TIGER

Journal Articles: 830 results
[#94] Hold the Heat: Global Heat Retention, Global Warming and Calorimetry  Joel D. Burley and Harold S. Johnston
Students perform quantitative calorimetric measurements on samples of ice/water heated by incandescent light bulbs and by convection with room-temperature surroundings.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2008, 85, 224A.
Calorimetry / Thermochemistry
J. Chem. Educ. 1999, 76, 1578–1583  John Andraos
Corrections to the article A Streamlined Approach to Solving Simple and Complex Kinetic Systems Analytically.
Andraos, John. J. Chem. Educ. 2008, 85, 1624.
Kinetics |
Mechanisms of Reactions |
Theoretical Chemistry
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Appreciating Oxygen  Hilton M. Weiss
Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that powers life on earth.
Weiss, Hilton M. J. Chem. Educ. 2008, 85, 1218.
Bioenergetics |
Metabolism |
Oxidation / Reduction |
Photosynthesis |
Thermodynamics
Undergraduates' Understanding of Entropy  Arnd H. Jungermann
Szbilir and Bennett carried out an extensive investigation on undergraduates understanding of entropy. Though I agree in general with their statements that orderdisorder arguments form a misleading entropy concept, I would like to make some comments with regard to a certain part of their online supplement.
Jungermann, Arnd H. J. Chem. Educ. 2008, 85, 1192.
Thermodynamics
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?  João C. M. Paiva, Jorge Gonçalves, and Susana Fonseca
This article examines three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?"
Paiva, João C. M.; Gonçalves, Jorge; Fonseca, Susana. J. Chem. Educ. 2008, 85, 1133.
Equilibrium |
Gases |
Thermodynamics
An Updated Equilibrium Machine  Emeric Schultz
Describes a device that can demonstrate equilibrium and the Le Châtelier principle, as well as kinetic and thermodynamic concepts. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when various air pressures are applied by the blower.
Schultz, Emeric. J. Chem. Educ. 2008, 85, 1131.
Equilibrium |
Kinetics |
Thermodynamics
Calorimetry  JCE Editorial Staff
Lists articles describing laboratory exercises using calorimetry measurements.
J. Chem. Educ. 2008, 85, 1130.
Calorimetry / Thermochemistry
An Inexpensive Solution Calorimeter  Emma Kavanagh, Sam Mindel, Giles Robertson, and D. E. Peter Hughes
Describes the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element, that has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute.
Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter. J. Chem. Educ. 2008, 85, 1129.
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Colorful Chemical Fountains  Nicholas C. Thomas and Stephen Faulk
A chemical fountain, constructed from several vertically stacked plastic champagne cups, is used to demonstrate acidbase and chemiluminescence reactions.
Thomas, Nicholas C.; Faulk, Stephen. J. Chem. Educ. 2008, 85, 1061.
Acids / Bases |
Dyes / Pigments |
Physical Properties |
Reactions
Energy  John W. Moore
Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. Slides, text, and streaming audio/video are available at his Web site. There is much in this presentation that could (and should) be incorporated into chemistry pedagogy.
Moore, John W. J. Chem. Educ. 2008, 85, 891.
Thermodynamics
EQVAPSIM: A Vapor–Liquid Equilibria of Binary Systems Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
Reports the results of a program using LabVIEW software to simulate the construction of a phase diagram representing a liquidvapor equilibrium. The program models work in a real laboratory, including mistakes commonly made in this context.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2008, 85, 879.
Equilibrium |
Thermodynamics |
Student-Centered Learning
Easy-To-Make Cryophoruses  Rubin Battino and Trevor M. Letcher
This article describes some simple and easy-to-make cryophoruses, ideal for demonstrating evaporative cooling to students at all levels.
Battino, Rubin; Letcher, Trevor M. J. Chem. Educ. 2008, 85, 561.
Lipids |
Physical Properties |
Thermodynamics |
Liquids
The Chemical Adventures of Sherlock Holmes: The Serpentine Remains  Ken Shaw
This story is a chemical mystery, set in the context of Sherlock Holmes and Dr. Watson, that emphasizes qualitative analysis, descriptive chemistry, and forensics.
Shaw, Ken. J. Chem. Educ. 2008, 85, 507.
Acids / Bases |
Applications of Chemistry |
Coordination Compounds |
Calorimetry / Thermochemistry |
Forensic Chemistry |
Qualitative Analysis
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents  Beverly Cochran, Deborah Lunday, and Frank Miskevich
This laboratory emphasizes that enzymes mediate the conversion of a substrate into a product and that either the concentration of product or reactant may be used to follow the course of a reaction. It does so by using an inexpensive scanner and open-source image analysis software to quantify amylase activity through the breakdown of starch and the appearance of glucose.
Cochran, Beverly; Lunday, Deborah; Miskevich, Frank. J. Chem. Educ. 2008, 85, 401.
Biosynthesis |
Carbohydrates |
Catalysis |
Enzymes |
Food Science |
Nutrition |
Quantitative Analysis |
UV-Vis Spectroscopy
Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions  Emeric Schultz
Describes the dynamic reaction figure, a flexible learning tool that can be used to balance chemical equations, predict the results of potential reactions, present the underlying mechanism of reactions, and solve quantitative problems in a number of areas.
Schultz, Emeric. J. Chem. Educ. 2008, 85, 386.
Acids / Bases |
Aqueous Solution Chemistry |
Mechanisms of Reactions |
Nonmajor Courses
Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker  Monica Galleano, Alberto Boveris, and Susana Puntarulo
Describes a laboratory exercise to understand the effect of pressure on phase equilibrium as described by the ClausiusClapeyron equation. The equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and the temperature of the chamber containing the water heated until vaporization.
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana. J. Chem. Educ. 2008, 85, 276.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry
A Lab Experience To Illustrate the Physicochemical Principles of Detergency  J. A. Poce-Fatou, M. Bethencourt-Núñez, C. Moreno, F. J. Moreno-Dorado, and J. J. Pinto-Ganfornina
This article presents a lab to study the role of a surfactant and builder in laundry detergent efficiency as determined through measurements of the diffuse reflectances of polyester samples impregnated with linseed oil.
Poce-Fatou, J. A.; Bethencourt-Núñez, M.; Moreno, C.; Moreno-Dorado, F. J.; Pinto-Ganfornina, J. J. J. Chem. Educ. 2008, 85, 266.
Aqueous Solution Chemistry |
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Micelles |
Surface Science |
Thermodynamics
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Heat Capacity of Metals and Demonstration of the Law of Dulong and Petit  Ronald P. D'Amelia, Vincent Stracuzzi, and William F. Nirode
The work described herein discusses the use of differential scanning calorimetry in a general chemistry laboratory course to determine the specific heat capacities of metals and introduce the empirical law of Dulong and Petit.
D'Amelia, Ronald P.; Stracuzzi, Vincent; Nirode, William F. J. Chem. Educ. 2008, 85, 109.
Calorimetry / Thermochemistry |
Heat Capacity |
Instrumental Methods |
Thermal Analysis
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics  Frank B. Ellis and David C. Ellis
This article details demonstrations that show how equilibrium changes with temperature, energy, and entropy and involve exothermic and endothermic reactions, the dynamic nature of equilibrium, and Le Châtelier's principle.
Ellis, Frank B.; Ellis, David C. J. Chem. Educ. 2008, 85, 78.
Equilibrium |
Kinetics |
Statistical Mechanics |
Thermodynamics
The Glyoxal Clock Reaction  Julie B. Ealy, Alexandra Rodriguez Negron, Jessica Stephens, Rebecca Stauffer, and Stanley D. Furrow
The glyoxal clock reaction has been adapted to a general chemistry kinetics lab to determine the order of the reacting species using a Calculator Based Laboratory or LabPro equipment.
Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D. J. Chem. Educ. 2007, 84, 1965.
Aldehydes / Ketones |
Dyes / Pigments |
Kinetics |
Lewis Acids / Bases |
Mechanisms of Reactions |
Rate Law |
Reactions
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
Hydration of Acetylene: A 125th Anniversary  Dmitry A. Ponomarev and Sergey M. Shevchenko
The discovery the hydration of alkynes catalyzed by mercury ions by Mikhail Kucherov made possible industrial production of acetaldehyde from acetylene and had a profound effect on the development of industrial chemistry in the 1920th centuries.
Ponomarev, Dmitry A.; Shevchenko, Sergey M. J. Chem. Educ. 2007, 84, 1725.
Addition Reactions |
Aldehydes / Ketones |
Alkynes |
Catalysis |
Industrial Chemistry |
Reactions
A Simple Calorimetric Experiment That Highlights Aspects of Global Heat Retention and Global Warming  Joel D. Burley and Harold S. Johnston
In this laboratory experiment, general chemistry students verify that heat is consumed in the melting of ice, with no increase in temperature until all the ice has melted. The fundamental calorimetric principles demonstrated by the lab results are then developed to help students better assess and understand the experimental evidence associated with global warming.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2007, 84, 1686.
Atmospheric Chemistry |
Calorimetry / Thermochemistry
Carbon Dioxide Fountain  Seong-Joo Kang and Eun-Hee Ryu
This article presents the development of a carbon dioxide fountain that, unlike the traditional ammonia fountain, is odorless and uses consumer chemicals. This experiment also allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available.
Kang, Seong-Joo; Ryu, Eun-Hee. J. Chem. Educ. 2007, 84, 1671.
Acids / Bases |
Consumer Chemistry |
Gases |
Laboratory Equipment / Apparatus |
Reactions
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
The A1c Blood Test: An Illustration of Principles from General and Organic Chemistry  Robert C. Kerber
The glycated hemoglobin blood test is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1541.
Applications of Chemistry |
Bioinorganic Chemistry |
Carbohydrates |
Mechanisms of Reactions |
Proteins / Peptides |
Bioorganic Chemistry
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
A Student Laboratory Experiment Based on the Vitamin C Clock Reaction  Ed Vitz
Describes an adaptation of the vitamin C clock reaction to a student laboratory experiment in which the orders with respect to peroxide and iodide, the rate constant, and the activation energy are determined by the method of initial rates.
Vitz, Ed. J. Chem. Educ. 2007, 84, 1156.
Consumer Chemistry |
Kinetics |
Mechanisms of Reactions |
Rate Law
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
Peer-Developed and Peer-Led Labs in General Chemistry  Lorena Tribe and Kim Kostka
Describes a student-developed and led laboratory curriculum as a model for producing a more student-centered and rich laboratory experience in general chemistry laboratories.
Tribe, Lorena; Kostka, Kim. J. Chem. Educ. 2007, 84, 1031.
Acids / Bases |
Electrochemistry |
Equilibrium |
Kinetics |
Laboratory Management |
Thermodynamics |
Student-Centered Learning
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Primo Levi and The Periodic Table: Teaching Chemistry Using a Literary Text  Viktoria Klara Lakatos Osorio, Peter Wilhelm Tiedemann, and Paulo Alves Porto
Describes the use of a problem-solving activity with first-year undergraduate students based on an excerpt from Primo Levi's book The Periodic Table.
Osorio, Viktoria Klara Lakatos; Tiedemann, Peter Wilhelm; Porto, Paulo Alves. J. Chem. Educ. 2007, 84, 775.
Metals |
Periodicity / Periodic Table |
Reactions |
Student-Centered Learning
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Cp/Cv Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology  Mario Branca and Isabella Soletta
The values ? = Cp /Cv (heat capacity at a constant pressure / heat capacity at constant volume) for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of sound through these gases at room temperature using Calculator-Based Laboratory Technology.
Branca, Mario; Soletta, Isabella. J. Chem. Educ. 2007, 84, 462.
Gases |
Thermodynamics |
Physical Properties
Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (Ksp) of Potassium Hydrogen Phthalate  Frazier W. Nyasulu, William Cusworth III, David Lindquist, and John Mackin
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate. From these data the solubility products, the Gibbs free energies of solution, the standard enthalpy of solution, and the standard entropy of solution are calculated.
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John. J. Chem. Educ. 2007, 84, 456.
Acids / Bases |
Atomic Properties / Structure |
Spectroscopy |
Equilibrium |
Quantitative Analysis |
Thermodynamics |
Titration / Volumetric Analysis |
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Spectroscopy
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons  Ronald DAmelia, Thomas Franks, and William F. Nirode
Differential scanning calorimetry (DSC) is a rugged, easy-to-use instrumental method for thermal analysis determinations. The work described herein discusses the use of DSC in a general chemistry laboratory course to determine thermal properties such as melting points, ?fusionH, ?fusionS, and introduce the concept of polymorphism for organic hydrocarbons.
DAmelia, Ronald; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2007, 84, 453.
Alkanes / Cycloalkanes |
Instrumental Methods |
Physical Properties |
Thermal Analysis |
Thermodynamics |
Calorimetry / Thermochemistry
Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria  Thomas H. Bindel
This activity explores the thermodynamics of simultaneous, consecutive equilibria and is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing) reaction can be caused to happen if it is coupled with a product-favored reaction of sufficient entropy production.
