
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Entropy and its relation to work  Richardson, W. S.
The relationship of entropy to the disorder of a system can be explained using a deck of playing cards.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Thermodynamics
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Goal-oriented teaching of thermodynamics in general chemistry  Canham, G. W. Rayner
Thermodynamics can be more interesting if biological applications are emphasized.
Canham, G. W. Rayner J. Chem. Educ. 1974, 51, 600.
Biophysical Chemistry |
Thermodynamics
Questions [and] Answers  Campbell, J. A.
Seven questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 769.
Enrichment / Review Materials |
Applications of Chemistry |
Thermodynamics |
Gases |
Astrochemistry
The effervescence of ocean surf  Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B.
A pure liquid will not foam, but all true solutions will, as dictated by the fundamental concepts of surface thermodynamics enunciated by Gibbs.
Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 29.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Solutions / Solvents |
Thermodynamics
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
An alternative to free energy for undergraduate instruction  Strong, Laurence E.; Halliwell, H. Frank
It is the purpose of this paper to question the usefulness of the Gibbs function for the student and to propose an alternative based on the use of entropy functions that help the student to focus more sharply on the features of a system that relate to its capacity to change.
Strong, Laurence E.; Halliwell, H. Frank J. Chem. Educ. 1970, 47, 347.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Energy and Entropy in Chemistry (Wyatt, P. A. H.)  Strong, Laurence E.

Strong, Laurence E. J. Chem. Educ. 1968, 45, 71.
Thermodynamics
Lectures on Matter and Equilibrium (Hill, Terrell L.)  Rosenburg, Robert

Rosenburg, Robert J. Chem. Educ. 1966, 43, A1086.
Thermodynamics |
Enrichment / Review Materials
Demonstrations of spontaneous endothermic reactions  Matthews, G. W. J.
The reaction between hydrated metal chlorides and thionyl chloride provides a series of valuable experiments that can be used to demonstrate spontaneous endothermic reactions.
Matthews, G. W. J. J. Chem. Educ. 1966, 43, 476.
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Teaching the entropy concept  Plumb, Robert C.
Presents a macroscopic lecture demonstration illustrating both potential energy and entropy driving forces and showing their interrelationship.
Plumb, Robert C. J. Chem. Educ. 1964, 41, 254.
Thermodynamics |
Statistical Mechanics
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Entropy: The significance of the concept of entropy and its applications in science and technology (Fast, J. D.)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1963, 40, 442.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics
Praseodymium tetrafluoride  Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R.
In spite of the experimental failures to prepare praseodymium tetrafluoride, there is strong evidence for its possible formation to be found by calculating the equilibrium constants for some of the reactions by which this compound might be prepared.
Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R. J. Chem. Educ. 1953, 30, 402.
Oxidation State |
Equilibrium |
Thermodynamics