Bindel, Thomas H. J. Chem. Educ. 2007, 84, 449.
Acids / Bases |
Equilibrium |
Thermodynamics
Applications of Reaction Rate  Kevin Cunningham
This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. The assignment is designed to develop and assess a number of valuable skills and understandings, including the ability to write effectively.
Cunningham, Kevin. J. Chem. Educ. 2007, 84, 430.
Catalysis |
Enzymes |
Kinetics |
Rate Law |
Reactions |
Applications of Chemistry
Thermochemical Analysis of Neutralization Reactions: An Introductory Discovery Experiment  Kenneth V. Mills and Louise W. Guilmette
Describes a guided-inquiry laboratory pedagogy in which students discover chemical concepts in the lab and the instructor uses their pooled data to guide the lecture portion of the course. This method is illustrated by an experiment that reinforces students' understanding of stoichiometry and allows them to discover neutralization reactions and thermochemistry.
Mills, Kenneth V.; Guilmette, Louise W. J. Chem. Educ. 2007, 84, 326.
Acids / Bases |
Stoichiometry |
Calorimetry / Thermochemistry |
Acids / Bases
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Popcorn—What's in the Bag?  Marissa B. Sherman and Thomas A. Evans
Three independent activities explore microwave popcorn, the nature of the packaging, and the popcorn produced.
Sherman, Marissa B.; Evans, Thomas A. J. Chem. Educ. 2006, 83, 416A.
Carbohydrates |
Nutrition |
Physical Properties |
Solutions / Solvents |
Water / Water Chemistry
A Kool Reaction from the Fine Print  Susan A. S. Hershberger and Arlyne M. Sarquis
Students investigate the reduction of artificial food dyes by citric acid-promoted oxidation of a metal in the form of fine or coarse steel wool. The artificial red and yellow food dyes present in drink mixes contain azo linkages (nitrogennitrogen double bonds) that are readily reduced to colorless products under mild reducing conditions.
Hershberger, Susan A. S.; Sarquis, Arlyne M. J. Chem. Educ. 2006, 83, 1792A.
Acids / Bases |
Consumer Chemistry |
Descriptive Chemistry |
Dyes / Pigments |
Food Science |
Oxidation / Reduction |
Reactions
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry  David G. DeWit
Describes a course module designed to afford practice in applying the principles encountered throughout the general chemistry sequence to understanding and predicting chemical reactivity and the products of simple inorganic reactions.
DeWit, David G. J. Chem. Educ. 2006, 83, 1625.
Acids / Bases |
Descriptive Chemistry |
Learning Theories |
Metals |
Nonmetals |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions
An Alternative Procedure for Carbohydrate Analysis of Bananas: Cheaper and Easier  C. Michele Davis-McGibony, Randall R. Bennett, Arthur D. Bossart II, and S. Todd Deal
The use of commercially available glucose test strips for home diabetic care is described as a new approach for determining the glucose concentrations in a ripening banana.
Davis-McGibony, C. Michele; Bennett, Randall R.; Bossart, Arthur D., II; Deal, S. Todd. J. Chem. Educ. 2006, 83, 1543.
Applications of Chemistry |
Carbohydrates |
Food Science |
Nutrition |
Plant Chemistry
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Molar Mass by Freezing Point Depression  Ronald P. D'Amelia, Thomas Franks, and William F. Nirode
The work described herein uses differential scanning calorimetry to determine the molar mass of three unknowns (nonvolatile organic hydrocarbons) by freezing point depression.
D'Amelia, Ronald P.; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2006, 83, 1537.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermal Analysis |
Solutions / Solvents
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Chemical Composition of a Fountain Pen Ink   J. Martín-Gil, M. C. Ramos-Sánchez, F. J. Martín-Gil, and M. José-Yacamán
Black ink (Parker Quink) widely used in 19501980 is characterized and compared with other traditional inks. There is agreement that the main cause of ink decay is the iron(II) sulfate content, whose effect is stronger than the destructive action of acids.
Martín-Gil, J.; Ramos-Sánchez, M. C.; Martín-Gil, F. J.; José-Yacamán, M. J. Chem. Educ. 2006, 83, 1476.
Applications of Chemistry |
Bioinorganic Chemistry |
Dyes / Pigments |
Free Radicals |
Reactions
Using Balloons for a Dramatic Presentation of the Acid–Bicarbonate Reaction  Miroslav Proka and Anna Tóthová
Describes the use of balloons in demonstrating the reaction between sodium hydrogen carbonate and acid.
Proka, Miroslav; Tóthová, Anna. J. Chem. Educ. 2006, 83, 1471.
Acids / Bases |
Dyes / Pigments |
Reactions
Chemistry Comes Alive!, Volume 8. Abstract of Special Issue 34  Rachel Bain, Jerrold J. Jacobsen, James H. Maynard, John W. Moore, and C. Jonathan Mitschele
Chemistry Comes Alive! Volume 8 can help move students understanding of waves from mechanical models to the chemical phenomena those models explain.
Bain, Rachel; Jacobsen, Jerrold J.; Maynard, James H.; Moore, John W.; Mitschele, C. Jonathan. J. Chem. Educ. 2006, 83, 1406.
Mechanisms of Reactions |
Reactions
Teaching Physical Chemistry Experiments with a Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
This article reports on a computer simulation developed with the software LabVIEW of the physical chemistry experiment regarding the vapor pressure measurements of a pure liquid as a function of temperature, as well as a system of data collecting that emphasizes the similarities between the virtual and real experiment.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2006, 83, 1353.
Equilibrium |
Laboratory Computing / Interfacing |
Liquids |
Thermodynamics |
Gases |
Student-Centered Learning
Endothermic Chemical and Physical Changes: An Introductory Chemistry Experiment  Margaret J. Steffel
Each of eleven unidentified compounds is heated in a test tube to determine whether the endothermic change each undergoes is a chemical or a physical change.
Steffel, Margaret J. J. Chem. Educ. 2006, 83, 1185.
Descriptive Chemistry |
Physical Properties |
Reactions |
Phases / Phase Transitions / Diagrams
Two "Gas-in-a-Bag" Reactions To Show the Predictive Power of the Relative AcidBase Strength Chart  Brett Criswell
Describes a demonstration in which two different pairs of solid chemicals mixed in two different Ziploc bags in the presence of a small quantities of water react to produce gases. Students are informed that the reactions are BrnstedLowry acidbase type reactions and must determine which member in each pair will act as the acid and which as the base.
Criswell, Brett. J. Chem. Educ. 2006, 83, 1167.
Acids / Bases |
Aqueous Solution Chemistry |
Descriptive Chemistry |
Gases |
Reactions |
Brønsted-Lowry Acids / Bases
Was Markovnikov's Rule an Inspired Guess?  Peter Hughes
A study of 19th century literature shows that neither Markovnikov nor any of his contemporaries carried out the reactions often attributed to himthe addition of hydrogen bromide or hydrogen chloride to propene. Since there is little evidence for Markovnikov's rule in his 1870 article, it is likely that it was more of an inspired guess than a rational conclusion.
Hughes, Peter. J. Chem. Educ. 2006, 83, 1152.
Addition Reactions |
Alkenes |
Mechanisms of Reactions
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
Acid–Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols  David E. Goodney
Examples of acidbase reactions from Robert Boyle's The Sceptical Chemist are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe what can be done quite simply with a chemical equation.
Goodney, David E. J. Chem. Educ. 2006, 83, 1001.
Acids / Bases |
Descriptive Chemistry |
Nonmajor Courses |
Reactions |
Nomenclature / Units / Symbols
Intermolecular and Intramolecular Forces: A General Chemistry Laboratory Comparison of Hydrogen Bonding in Maleic and Fumaric Acids  Frazier W. Nyasulu and John Macklin
This article presents a simple laboratory experiment that is designed to enhance students' understanding of inter- and intramolecular hydrogen bonding by demonstrating the comparative effect of these phenomena on some chemical and physical properties.
Nyasulu, Frazier W.; Macklin, John. J. Chem. Educ. 2006, 83, 770.
Acids / Bases |
Hydrogen Bonding |
Noncovalent Interactions |
Thermodynamics |
Titration / Volumetric Analysis
Taming the Barking Dog  Ché Royce Seabourne, George Maxwell, and James Wallace
This demonstration brings Liebig's famous 19th-century demonstration headlong into the 21st century, using digital video footage and other novel media.
Seabourne, Ché Royce; Maxwell, George; Wallace, James. J. Chem. Educ. 2006, 83, 751.
Gases |
Kinetics |
Mechanisms of Reactions |
Reactions
Interactive Demonstrations for Mole Ratios and Limiting Reagents  Crystal Wood and Bryan Breyfogle
The objective of this study was to develop interactive lecture demonstrations based on conceptual-change learning theory. Experimental instruction was designed for an introductory chemistry course for nonmajors to address misconceptions related to mole ratios and limiting reagents
Wood, Crystal; Breyfogle, Bryan. J. Chem. Educ. 2006, 83, 741.
Learning Theories |
Reactions |
Stoichiometry |
Student-Centered Learning
Useful Work of a Process  Norman C. Craig
Acknowledgment of a flaw in the article, Lets Drive Driving Force Out of Chemistry.
Craig, Norman C. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Useful Work of a Process  Bruno Lunelli
Clarifies a potentially misleading statement in the article, Lets Drive Driving Force Out of Chemistry.
Lunelli, Bruno. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
No "Driving Forces" in General Chemistry  Evguenii I. Kozliak
A simple and easy-to-remember explanation, that precipitation of a solid and/or formation of water are driving forces of those reactions or drive them to completion, still occurs among instructors.
Kozliak, Evguenii I. J. Chem. Educ. 2006, 83, 702.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Todd P. Silverstein
Offers additional solutions to the cracked watch glass problem associated with an earlier published dehydration of sugar demonstration.
Silverstein, Todd P. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Edward F. Duhr, Allison S. Soult, John G. Maijub, and Fitzgerald B. Bramwell
The procedure for Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom! can lead to watch glass breakage and thereby a fire hazard.
Duhr, Edward F.; Soult, Allison S.; Maijub, John G.; Bramwell, Fitzgerald B. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Edward F. Duhr, Allison S. Soult, John G. Maijub, and Fitzgerald B. Bramwell
The procedure for Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom! can lead to watch glass breakage and thereby a fire hazard.
Duhr, Edward F.; Soult, Allison S.; Maijub, John G.; Bramwell, Fitzgerald B. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
New Highlights on Analyzing First-Order Kinetic Data of the Peroxodisulfate–Iodide System at Different Temperatures  J. Yperman and W. J. Guedens
A pseudo-first order kinetic experiment examining the peroxodisulfateiodide system is executed at different temperatures, making it possible to calculate the activation energy of this reaction.
Yperman, J.; Guedens, W. J. J. Chem. Educ. 2006, 83, 641.
Kinetics |
Laboratory Computing / Interfacing |
Oxidation / Reduction |
Rate Law |
Thermodynamics
Incorporation of Microwave Synthesis into the Undergraduate Organic Laboratory  Alan R. Katritzky, Chunming Cai, Meghan D. Collins, Eric F. V. Scriven, Sandeep K. Singh, and E. Keller Barnhardt
Describes a simple way to effectively implement microwave synthesis into the undergraduate organic laboratory curriculum.
Katritzky, Alan R.; Cai, Chunming; Collins, Meghan D.; Scriven, Eric F. V.;Singh, Sandeep K.; Barnhardt, E. Keller. J. Chem. Educ. 2006, 83, 634.
Aromatic Compounds |
Laboratory Equipment / Apparatus |
Reactions |
Synthesis
Microwave-Assisted Heterocyclic Chemistry for Undergraduate Organic Laboratory  Robert Musiol, Bozena Tyman-Szram, and Jaroslaw Polanski
Microwave-assisted techniques are used to design new environmentally benign syntheses of heterocycles for the undergraduate organic laboratory.
Musiol, Robert; Tyman-Szram, Bozena; Polanski, Jaroslaw. J. Chem. Educ. 2006, 83, 632.
Green Chemistry |
Heterocycles |
Reactions |
Synthesis
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
Mechanisms That Interchange Axial and Equatorial Atoms in Fluxional Processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal Vibrational Modes  Marion E. Cass, King Kuok Hii, and Henry S. Rzepa
Teaching the Berry pseudorotation mechanism presents particular pedagogic problems due to both its dynamic and three dimensional character. The approach described here illustrates these processes using interactive animations embedded in a Web page.
Cass, Marion E.; Hii, King Kuok; Rzepa, Henry S. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Mechanisms of Reactions |
NMR Spectroscopy |
Nonmetals
Using Jmol To Help Students Better Understand Fluxional Processes   William F. Coleman and Edward W. Fedosky
This new WebWare neatly combines instructional text and Jmol interactive, animated illustrations to teach mechanisms that need to be clearly visualized in order to be well understood.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Mechanisms of Reactions |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Nonmetals
4-Dimethylaminopyridine or Acid-Catalyzed Syntheses of Esters: A Comparison  Annemieke W. C. van den Berg and Ulf Hanefeld
Students compare acid-catalyzed ester synthesis and the 4-dimethylaminopyridine-catalyzed reaction. Based on the outcome of the experiments, students discuss the different reaction mechanisms and reason why different products are formed.
van den Berg, Annemieke W. C.; Hanefeld, Ulf. J. Chem. Educ. 2006, 83, 292.
Acids / Bases |
Catalysis |
Chromatography |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis |
Mechanisms of Reactions
Gifts from Mother Earth—The Good, the Bad, and the Ugly  Sabine Heinhorst and Gordon C. Cannon
Recent articles from the journal Nature that deal with good, bad, and ugly gifts from Mother Earth are described.
Heinhorst, Sabine; Cannon, Gordon C. J. Chem. Educ. 2006, 83, 196.
Biosynthesis |
Biotechnology |
Natural Products |
Nutrition |
Plant Chemistry |
Polymerization |
Proteins / Peptides
Computer Simulations of Salt Solubility  Victor M. S. Gil and João C. M. Paiva
Computer Simulations of Salt Solubility provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution: configurational disorder and thermal disorder.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 173.
Thermodynamics |
Equilibrium |
Solutions / Solvents |
Precipitation / Solubility |
Computational Chemistry
A New Java Animation in Peer-Reviewed JCE WebWare  William F. Coleman and Edward W. Fedosky
Just added to JCE WebWare, Computer Simulations of Salt Solubility uses a Java applet and Web browser to present an animated illustration of differences in the solubility of salts due to differences in the entropy of solvation.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 173.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Derivatization of Fullerenes: An Organic Chemistry Laboratory  Charles T. Cox Jr. and Melanie M. Cooper
Presents two undergraduate organic chemistry laboratories detailing the synthesis of fullerene derivatives, using the Bingel (carbene insertion) and Prato (1,3-dipolar addition) protocols.
Cox, Charles T., Jr.; Cooper, Melanie M. J. Chem. Educ. 2006, 83, 99.
Acids / Bases |
Addition Reactions |
Chromatography |
Heterocycles |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy
Theoretical Insights for Practical Handling of Pressurized Fluids  Alfonso Aranda and María del Prado Rodríguez
Introduces the basic considerations for managing pressurized fluids, mainly liquefied and compressed gases.
Aranda, Alfonso; Rodríguez, María del Prado. J. Chem. Educ. 2006, 83, 93.
Applications of Chemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
A Simple and Easy-To-Learn Chart of the Main Classes of Inorganic Compounds and Their Acid–Base Reactions  Grigoriy Sereda
Presents a two-dimensional chart for the classification of the main classes of inorganic compounds with respect to their acidic and basic properties that makes it possible to predict reaction products and determine the coefficients in chemical equations of acidbase reactions.
Sereda, Grigoriy. J. Chem. Educ. 2005, 82, 1645.
Acids / Bases |
Reactions |
Stoichiometry
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 7: Microscale Production of Ozone  Jorge G. Ibanez, Rodrigo Mayen-Mondragon, M. T. Moran-Moran, Alejandro Alatorre-Ordaz, Bruce Mattson, and Scot Eskestrand
Ozone, a powerful oxidizing and disinfecting agent, is produced electrochemically in the undergraduate laboratory with simple equipment and under very mild conditions. Tests are given to characterize it, to observe its action in simulated environmental applications, and to measure its rate of production.
Ibanez, Jorge G.; Mayen-Mondragon, Rodrigo; Moran-Moran, M. T.; Alatorre-Ordaz, Alejandro; Mattson, Bruce; Eskestrand, Scot. J. Chem. Educ. 2005, 82, 1546.
Aqueous Solution Chemistry |
Descriptive Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Oxidation / Reduction |
Reactions
Mineral Analysis of Whole Grain Total Cereal  Paul Hooker
This article describes the quantitative analysis of the elements iron, zinc, and calcium in Whole Grain Total Cereal, a cereal product that claims to contain 100% of the daily value of several vitamins and minerals. This experiment can be implemented at several instructional levels including chemistry courses for science and nonscience majors, and in more advanced chemistry courses such as quantitative or instrumental analysis.
Hooker, Paul. J. Chem. Educ. 2005, 82, 1223.
Consumer Chemistry |
Food Science |
Nutrition |
Quantitative Analysis |
UV-Vis Spectroscopy |
Nonmajor Courses
Mass Relationships in a Chemical Reaction: Incorporating Additional Graphing Exercises into the Introductory Chemistry Laboratory  Stephen DeMeo
The purpose of this article is to increase student involvement with graph construction specifically in the context of introductory laboratory activities that involve mass relationships between reacting substances and products. In this regard, five massmass plots derived from a synthesis of a binary compound from its elements are presented as well as a set of questions to focus learners on the significance of each plot. The benefit of providing learners with these types of graphing activities include the use of higher-order cognitive processes as well as the elucidation of fundamental chemical knowledge such as the law of the conservation of mass, the law of constant composition, limiting and excess reactants, and empirical formula.
DeMeo, Stephen. J. Chem. Educ. 2005, 82, 1219.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Quantitative Analysis
A Note on Dalton's Law: Myths, Facts, and Implementation  Ronald W. Missen and William R. Smith
The treatment of Dalton's law for gas mixtures commonly includes the improper designation "Dalton's law of partial pressures", rather than the correct "Dalton's law of additivity of (pure component) pressures". It also identifies the pure component pressure as the partial pressure, although these are only numerically equal for a mixture of ideal gases. The situation is clarified by examination of an appropriate statement of the law and definitions, eventually in operational form with reference to mixtures of nonideal gases.
Missen, Ronald Wi.; Smith, William R. J. Chem. Educ. 2005, 82, 1197.
Thermodynamics |
Gases
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
Our Everyday Cup of Coffee: The Chemistry behind Its Magic  Marino Petracco
Coffee beverages are so popular all over the world that there is hardly any need to describe them. But underlying this seemingly commonplace beverage there is a whole realm worth serious scientific study. The complexity of the raw seed matrix, made even more intricate when roasted, requires a deep understanding of its chemical nature. While coffee is not consumed for nutritional purposes, it is appreciated for its taste appeal along with its stimulating effects on mental and physical activity. The attention to quality is of paramount importance to both of these aspects to supply the customers with a pleasant and wholesome product.
Petracco, Marino. J. Chem. Educ. 2005, 82, 1161.
Colloids |
Food Science |
Natural Products |
Nutrition |
Agricultural Chemistry |
Chromatography |
Vitamins |
Consumer Chemistry
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
Chemistry Comes Alive!, Volume 7 Abstract of Special Issue 32, a CD-ROM of Flames and Explosions   Rachel Bain, Jerrold J. Jacobsen, James H. Maynard, and John W. Moore
A visual library containing more than 230 QuickTime movies and more than 6700 still images, Chemistry Comes Alive! Volume 7: Flames and Explosions features the kind of chemistry that is sure to spark an interest. Organized using both the periodic table and type of reaction, CCA! 7 makes it easy for you to find the movie or image you seek to add that spark of interest to your presentation. CCA! 7 covers a broad range of spectacular chemical reactions while also offering a depth of coverage that encourages discussions that compare and contrast particular reactions.
Bain, Rachel; Jacobsen, Jerrold J.; Maynard, James H.; Moore, John W. J. Chem. Educ. 2005, 82, 1102.
Reactions |
Mechanisms of Reactions
Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy  Kestutis Bendinskas, Christopher DiJiacomo, Allison Krill, and Ed Vitz
A two-week biochemistry experiment was introduced in the second-semester general chemistry laboratory to study the oxidation of ethanol in vitro in the presence of the enzyme alcohol dehydrogenase (ADH). This reaction should pique student interest because the same reaction also occurs in human bodies when alcoholic drinks are consumed. Procedures were developed to follow the biochemical reaction by visible spectroscopy and to avoid specialized equipment. The effect of substrate concentration on the rate of this enzymatic reaction was investigated during the first week. The effects of temperature, pH, the specificity of the enzyme to several substrates, and the enzyme's inhibition by heavy metals were explored during the second week.
Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed. J. Chem. Educ. 2005, 82, 1068.
Enzymes |
Kinetics |
Oxidation / Reduction |
Reactions |
UV-Vis Spectroscopy |
Alcohols |
Biophysical Chemistry |
Food Science
The Addition of Bromine to 1,2-Diphenylethene   Judith C. Amburgey-Peters and LeRoy W. Haynes
We investigated the reaction of (Z)-1,2-diphenylethene (cis-stilbene) with various brominating reagents and solvents following directions in standard organic chemistry manuals. We were particularly interested in learning which combination of brominating reagent and solvent gave the best yield of (d,l)-1,2-dibromo-1,2-diphenylethane without the formation of significant amounts of meso-1,2-dibromo-1,2-diphenylethane, which is essentially the sole product from the reaction of bromine with (E)-1,2-diphenylethene (trans-stilbene). Based on the results from the standard preparatory methods, some permutations of solvent and brominating reagent were tried.
Amburgey-Peters, Judith C.; Haynes, LeRoy W. J. Chem. Educ. 2005, 82, 1051.
Addition Reactions |
Alkenes |
Carbocations |
Diastereomers |
Enantiomers |
Mechanisms of Reactions |
Stereochemistry
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
JavaScript Programs To Calculate Thermodynamic Properties Using Cubic Equations of State  
Cubic equations of state are widely used by chemists and chemical engineers to predict the thermodynamic properties of both pure substances and mixtures. In particular, these equations enable predictions concerning the temperature and pressure at which vaporliquid equilibrium occurs. These two educational JavaScript programs perform calculations using cubic equations of state and, equally importantly, explain how the calculations are performed.
J. Chem. Educ. 2005, 82, 960.
Enrichment / Review Materials |
Equilibrium |
Thermodynamics
JavaScript Programs To Calculate Thermodynamic Properties Using Cubic Equations of State  Patrick J. Barrie
In this article, two JavaScript programs are described. The first program gives students the choice of five different cubic equations of state and performs calculations for pure substances. The second program predicts vaporliquid equilibrium for binary mixtures using a choice of three modern equations of state and the van der Waals mixing rules.
Barrie, Patrick J. J. Chem. Educ. 2005, 82, 958.
Enrichment / Review Materials |
Thermodynamics |
Equilibrium
The q/T Paradox: Which "Contains More Heat", a Cup of Coffee at 95°C or a Liter of Icewater?  Ed Vitz and Michael J. Schuman
In this demonstration, heat is removed from 10 cm3 of water at ~95C and 42 cm3 of water at ~0C by adding each to a measured sample of liquid nitrogen. The heat removed from the water boils the N2(l), and the quantity of liquid nitrogen that is evaporated by boiling is determined. The quantity of heat that was absorbed is calculated from the heat of vaporization of liquid nitrogen and found to be about 10,000 J in the case of the hot water and 25,000 J in the case of the icewater.
Vitz, Ed; Schuman, Michael J. J. Chem. Educ. 2005, 82, 856.
Calorimetry / Thermochemistry |
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Regarding Entropy Analysis  Thomas H. Bindel
There is a problem with the symbol ?Suniv as it does not indicate whether the reactive system is in standard state or not.
Bindel, Thomas H. J. Chem. Educ. 2005, 82, 839.
Thermodynamics
Regarding Entropy Analysis  Robert M. Hanson
Presents a minor criticism I have regards ?Suniv not involving entropy effects of concentration and pressure.
Hanson, Robert M. J. Chem. Educ. 2005, 82, 839.
Thermodynamics
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps  Laura D. Jennings and Steven W. Keller
An interactive classroom activity is described that allows visualization of microscopic reaction mechanisms via the macroscopic process of unwrapping and eating chocolate candies.
Jennings, Laura D.; Keller, Steven W. J. Chem. Educ. 2005, 82, 549.
Reactions |
Rate Law |
Kinetics
The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor  James Gordon and Katherine Chancey
A new detection method is applied to a classic experiment in which gaseous atmospheric oxygen in a test tube is reacted with the iron in steel wool to produce rust. A gas pressure sensor interfaced to a calculator-based data collection system was used to measure the percent of oxygen in the air as the reaction proceeded. The results from the calculator-based experiment were compared to the results from a more traditional water-measurement experiment. The average percent of oxygen obtained using the calculator system was 19.4  0.4%.
Gordon, James; Chancey, Katherine. J. Chem. Educ. 2005, 82, 286.
Atmospheric Chemistry |
Gases |
Oxidation / Reduction |
Reactions
A Methane Balloon Inflation Chamber  Curtis J. Czerwinski and Tanya J. Cordes
While several lecture demonstrations are possible using methane-filled balloons, it is often inconvenient to prepare these balloons since the pressure from standard laboratory and lecture hall gas nozzles is too low. As a solution to this problem, a methane balloon inflation chamber, prepared from a translucent 3.5-gallon pail and an aspirator or house-vacuum, provides an inexpensive and convenient method for inflating balloons in laboratories or lecture halls. Prepared in this way, methane-filled balloons can be used to demonstrate the effects of vacuum, the lifting power of low-density gases, and the explosive combustion of methane.
Czerwinski, Curtis J.; Cordes, Tanya J. J. Chem. Educ. 2005, 82, 248.
Alkanes / Cycloalkanes |
Calorimetry / Thermochemistry |
Gases |
Oxidation / Reduction |
Reactions
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
A Pedagogical Simulation of Maxwell's Demon Paradox  D. López and C. Criado
Teaching thermodynamics from the microscopic point of view can help students develop an intuitive understanding of its concepts. This program simulates, at the microscopic level, two gas chambers with an opening between them. The program allows students or their instructors to set up simulations that illustrate the thermodynamics and statistical behavior of the system. The user determines the basis for whether the demon permits or denies passage of particles through the opening using information from the microscopic level, such as specific particle velocity. Students can track and analyze how this affects particle distribution, thermal equilibrium, relaxation time, diffusion, and distribution of particle velocities.
López, D.; Criado, C. J. Chem. Educ. 2004, 81, 1679.
Statistical Mechanics |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  Norman C. Craig
I am pleased that Campbells rule for estimating entropy changes in gas-consuming and gas-producing chemical reactions has attracted immediate interest.
Craig, Norman C. J. Chem. Educ. 2004, 81, 1571.
Gases |
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  William B. Jensen
In a recent article Norman Craig has proposed the rule-of-thumb that the approximate value of the entropy of reaction is related to the net moles of gas consumed or generated in the reaction .
Jensen, William B. J. Chem. Educ. 2004, 81, 1570.
Gases |
Thermodynamics
Playing Card Equilibrium  Frank L. Lambert
From experience, I am hypersensitive to the misconceptions of students and instructors that can be caused when playing cards are used in teaching chemistry. The root of such errors lies in overlooking the non-mobile, non-energetically-interacting nature of pieces of cardboard. Only if they are being shuffled can cards serve as some sort of analogy to molecular behavior in chemistry.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 1569.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Old Nassau Demonstration with Wilkinson Modification  Lawrence E. Wilkinson
A modification of the Old Nassau Reaction demonstration is presented, wherein a 0.025 M silver nitrate solution is used in place of the mercury(II) chloride solution employed in the original demonstration.
Wilkinson, Lawrence E. J. Chem. Educ. 2004, 81, 1474.
Aqueous Solution Chemistry |
Kinetics |
Oxidation / Reduction |
Reactions
Calories - Who's Counting?   JCE Editorial Staff
Students determine how many calories are released per gram when marshmallows and cashews burn and then compare the quantity of energy available from carbohydrates vs. fats.
JCE Editorial Staff . J. Chem. Educ. 2004, 81, 1440A.
Calorimetry / Thermochemistry |
Carbohydrates |
Lipids |
Consumer Chemistry |
Food Science |
Nutrition |
Fatty Acids
An Alternative Thermochemical Container   Robert G. Silberman
Dean Campbell suggests a clever, readily available, and simple alternative to the calorimeters described in my article. I tried his suggestion and egg cartons work well with the appropriate scale up of materials. The only advantage I see to the calorimeter I described is somewhat greater durability and need for smaller amounts of chemicals.
Silberman, Robert G. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
An Alternative Thermochemical Container  Dean J. Campbell
I was intrigued with the JCE Classroom Activity: #59 "Some Like It Hot, Some Like It Cold." I think that a polystyrene foam egg carton (or even multiple nested cartons) would be an adequate container for mixing the solutions and performing thermochemical measurements.
Campbell, Dean J. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Entropy and Constraint of Motion  Frank L. Lambert
William Jensen's presentation of entropy increase as solely due to kinetic energy dispersion is stimulating.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 640.
Thermodynamics
Entropy and Constraint of Motion   William B. Jensen
I would like to make several observations supplementing and supporting the article by Frank Lambert on entropy as energy dissipation, since this is an approach that I have also used for many years when teaching a qualitative version of the entropy concept to students of general and introductory inorganic chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 639.
Thermodynamics
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Thermodynamics in Context: A Case Study of Contextualized Teaching for Undergraduates  John Holman and Gwen Pilling
Thermodynamics is often considered to be a dry and theoretical area of undergraduate chemistry. To make it more accessible, a contextualized approach to first-year university thermodynamics has been developed, building on the experiences at the high school level of ChemCom in the United States and Salters Advanced Chemistry in the United Kingdom.
Holman, John; Pilling, Gwen. J. Chem. Educ. 2004, 81, 373.
Thermodynamics |
Learning Theories
A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration  Colin White
A striking demonstration emphasizing that substances which promote reactions are not catalysts if they are consumed in the process. The demonstration is based on the iron(II) induced oxidation of iodide by chromium(VI).
White, Colin. J. Chem. Educ. 2004, 81, 364.
Catalysis |
Oxidation / Reduction |
Reactions
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Don't Be Tricked by Your Integrated Rate Plot  Edward Urbansky
Reply to comments on original article.
Urbansky, Edward. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Reaction order Ambiguity  Sue Le Vent
Integrated rate equations (for constant reaction volume) may be given in terms of relative reactant concentration, C (= concentration/initial concentration) and relative time, T (= time/half-life); in these forms, the equations are independent of rate constants and initial concentrations.
Le Vent, Sue. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Another Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Additional safety considerations and a CO2 rocket car.
Campbell, Dean J. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Another Variation on the "Whoosh Bottle" Theme  Edward G. Senkbeil
Description of a similar demonstration and additional safety considerations.
Senkbeil, Edward G. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Another Variation on the "Whoosh Bottle" Theme  Edward G. Senkbeil
Description of a similar demonstration and additional safety considerations.
Senkbeil, Edward G. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Reactions (→) vs Equations (=)  S. R. Logan
A recent chemical kinetics text uses an equals sign for an overall reaction, whereas an arrow is used in each of the reaction steps that are proposed to constitute the mechanism, and for any elementary process.
Logan, S. R. J. Chem. Educ. 2003, 80, 1258.
Kinetics |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions
Dynamic Visualization in Chemistry Abstract of Special Issue 31, a CD-ROM for Mac OS and Windows  James P. Birk, Debra E. Leedy, Rachel A. Morgan, Mark Drake, Fiona Lihs, Eleisha J. Nickoles, and Michael J. McKelvy
Each presentation is designed to help chemistry students acquire a dynamic, three-dimensional, atomic-level visualization of matter and to use this view to explain and ultimately predict the behavior of materials. It integrates video of experiments and animations of theoretical models. Students zoom in on physical and chemical processes at resolutions as high as the atomic level.
Birk, James P.; Leedy, Debra E.; Morgan, Rachel A.; Drake, Mark; Lihs, Fiona; Nickoles, Eleisha J.; McKelvy, Michael J. J. Chem. Educ. 2003, 80, 1095.
Mechanisms of Reactions |
Solid State Chemistry
Diffusion of Water through a Differentially Permeable Membrane  Maria Guadalupe Bertoluzzo, Fabio E. Quattrin, Stella Maris Bertoluzzo, and Ruben Rigatuso
Students investigate the process of osmosis through the differentially-permeable membrane formed by copper(II) hexacyanoferrate(II), a colloidal precipitate.
Bertoluzzo, Maria Guadalupe; Quattrin, Fabio E.; Bertoluzzo, Stella Maris; Rigatuso, Ruben. J. Chem. Educ. 2003, 80, 1032A.
Transport Properties |
Mechanisms of Reactions
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
Chemical Equilibria Involving Copper(II) Ethylenediamine Complexes  Roberto Zingales
Demonstration illustrating the formation of two different complexes when copper(II) ions react with ethylenediamine.
Zingales, Roberto. J. Chem. Educ. 2003, 80, 535.
Equilibrium |
Aqueous Solution Chemistry |
Reactions |
Amines / Ammonium Compounds |
Precipitation / Solubility
Chemical Equilibria Involving Reactions of Silver(I) Ions  Roberto Zingales
Demonstrating a series of reactions involving silver(I) ions.
Zingales, Roberto. J. Chem. Educ. 2003, 80, 534.
Equilibrium |
Reactions |
Aqueous Solution Chemistry |
Qualitative Analysis |
Metals |
Precipitation / Solubility
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
Incomplete Combustion with Candle Flames: A Guided-Inquiry Experiment in the First-Year Chemistry Lab  Joseph MacNeil and Lisa Volaric
Investigating a burning candle as an introduction to incomplete combustion, thermodynamics, kinetics, and gas chromatography.
MacNeil, Joseph; Volaric, Lisa. J. Chem. Educ. 2003, 80, 302.
Chromatography |
Gases |
Reactions |
Oxidation / Reduction |
Thermodynamics |
Kinetics |
Gas Chromatography
Teaching Chemistry Using From the Earth to the Moon  James G. Goll and Stacie L. Mundinger
Teaching chemistry using From the Earth to the Moon (an HBO original movie series).
Goll, James G.; Mundinger, Stacie L. J. Chem. Educ. 2003, 80, 292.
Electrochemistry |
Chemometrics |
Reactions |
Mechanisms of Reactions |
Applications of Chemistry
"Disorder" in Unstretched Rubber Bands?  Warren Hirsch
Analysis of the thermodynamics of a stretched rubber band.
Hirsch, Warren. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Equilibrium
Periodic Table Live! 3rd Edition: Abstract of Special Issue 17  Nicholas B. Adelman, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, Alton J. Banks, John C. Kotz, William R. Robinson, and Susan Young
CD-ROM containing an interactive journey through the periodic table; includes information about each element, biographies of discoverers, videos of reactions, sources and uses, macro and atomic properties, and crystalline structures.
Adelman, Nicholas B.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Banks, Alton J.; Kotz, John C.; Robinson, William R.; Young, Susan. J. Chem. Educ. 2002, 79, 1487.
Descriptive Chemistry |
Periodicity / Periodic Table |
Solid State Chemistry |
Atomic Properties / Structure |
Physical Properties |
Reactions |
Crystals / Crystallography
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
An Interactive Graphical Approach to Temperature Conversions  Jonathan Mitschele
Activity to demonstrate the relationship between the Fahrenheit and Celsius temperature scales by graphing measurements of English- and metric-unit thermometers.
Mitschele, Jonathan. J. Chem. Educ. 2002, 79, 1235.
Nomenclature / Units / Symbols |
Chemometrics |
Calorimetry / Thermochemistry
Understanding of Elementary Concepts in Heat and Temperature among College Students and K–12 Teachers  Paul G. Jasien and Graham E. Oberem
Report on a study of the understanding of elementary concepts related to heat and temperature (thermal equilibrium and energy transfer in the form of heat) in undergraduate and post-baccalaurate students as a function of their number of semesters of college-level physical science training.
Jasien, Paul G.; Oberem, Graham E. J. Chem. Educ. 2002, 79, 889.
Thermodynamics |
Equilibrium
H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter  Irmgard K. Howard
Origin of the word enthalpy.
Howard, Irmgard K. J. Chem. Educ. 2002, 79, 697.
Thermodynamics |
Calorimetry / Thermochemistry
Tick Tock, a Vitamin C Clock  Stephen W. Wright
Uses supermarket chemicals to perform a clock reaction; students vary the concentration of reactants and observe the effect on the time required for the reaction to reach its endpoint.
Wright, Stephen W. J. Chem. Educ. 2002, 79, 40A.
Consumer Chemistry |
Oxidation / Reduction |
Vitamins |
Equilibrium |
Mechanisms of Reactions
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
The Lead-Acid Battery: Its Voltage in Theory and in Practice  Richard S. Treptow
Lead-acid battery fundamentals, cell voltage and the Nernst equation, and an analysis of actual battery performance.
Treptow, Richard S. J. Chem. Educ. 2002, 79, 334.
Electrochemistry |
Oxidation / Reduction |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases |
Applications of Chemistry
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Thermodynamics
Demonstrations with Nitrocellulose: Possible Further Pedagogic Value (re J. Chem. Educ. 2000, 77, 1449)  Edward G. Senkbeil
Characteristic of explosives to have fuel and oxidizer in the same structure.
Senkbeil, Edward G. J. Chem. Educ. 2001, 78, 1596.
Descriptive Chemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Rate Law
Demonstrations with Nitrocellulose: Possible Further Pedagogic Value (re J. Chem. Educ. 2000, 77, 1449)  J. C. Jones
Characteristic of explosives to have fuel and oxidizer in the same structure.
Jones, J. C. J. Chem. Educ. 2001, 78, 1596.
Descriptive Chemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Rate Law
Beer's Law Revoked? (re J. Chem. Educ. 2001, 78, 694)  Maureen Kendrick Murphy
Question regarding absorbance versus concentration plot for buckminsterfullerene.
Murphy, Maureen Kendrick. J. Chem. Educ. 2001, 78, 1595.
Calorimetry / Thermochemistry |
Ethics |
Laboratory Computing / Interfacing |
Undergraduate Research |
UV-Vis Spectroscopy
Beer's Law Revoked? (re J. Chem. Educ. 2001, 78, 694)  Roy W. Clark
Question regarding absorbance versus concentration plot for buckminsterfullerene.
Clark, Roy W. J. Chem. Educ. 2001, 78, 1595.
Calorimetry / Thermochemistry |
Ethics |
Laboratory Computing / Interfacing |
Undergraduate Research |
UV-Vis Spectroscopy
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
Experiencing and Visualizing the First Law of Thermodynamics: An In-Class Workshop  Pamela Mills, William V. Sweeney, and Waldemar Cieniewicz
A handheld device that illustrates the concepts of heat, work, energy transfer, and thermodynamic path.
Mills, Pamela; Sweeney, William V.; Cieniewicz, Waldemar. J. Chem. Educ. 2001, 78, 1360.
Gases |
Thermodynamics |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
A Simplified Method for Measuring the Entropy Change of Urea Dissolution. An Experiment for the Introductory Chemistry Lab  Charles A. Liberko and Stephanie Terry
Guided inquiry to determine values for changes in enthalpy, Gibb's free energy, and entropy for the dissolution of urea in water.
Liberko, Charles A.; Terry, Stephanie. J. Chem. Educ. 2001, 78, 1087.
Thermodynamics |
Calorimetry / Thermochemistry
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Don't Be Tricked by Your Integrated Rate Plot!  Edward T. Urbansky
Using integrated rate plots to determine reaction order.
Urbansky, Edward T. J. Chem. Educ. 2001, 78, 921.
Kinetics |
Mechanisms of Reactions |
Learning Theories |
Chemometrics |
Rate Law
An Alcohol Rocket Car--A Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Burning methanol in a wheeled milk jug.
Campbell, Dean J. J. Chem. Educ. 2001, 78, 910.
Gases |
Thermodynamics
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
Teaching about Flame Retardants. A Joint Israeli-Dutch Project  Miri Kesner and Wobbe de Vos
Flame retardants make interesting chemistry and moreover, the chemistry is highly relevant from an everyday life point of view. This article reports on a joint Israeli-Dutch project aimed at teaching the production, properties, and applications of some bromine-containing flame retardants, including their environmental aspects, in secondary education.
Kesner, Miri; de Vos, Wobbe. J. Chem. Educ. 2001, 78, 41.
Industrial Chemistry |
Oxidation / Reduction |
Reactions |
Applications of Chemistry
A Simple Method for Demonstrating Enzyme Kinetics Using Catalase from Beef Liver Extract  Kristin A. Johnson
A simple visual method of demonstrating enzyme kinetics using beef liver catalase. Filter paper is saturated with beef liver extract and placed into a solution of hydrogen peroxide. The catalase in the extract decomposes the hydrogen peroxide to water and oxygen. Oxygen forms on the filter paper, and the filter paper rises to the top of the beaker. Catalase activity is measured by timing the rise of the enzyme-soaked filter paper to the top of beakers containing different concentrations of hydrogen peroxide.
Johnson, A. Kristin. J. Chem. Educ. 2000, 77, 1451.
Enzymes |
Kinetics |
Proteins / Peptides |
Reactions
Combustion Demonstration Using Updated Flame Tornado  Edward G. Senkbeil
This demonstration uses the combustion of different forms of cellulose and an updated version of the "flame tornado" as an ignition source to illustrate the factors affecting the combustion process. The objectives of the experiment are to illustrate the factors affecting the rate of a combustion reaction and to demonstrate the factors affecting the production of a flame by using the flame tornado.
Senkbeil, Edward G. J. Chem. Educ. 2000, 77, 1449.
Descriptive Chemistry |
Oxidation / Reduction |
Reactions |
Rate Law
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Thermodynamics of Water Superheated in the Microwave Oven  B. H. Erné
Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. Water stops boiling soon after heating is interrupted, but subsequently added rough particles can still act as nucleation centers for a brief, spectacular burst of steam bubbles. The heat to make those steam bubbles obviously comes from the water itself, so that one can conclude that the boiling water was superheated, which is confirmed with a thermometer.
Erné, B. H. J. Chem. Educ. 2000, 77, 1309.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Liquids
Everyday Chemical Reactions: A Writing Assignment to Promote Synthesis of Concepts and Relevance in Chemistry  Abby L. Parrill
Capturing the interest of students in required chemistry courses is a problem for which many solutions have been proposed and described. The solution proposed here is the use of a writing assignment on everyday chemical reactions. Students select their own organic reaction and apply concepts learned throughout the semester to understanding it.
Parrill, Abby L. J. Chem. Educ. 2000, 77, 1303.
Nonmajor Courses |
Reactions
Hell May Be Hotter Than Heaven After All (about J. Chem. Educ. 1999, 76, 503)  M. N. Berberan-Santos
Estimation of temperatures in heaven and hell based on biblical information.
Berberan-Santos, Mário N. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
When A + B  Is Not Equal To B + A  Erling Antony, Lindsay Mitchell, and Lauren Nettenstrom
Many acid-base chemistry demonstrations and laboratory manuals include the "baking soda volcano". Others use the formation of calcium carbonate from calcium hydroxide and carbon dioxide in human breath. This demonstration uses principles from both as well as stoichiometry to answer the question "Does the order of mixing of reagents make a difference?"
Antony, Erling; Mitchell, Lindsay; Nettenstrom, Lauren. J. Chem. Educ. 2000, 77, 1180.
Acids / Bases |
Stoichiometry |
Reactions
A Visual Aid in Enthalpy Calculations  Sebastian G. Canagaratna
This article discusses the use of enthalpy-temperature diagrams for reactants and products as a visual aid in the teaching of reaction-enthalpy calculations. By the use of such diagrams the division of the process into a part involving a chemical reaction without a temperature change and a part involving only a temperature change is made visually concrete.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 1178.
Thermodynamics |
Calorimetry / Thermochemistry
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Simulating Dynamic Equilibria: A Class Experiment  John A. Harrison and Paul D. Buckley
A first-order reversible reaction is simulated on an overhead projector using small coins or discs. Results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Chtelier's principle is illustrated by further simulations.
Harrison, John A.; Buckley, Paul D. J. Chem. Educ. 2000, 77, 1013.
Equilibrium |
Rate Law |
Reactions
Studying Thermally Induced Chemical and Physical Transformations in Common Synthetic Polymers: A Laboratory Project  Steven C. Hodgson, John D. Orbell, Stephen W. Bigger, and John Scheirs
A simple project is described for introducing students to some experimental procedures commonly used to measure the effects of thermal treatment on synthetic polymers. The thermally induced changes that occur in the commodity polymers low-density polyethylene (LDPE), poly(ethylene terephthalate) (PET), and poly(vinyl chloride) (PVC) are examined as a function of the time of thermal treatment in an air-circulating oven.
Hodgson, Steven C.; Orbell, John D.; Bigger, Stephen W.; Scheirs, John. J. Chem. Educ. 2000, 77, 745.
IR Spectroscopy |
Calorimetry / Thermochemistry |
Thermal Analysis |
UV-Vis Spectroscopy
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Catalytic Oxidation of Ammonia: A Sparkling Experiment  Vladimir A. Volkovich and Trevor R. Griffiths
A lecture demonstration experiment on the catalytic oxidation of ammonia using chromium(III) oxide as a catalyst is described.
Volkovich, Vladimir A.; Griffiths, Trevor R. J. Chem. Educ. 2000, 77, 177.
Catalysis |
Oxidation / Reduction |
Reactions
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Boerhaave on Fire  Damon Diemente
This article offers a selection of passages from Boerhaave's chapter on fire. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas.
Diemente, Damon. J. Chem. Educ. 2000, 77, 42.
Calorimetry / Thermochemistry |
Thermodynamics
Using TOPEX Satellite El Niño Altimetry Data to Introduce Thermal Expansion and Heat Capacity Concepts in Chemistry Courses  Harvey F. Blanck
Warm water is less dense than cool water and will float somewhat like ice, with a portion above the surface of the cooler surrounding water. The height of the bump can be used to estimate the excess thermal energy in the warmer water.
Blanck, Harvey F. J. Chem. Educ. 1999, 76, 1635.
Liquids |
Thermodynamics |
Water / Water Chemistry |
Calorimetry / Thermochemistry
The Blue Bottle Reaction as a General Chemistry Experiment on Reaction Mechanisms  Steven C. Engerer and A. Gilbert Cook
Using the scientific method (observe, question, hypothesize, experiment, repeat) students propose and test possible reaction mechanisms for the methylene blue-catalyzed oxidation of dextrose with its dramatic color change. Students are led to discover the three-step mechanism through a series of questions.
Engerer, Steven C.; Cook, A. Gilbert. J. Chem. Educ. 1999, 76, 1519.
Aqueous Solution Chemistry |
Kinetics |
Mechanisms of Reactions
The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment  Charles J. Marzzacco
The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq).
Marzzacco, Charles J. J. Chem. Educ. 1999, 76, 1517.
Calorimetry / Thermochemistry |
Catalysis
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Visualizing Entropy  Joseph H. Lechner
This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations.
Lechner, Joseph H. J. Chem. Educ. 1999, 76, 1382.
Statistical Mechanics |
Thermodynamics
More on Double Replacement  Kauffman, G. B.
Reference to directions for writing double replacement reactions.
Kauffman, G. B. J. Chem. Educ. 1999, 76, 1340.
Reactions |
Stoichiometry
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
An Apparatus for Temperature Displays  George Papageorgiou and John Xenos
In this article, a new simple and low-cost apparatus is introduced that provides the possibility to display temperature measurements in any lecture hall. The apparatus provides analog displays. Its construction requires only simple and inexpensive materials.
Papageorgiou, George; Xenos, John. J. Chem. Educ. 1999, 76, 1094.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
The Persistence of the Candle-and-Cylinder Misconception  James P. Birk and Anton E. Lawson
There is a persistent misconception that when a lighted candle is supported in a container of water and a closed cylinder is lowered over the candle, the candle is extinguished after a time by complete consumption of the oxygen in the cylinder, with a volume change corresponding to the amount of oxygen in the air. This misconception has appeared in the literature periodically for many years. Here, we present a number of experiments that refute this misconception.
Birk, James P.; Lawson, Anton E. J. Chem. Educ. 1999, 76, 914.
Gases |
Atmospheric Chemistry |
Quantitative Analysis |
Reactions
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art  Julio Pellicer, M. Amparo Gilabert, and Ernesto Lopez-Baeza
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day.
Pellicer, Julio; Gilabert, M. Amparo; Lopez-Baeza, Ernesto. J. Chem. Educ. 1999, 76, 911.
Nomenclature / Units / Symbols |
Thermodynamics |
Learning Theories
The Methane Balloon  Walter H. Corkern and Elvin Hughes Jr.
The objectives are (i) to describe a novel method of inflating a balloon with methane, (ii) to show that methane is lighter than air, and (iii) to demonstrate the flammability of methane.
Corkern, Walter H.; Hughes, Elvin, Jr. J. Chem. Educ. 1999, 76, 794.
Gases |
Oxidation / Reduction |
Reactions
Using Large Glass Cylinders To Demonstrate Chemical Reactions  Wobbe de Vos
This article describes a simple laboratory experiment that aims at pedagogic as well as aesthetic aspects of chemical reactions. Experiments of this type have a high educational potential as students have the opportunity to observe the actual formation of a precipitate instead of just being able to see the result. The experiment is also suitable for demonstrating some of the fascinating beauty of chemical reactions to the general public.
de Vos, Wobbe. J. Chem. Educ. 1999, 76, 528.
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry |
Reactions
Teaching Chemistry Using the Movie Apollo 13  James G. Goll and B. J. Woods
The use of this popular movie has helped generate interest in chemistry courses.
Goll, James G.; Woods, B. J. J. Chem. Educ. 1999, 76, 506.
Undergraduate Research |
Learning Theories |
Reactions |
Applications of Chemistry
Photon-Initiated Hydrogen-Chlorine Reaction  Schwenz, Richard; Geiger, Lynn
Incorrect termination step for the H2 + Cl2 reaction mechanism.
Schwenz, Richard; Geiger, Lynn J. Chem. Educ. 1999, 76, 470.
Mechanisms of Reactions
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
Replace Double Replacement  R. Bruce Martin
Reactions described as double replacements in high school texts are poorly described by this designation. The driving force for such reactions is precipitation of a solid derived from ions in solution or the production of water in acid-base reactions.
Martin, R. Bruce. J. Chem. Educ. 1999, 76, 133.
Stoichiometry |
Reactions |
Precipitation / Solubility
The Design and Synthesis of a Large Interactive Classroom  Laurel L. Clouston and Mark H. Kleinman
The use of group learning techniques in large classes has been used to effectively convey the central concepts of SN1 and SN2 reactions in an introductory organic chemistry class. The activities described are best used as an introduction to these mechanisms.
Clouston, Laurel L.; Kleinman, Mark H. J. Chem. Educ. 1999, 76, 60.
Mechanisms of Reactions |
Learning Theories
Microscale Thermite Reactions  Francisco J. Arnáiz, Rafael Aguado, and Susana Arnáiz
The reaction of aluminum with the oxides of a variety of elements illustrates exothermic reactions that require a high activation energy. It is also an appropriate experiment with regard to the discussion of Ellingham diagrams. When drama is not the main objective, conducting these reactions at microscale level offers numerous advantages over the usual scale.
Arnáiz, Francisco J.; Aguado, Rafael; Arnáiz, Susana. J. Chem. Educ. 1998, 75, 1630.
Microscale Lab |
Reactions |
Oxidation / Reduction
Synthesis of Aspirin: A General Chemistry Experiment  John A. Olmsted III
An experiment is described that is suitable for the early portion of the laboratory in a general chemistry course and integrates organic examples. It is the two-step synthesis of aspirin starting from oil of wintergreen. The mechanism for this synthesis provides examples of three major classes of chemical reactions: hydrolysis, condensation, and proton transfer.
Olmsted, John A., III. J. Chem. Educ. 1998, 75, 1261.
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Mechanisms of Reactions |
Aromatic Compounds |
Carboxylic Acids |
Aldehydes / Ketones
Vapor Pressure Lowering by Nonvolatile Solutes  Gavin D. Peckham
This short article highlights a fundamental error that is entrenched in introductory chemistry textbooks. It is true that the addition of a nonvolatile solute causes a lowering in the vapor pressure of a solution. The error lies in attributing this vapor pressure lowering to the "blocking" of surface sites by nonvolatile particles. This is a totally fallacious argument for a number of reasons and the true explanation is to be found in the entropy changes that occur as a nonvolatile solute is added to a solution.
Peckham, Gavin D. J. Chem. Educ. 1998, 75, 787.
Gases |
Solutions / Solvents |
Thermodynamics
Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom!  Todd P. Silverstein and Yi Zhang
Our demonstration uses no sulfuric acid, yields relatively little smoke, and produces an exciting and unpredictable growing column of black carbon.
Silverstein, Todd P.; Zhang, Yi. J. Chem. Educ. 1998, 75, 748.
Carbohydrates |
Thermodynamics |
Electrochemistry |
Solid State Chemistry |
Oxidation / Reduction
Slide Projector Corrosion Cell  Silvia Tejada, Estela Guevara, and Esperanza Olivares
The process of corrosion can be demonstrated in a slide projector, since the cell is in the shape of a slide, or on the stage of an overhead projector by setting up a simple galvanic cell. Corrosion occurs as the result of a galvanic cell reaction, in which the corroding metal acts as the anode. Several simple demonstrations relating to corrosion are described here.
Tejada, Silvia; Guevara, Estela; Olivares, Esperanza. J. Chem. Educ. 1998, 75, 747.
Electrochemistry |
Microscale Lab |
Oxidation / Reduction |
Reactions |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Audience-Appropriate Analogies: Collision Theory  Kent W. Piepgrass
This article presents two new analogies for collision theory based on arcade games and on the interactions between salesclerks and customers in a store. The uses, limitations, and possible extensions of the analogies are discussed.
Piepgrass, Kent W. J. Chem. Educ. 1998, 75, 724.
Learning Theories |
Mechanisms of Reactions |
Kinetics
Thermodynamics and Spontaneity (the author replies)  Ochs, Raymond S.
The term "spontaneous" is historical baggage.
Ochs, Raymond S. J. Chem. Educ. 1998, 75, 659.
Thermodynamics
Thermodynamics and Spontaneity  Earl, Boyd L.
The term "spontaneous" is worth keeping in the chemistry lexicon.
Earl, Boyd L. J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Letters to the Editor  
The term "spontaneous" is worth keeping in the chemistry lexicon.
J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Chemical Domino Demonstration  M. Dale Alexander
The Chemical Domino Demonstration is both educational and entertaining. It provides an excellent means for a review of chemical concepts at the conclusion of a general chemistry course. This demonstration consists of a number of different chemical reactions occurring in sequence in a Rube Goldberg-type apparatus.
M. Dale Alexander. J. Chem. Educ. 1998, 75, 490.
Reactions |
Acids / Bases |
Oxidation / Reduction
Mechanism Templates: Lecture Aids for Effective Presentation of Mechanism in Introductory Organic Chemistry  Brian J. McNelis
To promote active student learning of mechanism in introductory organic chemistry, hand-outs have been developed with incomplete structures for reaction processes depicted, which are called mechanism templates. The key to these lecture aids is to provide only enough detail in the diagram to facilitate notetaking, ensuring that these templates are dynamic learning tools that must be utilized by an engaged and alert student.
Brian J. McNelis. J. Chem. Educ. 1998, 75, 479.
Learning Theories |
Mechanisms of Reactions |
Reactions |
Addition Reactions |
Acids / Bases |
Electrophilic Substitution |
Nucleophilic Substitution
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students  Christine L. Copper and Edward Koubek
By modifying the iodine clock reaction, students can use the initial rate method to observe the role of a catalyst in a chemical reaction via activation energy calculations and evaluate a proposed mechanism. They can also determine the order with respect to each reactant and the rate constants of the noncatalyzed and catalyzed reactions.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1998, 75, 87.
Catalysis |
Kinetics |
Mechanisms of Reactions
A Modified Hydrogen/Oxygen Balloon Demonstration  Ian J. McNaught
Using a ratio of 1:2 volumes of hydrogen and oxygen for balloons as instead of a 2:1 ratio for safety.
McNaught, Ian J. J. Chem. Educ. 1998, 75, 52.
Gases |
Reactions
Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  Chinhyu Hur, Sally Solomon, and Christy Wetzel
Heat changes can be observed by using a culture dish and a thermometer that is projected onto a screen using an overhead projector.
Hur, Chinhyu; Solomon, Sally; Wetzel, Christy. J. Chem. Educ. 1998, 75, 51.
Calorimetry / Thermochemistry |
Solutions / Solvents |
Thermodynamics |
Laboratory Equipment / Apparatus
Heat Capacity, Body Temperature, and Hypothermia  Doris R. Kimbrough
A finger in and out of water are compared to demonstrate the difference between heat capacities and their effect on body temperature.
Kimbrough, Doris R. J. Chem. Educ. 1998, 75, 48.
Calorimetry / Thermochemistry |
Thermodynamics
Letter to the Editor about Letter to the Editor "Redox Challenges" from David M. Hart and Response from Roland Stout (J. Chem. Educ. 1996, 73, A226-7)  Andrzej Sobkowiak
Examples of a variety of redox equations.
Sobkowiak, Andrzej. J. Chem. Educ. 1997, 74, 1256.
Stoichiometry |
Reactions |
Oxidation / Reduction
Iron as Nutrient and Poison  N. M. Senozan and M. P. Christiano
Iron containing compounds of the body and the ingestion and elimination of iron, the function and transport of this metal among different sites and substances of the body, and biochemical defects and nutritional habits that lead to excessive accumulation of iron and some unexpected consequences of this accumulation are described.
Senozan, N. M.; Christiano, M. P. J. Chem. Educ. 1997, 74, 1060.
Bioinorganic Chemistry |
Bioorganic Chemistry |
Food Science |
Metals |
Vitamins |
Toxicology |
Nutrition |
Applications of Chemistry |
Descriptive Chemistry
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement  Mark Muyskens
Application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor.
Muyskens, Mark. J. Chem. Educ. 1997, 74, 850.
Calorimetry / Thermochemistry |
Thermal Analysis |
Thermodynamics |
Laboratory Equipment / Apparatus |
Instrumental Methods
Stable Solutions for the Iodine Clock Reaction  George B. Kauffman and Charles R. Hall
Advanced preparation of solutions for the iodine clock reaction.
Kauffman, George B.; Hall, Charles R. J. Chem. Educ. 1997, 74, 616.
Reactions |
Solutions / Solvents
The Coupling of Related Demonstrations to Illustrate Principles in Chemical Kinetics and Equilibrium  Richard A. Pacer
Two very simple lecture demonstrations, both involving the reaction of magnesium with one or more dilute acids, are linked together to illustrate principles in chemical kinetics and equilibrium.
Pacer, Richard A. J. Chem. Educ. 1997, 74, 543.
Learning Theories |
Acids / Bases |
Equilibrium |
Kinetics |
Rate Law |
Reactions
The Thermodynamics of Drunk Driving  Robert Q. Thompson
Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC.
Thompson, Robert Q. J. Chem. Educ. 1997, 74, 532.
Thermodynamics |
Nonmajor Courses |
Forensic Chemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry
Heat Flow vs. Cash Flow: A Banking Analogy  Charles M. Wynn, Sr.
An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction.
Wynn, Charles M. Sr. J. Chem. Educ. 1997, 74, 397.
Thermodynamics |
Calorimetry / Thermochemistry
Elasticity to Measure Thermodynamic Properties  Jonathan Mitschele
Repetition of original experiment.
Mitschele, Jonathan. J. Chem. Educ. 1997, 74, 368.
Thermodynamics
A Brief History of Thermodynamics Notation  Rubin Battino, Laurence E. Strong, Scott E. Wood
This paper gives a brief history of thermodynamic notation for the energy, E, enthalpy, H, entropy, S, Gibbs energy, G, Helmholtz energy, A, work, W, heat, Q, pressure, P, volume, V, and temperature, T. In particular, the paper answers the question, "Where did the symbol S for entropy come from?"
Battino, Rubin; Strong Laurence E.; Wood, Scott E. J. Chem. Educ. 1997, 74, 304.
Thermodynamics
In Defense of Thermodynamics - An Animate Analogy  Sture Nordholm
In order to illustrate the deepest roots of thermodynamics and its great power and generality, it is applied by way of analogy to human behavior from an economic point of view.
Nordholm, Sture. J. Chem. Educ. 1997, 74, 273.
Thermodynamics
How Efficient is a Laboratory Burner in Heating Water?  Michael P. Jansen
When a laboratory (or Bunsen) burner is used to heat water, all of the energy liberated by the burning fuel is not absorbed by the water. This article describes a procedure for determining the percentage efficiency of this common apparatus. This experiment is suitable for secondary school students who are familiar with stoichiometry , simple calorimetry, heats of reaction, collection of gas by downward displacement of water.
Jansen, Michael P. J. Chem. Educ. 1997, 74, 213.
Calorimetry / Thermochemistry
Chemical Equilibrium (the author replies)  Banerjee, Anil
Item 7 deserves a fuller answer than was provided.
Banerjee, Anil J. Chem. Educ. 1996, 73, A262.
Equilibrium |
Thermodynamics
Chemical Equilibrium  Logan, S. R.
Item 7 deserves a fuller answer than was provided.
Logan, S. R. J. Chem. Educ. 1996, 73, A261.
Equilibrium |
Thermodynamics
Reports from Other Journals: Gleanings from Scientific American  Paul F. Schatz
Scientific American provides a rich resource of background and general interest material for topics of chemical interest that can be used to supplement and enhance chemistry lecture and laboratory courses.
Schatz, Paul F. J. Chem. Educ. 1996, 73, A234.
Drugs / Pharmaceuticals |
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Applications of Chemistry |
Consumer Chemistry |
Laboratory Management
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
A Modified Demonstration of the Activation Energy Concept  Jin Li, Le-Sui Dai, Li-Shu You
This paper describes a modified method that can be used to present both exothermic and endothermic cases.
Li, Jin; Dai, Le-Sui; You, Li-Shu. J. Chem. Educ. 1996, 73, 948.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Laboratory Management
Home-Study Microlabs  Dietmar Kennepohl
This article presents the use of microscaled chemistry experiments for individual home study and how it can be incorporated into a course with traditional laboratory work.
Kennepohl, Dietmar. J. Chem. Educ. 1996, 73, 938.
Microscale Lab |
Solutions / Solvents |
Calorimetry / Thermochemistry |
Qualitative Analysis |
Precipitation / Solubility
Symmetry Elements and Operations  Albert W.M. Lee, K.M. Leung, W.J Daniel, C.L. Chan
Symmetry Elements and Operations is a multimedia presentation that illustrates the basics of symmetry with three dimensional molecular models and simple text explanations.
Lee, Albert W.M.; Leung, K.M.; Kwong, Daniel W.J.; Chan, C.L. . J. Chem. Educ. 1996, 73, 924.
Molecular Modeling |
Spectroscopy |
Stereochemistry |
Mechanisms of Reactions |
Group Theory / Symmetry |
Quantum Chemistry |
Enrichment / Review Materials
Simple and Attractive Demonstraction of the Reversibility of Chemical Reactions  Celestyn M. Brozek
The reversibility of chemical reactions is demonstrated by dehydration of CuSO4  5H2O and the subsequent hydration of CuSO4. The associated heat consumption and the subsequent heat production illustrate the concept of endothermic and exothermic reactions.
J. Chem. Educ. 1996, 73, 837.
Calorimetry / Thermochemistry |
Reactions
SIRS: Simulations and Interactive Resources, III  Martin, John S.
Simulations and Interactive Resources (SIRs) are designed to support interactive lectures in introductory chemistry. This third issue of SIRs includes five new SIRs as well as updated and final versions of all previously published SIRs.
Martin, John S. J. Chem. Educ. 1996, 73, 722.
Periodicity / Periodic Table |
Equilibrium |
Gases |
Thermodynamics |
Reactions |
Electrochemistry |
Kinetics
An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
An alternative to the conventional method of calculating enthalpies of reaction is presented, using enthalpies of atomization in place of enthalpies of formation. This allows the student to see directly that the reaction enthalpies are determined by the difference in bond strengths in the reactants and products.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 631.
Calorimetry / Thermochemistry |
Thermodynamics |
Equilibrium |
Reactions |
Atomic Properties / Structure |
Stoichiometry
Solubility and Thermodynamics: An Introductory Experiment  Robert G. Silberman
This article describes a laboratory experiment suitable for high school or freshman chemistry students in which the solubility of potassium nitrate is determined at several different temperatures.
Silberman, Robert G. J. Chem. Educ. 1996, 73, 426.
Precipitation / Solubility |
Thermodynamics |
Equilibrium
A Novel Approach to Teaching Electrochemical Principles  Paul Krause and Jerry Manion
To demonstrate that work may be done by a chemical reaction, a reaction producing a gas is carried out in a large, closed syringe. As the gas is generated, the syringe plunger is forced out.
Krause, Paul; Manion, Jerry. J. Chem. Educ. 1996, 73, 354.
Reactions |
Gases |
Thermodynamics
Anthocyanins: Model Compounds for Learning about More than pH  Robert Curtright, James A. Rynearson, and John Markwell
In recent years it has become common to use anthocyanins as pH indicators. We believe that chemistry teachers can capitalize further on the natural interest of students in anthocyanin pigments to design meaningful lessons involving chromatography and hydrolysis. This article focuses on the use of anthocyanins in chromatography and hydrolysis.
Curtright, Robert; Rynearson, James A.; Markwell, John. J. Chem. Educ. 1996, 73, 306.
Natural Products |
Chromatography |
Reactions |
Food Science
Small-Scale Experiments Involving Gas Evolution  Brouwer, H.
Apparatus for measuring very small volume changes of gases and several experimental procedures involving the evolution of gases.
Brouwer, H. J. Chem. Educ. 1995, 72, A100.
Gases |
Laboratory Equipment / Apparatus |
Stoichiometry |
Acids / Bases |
Reactions |
Mechanisms of Reactions |
Microscale Lab
A Simple and Convenient Microscale Procedure for Investigation of Charles' Law  Snyder, Donald M.
Experimental procedure for establishing temperature/volume relationship for a gas and determining the value of absolute zero using very simple equipment; includes sample data and analysis.
Snyder, Donald M. J. Chem. Educ. 1995, 72, A98.
Gases |
Calorimetry / Thermochemistry |
Microscale Lab
Quick Method for Making Colored-Flame Flash Paper  Sally Solomon, Chinhyu Hur, Alan Lee, and Kurt Smith
Procedure for making for making colored-flame (and multicolored) flash paper.
Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt. J. Chem. Educ. 1995, 72, 1133.
Reactions |
Calorimetry / Thermochemistry |
Atomic Spectroscopy
Entertaining Chemistry  John F. Elsworth
"A Volcanic Serpent" (ammonium dichromate), "A Homemade Hydrogen Rocket", and "Johnny's Saga in Chemistry" (sulfuric acid + calcium carbonate) demonstrations.
Elsworth, John F. J. Chem. Educ. 1995, 72, 1128.
Reactions |
Acids / Bases |
Gases
Redox Challenges: Good Times for Puzzle Fanatics  Roland Stout
Three difficult to balance redox equations.
Stout, Roland. J. Chem. Educ. 1995, 72, 1125.
Reactions |
Stoichiometry |
Oxidation / Reduction |
Enrichment / Review Materials
Photosynthesis: Why Does It Occur?  J. J. MacDonald
Explanation of why photosynthesis occurs; stating that it is merely the reverse of respiration is misleading.
MacDonald, J. J. J. Chem. Educ. 1995, 72, 1113.
Plant Chemistry |
Reactions |
Thermodynamics |
Photochemistry |
Electrochemistry
Fe(s) + Cu(II)(aq) ----> Fe(II)(aq) + Cu(s): Fifteen Centuries of Search  Vladimir Karpenko
Historical development of understanding of the title reaction, particularly erroneous alchemical beliefs.
Karpenko, Vladimir. J. Chem. Educ. 1995, 72, 1095.
Metals |
Enrichment / Review Materials |
Reactions |
Oxidation / Reduction
Celsius to Fahrenheit--Quick and Dirty  Colin Hester
Simple algorithm for converting Celsius temperature to Fahrenheit temperature.
Hester, Colin. J. Chem. Educ. 1995, 72, 1026.
Calorimetry / Thermochemistry |
Nomenclature / Units / Symbols |
Chemometrics
Carbohydrate Dehydration Demonstrations  David A. Dolson, Rubin Battino, Trevor M. Letcher, K. H. Pegel, and N. Revaprasadu
Study of the dehydration of a carbohydrate by sulfuric acid and variables that influence the reaction (including type of sugar, sugar granule size, and amount of water added to sugar).
Dolson, David A.; Battino, Rubin; Letcher, Trevor M.; Pegel, K. H.; Revprasadu, N. J. Chem. Educ. 1995, 72, 927.
Carbohydrates |
Reactions
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
A Pictorial Analogy for Energy Content and Temperature  Thomas D. Crute
Analogy to help students distinguish between heat and temperature.
Crute, Thomas D. J. Chem. Educ. 1995, 72, 914.
Calorimetry / Thermochemistry
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory  Stephen DeMeo
Procedure for synthesizing and then decomposing zinc iodide in introductory chemistry that offers advantages over traditional synthesis/decomposition species (e.g. copper sulfide and magnesium oxide).
DeMeo, Stephen. J. Chem. Educ. 1995, 72, 836.
Synthesis |
Thermodynamics |
Reactions
More Chemistry in a Soda Bottle: A Conservation of Mass Activity  Daniel Q. Duffy, Stephanie A. Shaw, William O. Bare, and Kenneth A. Goldsby
Conservation of mass activity using vinegar and baking soda in a 2-L soda bottle.
Duffy, Daniel Q.; Shaw, Stephanie A.; Bare, William D.; Goldsby, Kenneth A. J. Chem. Educ. 1995, 72, 734.
Reactions |
Gases |
Acids / Bases
Methanol Cannon Demonstrations Revisited  David A. Dolson, Michael E. Dolson, Michael R. Hall, Rubin Battino, Lisa S. Jutte
Demonstrations involving methanol cannons and chain reactions.
Dolson, David A.; Dolson, Michael E.; Hall, Michael R.; Battino, Rubin; Jutte, Lisa S. J. Chem. Educ. 1995, 72, 732.
Free Radicals |
Reactions |
Alcohols
Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan  Thomas G. Richmond
Demonstration to illustrate a lack of chemical activity using a Teflon-coated pan.
Richmond, Thomas G.; Krause, Paul F. J. Chem. Educ. 1995, 72, 731.
Reactions |
Covalent Bonding
Stoichiometry and Chemical Reactions (the author replies)  Filgueiras, Carlos A.
The mere writing of balanced equations may be unrelated to the actual reaction that takes place.
Filgueiras, Carlos A. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
Stoichiometry and Chemical Reactions  Radhakrishnamurty, P.
Can there exist different ways of balancing a chemical reaction?
Radhakrishnamurty, P. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
Making Sparklers: An Introductory Laboratory Experiment   Allen Keeney, Christina Walters, and Richard D. Cornelius
Method for producing sparklers to illustrate redox reactions.
Keeney, Allen; Walters, Christina; Cornelius, Richard D. J. Chem. Educ. 1995, 72, 652.
Oxidation / Reduction |
Reactions |
Metals
Small Scale One-Pot Reactions of Copper, Iron, and Silver  Epp, Dianne N.
Investigation of a series of reactions involving copper, iron, and silver, all conducted with very small quantities in a single well.
Epp, Dianne N. J. Chem. Educ. 1995, 72, 545.
Nomenclature / Units / Symbols |
Reactions |
Acids / Bases |
Precipitation / Solubility
Resistance Measurement as a Tool for Corrosion Studies  Singh, N. P.; Gupta, S. C.; Sood, B. R.
Procedure for determining the rate of corrosion by measuring changes in the resistance of a thin wire or strip of metal; sample data and analysis included.
Singh, N. P.; Gupta, S. C.; Sood, B. R. J. Chem. Educ. 1995, 72, 465.
Oxidation / Reduction |
Metals |
Rate Law |
Reactions |
Electrochemistry
The Periodic Table CD  Banks, Alton J; Holmes, Jon L.
Description of the Periodic Table CD, containing a database of still images and motion sequences of reactions and uses/applications of each chemical element.
Banks, Alton J; Holmes, Jon L. J. Chem. Educ. 1995, 72, 409.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Reactions
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
A Concrete Analogy for Combustion Analysis Problems  Reingold, I. David
Exercise for helping students understand stoichiometry by considering a Sherlock Holmes case.
Reingold, I. David J. Chem. Educ. 1995, 72, 222.
Reactions |
Stoichiometry
Modified Hydrogen Balloon Explosion  Lawrence, Stephen S.
Detonating a water filled, hydrogen/oxygen balloon.
Lawrence, Stephen S. J. Chem. Educ. 1995, 72, 177.
Reactions
Put a Little Kaboom in Your Classroom  Barondeau, Mike
Instructions for constructing a calcium carbide/acetylene cannon from PVC pipe.
Barondeau, Mike J. Chem. Educ. 1995, 72, 176.
Reactions |
Laboratory Equipment / Apparatus
Solution-Phase Thermodynamics: A "Spontaneity" Activity  Bindel, Thomas H.
Experimental procedure for verifying the concept of spontaneity using solution chemistry; includes data and analysis.
Bindel, Thomas H. J. Chem. Educ. 1995, 72, 34.
Aqueous Solution Chemistry |
Thermodynamics
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
Learning Name Reactions and Name Apparatuses Through Crossword Puzzles  Lee, Albert W. M.; Tse, C. L.
These computer generated crossword puzzles consist of 38 organic name reactions and 13 name apparatuses frequently encountered at the undergraduate level.
Lee, Albert W. M.; Tse, C. L. J. Chem. Educ. 1994, 71, 1071.
Laboratory Equipment / Apparatus |
Reactions
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamics
The Chemical Adventures of Sherlock Holmes: The Hound of Henry Armitage  Waddell, Thomas G.; Rybolt, Thomas R.
A chemical mystery featuring Sherlock Holmes and Dr. Watson with an emphasis on physical properties and balancing reaction equations.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 1994, 71, 1049.
Enrichment / Review Materials |
Physical Properties |
Reactions
Chart for Deciding Mechanism for Reaction of Alkyl Halide with Nucleophile/Base  McClelland, Bruce W.
The decision chart offered here is based upon the well-known and accepted characteristics of the reaction system mechanisms described in typical introductory organic chemistry textbooks.
McClelland, Bruce W. J. Chem. Educ. 1994, 71, 1047.
Mechanisms of Reactions |
Nucleophilic Substitution
Chemistry Navigator  Kotz, John C.; Young, Susan
Chemistry Navigator is a hyperbook-database of information in the form of descriptive text, numerical values of properties, full color photos of chemicals and reactions, three dimensional molecular structures, QuickTime animations of structural features, and graphs showing periodic trends, relative elemental abundances, and other properties.
Kotz, John C.; Young, Susan J. Chem. Educ. 1994, 71, 941.
Reactions |
Molecular Properties / Structure |
Periodicity / Periodic Table
Pictorial Analogies XIII: Kinetics and Mechanism  Fortman, John J.
Pictorial analogies for first order kinetics, the effect of concentration and temperature on reaction rate, and the requirement for proper molecular orientation for reaction.
Fortman, John J. J. Chem. Educ. 1994, 71, 848.
Mechanisms of Reactions |
Rate Law |
Reactions
ChemDemos  Moore, John W.; Jacobsen, Jerrold; Hunsberger, Lynn R.; Gammon, Steven D.; Zimmerman, John
A video laserdisc that includes 30 demonstrations suitable for introductory chemistry.
Moore, John W.; Jacobsen, Jerrold; Hunsberger, Lynn R.; Gammon, Steven D.; Zimmerman, John J. Chem. Educ. 1994, 71, 779.
Reactions
Computers and Practical Chemistry  Gipps, John
164. Particularly appropriate examples for the computer interfacing of laboratory experiments.
Gipps, John J. Chem. Educ. 1994, 71, 671.
Laboratory Computing / Interfacing |
Acids / Bases |
Equilibrium |
Reactions
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
Kinetics of Chemical Reactions: A Low-Cost and Simple Appartus  Papageorgiou, G.; Ouzounis, K.; Xenos, J.
Description, applications, and experiments for a simple and inexpensive apparatus to help students understand kinetics.
Papageorgiou, G.; Ouzounis, K.; Xenos, J. J. Chem. Educ. 1994, 71, 647.
Laboratory Equipment / Apparatus |
Reactions |
Kinetics
The Sol-Gel Preparation of Silica Gels  Buckley, A. M.; Greenblatt, M.
Background and procedure for the sol-gel preparation of silica from molecular precursors.
Buckley, A. M.; Greenblatt, M. J. Chem. Educ. 1994, 71, 599.
Mechanisms of Reactions |
Colloids
Rubber Elasticity: A Simple Method for Measurement of Thermodynamic Properties  Byrne, John P.
A modified triple-beam balance that uses an optical lever to detect small changes in the length of a stretched rubber band.
Byrne, John P. J. Chem. Educ. 1994, 71, 531.
Thermodynamics |
Laboratory Equipment / Apparatus |
Physical Properties
Use of Multimedia in an Introductory Chemistry Course for Student Analysis of Real-Life Situations  Joesten, Melvin D.
Award in the Course and Curriculum Development (CCD) program for FY1994.
Joesten, Melvin D. J. Chem. Educ. 1994, 71, 508.
Addition Reactions
Calorie Content of Foods: A Laboratory Experiment Introducing Measuring by Calorimeter  Cohen, Bernard L.; Schilken, Catherine A.
Overcoming the challenges posed by determining the calorie content of food by calorimetry.
Cohen, Bernard L.; Schilken, Catherine A. J. Chem. Educ. 1994, 71, 342.
Calorimetry / Thermochemistry |
Food Science
An Economical, Safe, and Sturdy Student Calorimeter  Ruekberg, Ben
Replacing the styrofoam, coffee cup calorimeter with the Snak Jar.
Ruekberg, Ben J. Chem. Educ. 1994, 71, 333.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
A WARNING: Explosion Hazards of Reacting Magnesium and Aluminum with Powdered Silver Nitrate  Laing, Michael
Danger of reacting Mg and AgNO3, Al and AgNO3.
Laing, Michael J. Chem. Educ. 1994, 71, 270.
Metals |
Reactions
A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas  Cox, Marilyn Blagg
Reacting calcium carbide with water to generate ethyne.
Cox, Marilyn Blagg J. Chem. Educ. 1994, 71, 253.
Alkynes |
Reactions
Pyrotechnic Reactions Without Oxygen  Wright, Stephen W.
Reaction of K3FeF6 with Al and poly(tetrafluoroethylene) with Mg.
Wright, Stephen W. J. Chem. Educ. 1994, 71, 251.
Oxidation / Reduction |
Reactions
KineticsLab: The Crystal Violet/Sodium Hydroxide Reaction  Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R.
A computer-assisted experiment to collect and analyze data for a kinetic study of the decolorization of crystal violet in basic solution.
Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R. J. Chem. Educ. 1994, 71, 238.
Kinetics |
Rate Law |
Reactions
Cryophori, Hot Molecules, and Frozen Nitrogen  Hunter, Paul W. W.; Knoespel, Sheldon L.
Freezing water and nitrogen at low atmospheric pressure.
Hunter, Paul W. W.; Knoespel, Sheldon L. J. Chem. Educ. 1994, 71, 67.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Bean counter's caution   Schwartz, Leslie J.
The article "The "Bean Lab' is useful only for elementary mechanisms.
Schwartz, Leslie J. J. Chem. Educ. 1993, 70, 1042.
Equilibrium |
Mechanisms of Reactions
Delayed explosions  Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro
A container is filled with a fuel and lit through a small hole. Variations of this demo are included.
Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro J. Chem. Educ. 1993, 70, 1030.
Calorimetry / Thermochemistry
The repeating "exploding" flask: A demonstration of heterogeneous catalysis   Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A.
This demonstration can be used to illustrate heterogeneous catalysis and thermochemistry.
Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A. J. Chem. Educ. 1993, 70, 1029.
Calorimetry / Thermochemistry |
Catalysis
The activation energy of a slap bracelet   Kramer, F. Axtell.
This accessory/toy can be used to help students understand activation energy.
Kramer, F. Axtell. J. Chem. Educ. 1993, 70, 1002.
Kinetics |
Reactions |
Calorimetry / Thermochemistry
Heat of solution of hydrogen chloride: A laboratory experiment  Harms, Gregory S.; Lehman, Thomas A.
A simple technique for measuring the heat of solution of HCl in water.
Harms, Gregory S.; Lehman, Thomas A. J. Chem. Educ. 1993, 70, 955.
Acids / Bases |
Solutions / Solvents |
Calorimetry / Thermochemistry
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Suggestions for truly evaluating texts   Gordon, Glen E.
Suggestions for improvement in evaluating and publishing the analysis of textbooks in this Journal.
Gordon, Glen E. J. Chem. Educ. 1993, 70, 346.
Thermodynamics
Bleaching with Chlorine: Another Tomato Juice Demonstration   Nemetz, Thomas M.; Ball, David W.
Bubbling chlorine gas through tomato juice produces dramatic color changes. This paper provides safe instructions for the demonstration.
Nemetz, Thomas M.; Ball, David W. J. Chem. Educ. 1993, 70, 154.
Periodicity / Periodic Table |
Reactions
Heat and Work are Not "Forms of Energy"   Peckham, Gavin D.; McNaught, Ian J.
Heat and work are processes by which the internal energy of a system is changed. The title reflects a common misconception used by students and instructors.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 103.
Thermodynamics |
Enrichment / Review Materials
Nutrition: A Popular General Education Chemistry Course  Mathews, Frances
A course description for a popular nutrition course that includes elementary chemistry, biochemistry, and physiology. A course outline is included.
Mathews, Frances J. Chem. Educ. 1993, 70, 47.
Nutrition |
Bioenergetics |
Nonmajor Courses
Is This Reaction a Substitution, Oxidation-Reduction, or Transfer?  Imyanitov, Naum S.
Author argues that separation of chemical reaction types based on convention do not always follow objective and consistent rules. This leads to confusion among students and artificial borders within the various sub-disciplines in chemistry.
Imyanitov, Naum S. J. Chem. Educ. 1993, 70, 14.
Reactions |
Oxidation / Reduction
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume 4 (Shakhashiri, Bassam Z.)  Kauffman, George B.
78 procedures grouped into two chapters, one on clock reactions, the other on electrochemistry, batteries, electrolytic cells, and plating.
Kauffman, George B. J. Chem. Educ. 1992, 69, A187.
Reactions |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The synthesis of urea: An undergraduate laboratory experiment   Tanski, Stephanie; Petro, Janeen; Ball, David W.
This paper presents a laboratory experiment for the production of urea from silver cyanate and ammonium chloride.
Tanski, Stephanie; Petro, Janeen; Ball, David W. J. Chem. Educ. 1992, 69, A128.
Synthesis |
Reactions
A simple and colorful demonstration of light-catalyzed bromination of an alkane  Stevens, Malcolm P.
Light-catalyzed bromination of an alkane.
Stevens, Malcolm P. J. Chem. Educ. 1992, 69, 1028.
Catalysis |
Alkanes / Cycloalkanes |
Photochemistry |
Reactions
A spontaneous exothermic reaction between two solids: A safe demonstration  Scott, Earle S.
Reaction between equal masses of hydroxylamine hydrochloride and sodium nitrite.
Scott, Earle S. J. Chem. Educ. 1992, 69, 1028.
Solids |
Calorimetry / Thermochemistry |
Reactions
Gas reactions in plastic bags: Relating laboratory observations to the atomic-molecular model  Robinson, Maurice; Barrow, Gordon M.
Carrying out chemical reactions in Ziplock bags to investigate a variety of chemical concepts.
Robinson, Maurice; Barrow, Gordon M. J. Chem. Educ. 1992, 69, 1026.
Kinetic-Molecular Theory |
Gases |
Reactions |
Acids / Bases |
Oxidation / Reduction |
Photochemistry |
Atmospheric Chemistry |
Physical Properties
Molecular dynamics of the F + H2 chemical reaction  Kutz, H. Douglas; Copeland, Jonathan H.; Mathai, George T.
Software that presents the F + H2 reaction in terms of the potential energy surface and associated reaction dynamics.
Kutz, H. Douglas; Copeland, Jonathan H.; Mathai, George T. J. Chem. Educ. 1992, 69, 1011.
Molecular Mechanics / Dynamics |
Reactions
Reaction dynamics  Lacks, Daniel
Software that simulates collisions of an atom with a diatomic molecule, allowing students to set the initial conditions and the type of atom or molecule involved.
Lacks, Daniel J. Chem. Educ. 1992, 69, 1010.
Reactions |
Rate Law
Intensive and extensive: Underused concepts  Canagaratna, Sebastian G.
Methods for teaching intensive and extensive properties.
Canagaratna, Sebastian G. J. Chem. Educ. 1992, 69, 957.
Physical Properties |
Thermodynamics
Determining the thermal expansion coefficient of gases  Lehmann, Jochen K.
The authors improved the design of the apparatus and extended the experimental task on a recently published experiment for determining the zero point of the absolute temperature scale.
Lehmann, Jochen K. J. Chem. Educ. 1992, 69, 943.
Thermodynamics |
Gases |
Laboratory Equipment / Apparatus
Replacement reactions using a dissecting microscope  Lam-Erwin, Chuk-Yin; Sprague, Joseph
Performing drop-size experiments under dissecting microscopes, including examining the reactivity of metals and double replacement reactions.
Lam-Erwin, Chuk-Yin; Sprague, Joseph J. Chem. Educ. 1992, 69, 855.
Qualitative Analysis |
Metals |
Microscale Lab |
Reactions |
Precipitation / Solubility |
Acids / Bases
Free-radical polymerization of acrylamide  Silversmith, Ernest F.
A rapid and foolproof thermal polymerization.
Silversmith, Ernest F. J. Chem. Educ. 1992, 69, 763.
Free Radicals |
Polymerization |
Reactions
Storing solar energy in calcium chloride  Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F.
Using common chemistry concepts to determine the feasibility of storing solar energy in calcium chloride hexahydrate.
Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 753.
Calorimetry / Thermochemistry |
Stoichiometry |
Chemometrics
Imprecise numbers and incautious safety procedure mar experiment.  Nelson, Robert N.
Problems with significant figures and safety concerns regarding two published experiments.
Nelson, Robert N. J. Chem. Educ. 1992, 69, 688.
Reactions |
Nomenclature / Units / Symbols
Putting some snap into work.  Mitschele, Jonathan.
Suggestions for improving the instructional value of the demonstration presented.
Mitschele, Jonathan. J. Chem. Educ. 1992, 69, 687.
Thermodynamics
The thermodynamics of home-made ice cream.  Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen.
Using the production of ice cream to teach heat capacity, viscosity, and freezing-point reduction.
Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen. J. Chem. Educ. 1992, 69, 658.
Thermodynamics |
Water / Water Chemistry |
Applications of Chemistry
Applications of Maxwell-Boltzmann distribution diagrams.  Peckham, Gavin D.; McNaught, Ian J.
Although Maxwell-Boltzmann distribution diagrams are intuitively appealing, care must be taken to avoid several common errors and misconceptions.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1992, 69, 554.
Thermodynamics |
Rate Law |
Catalysis
The extent of acid-base reactions (the author replies).  Thompson, Ralph J.
A poor example for calculating the extent of reaction between hydronium ion and aniline was chosen.
Thompson, Ralph J. J. Chem. Educ. 1992, 69, 516.
Acids / Bases |
Reactions
The extent of acid-base reactions.  Tapparo, Andrea.
Several misleading statements can be found in the original article.
Tapparo, Andrea. J. Chem. Educ. 1992, 69, 515.
Acids / Bases |
Reactions
Helping students to improve their approach to predicting the products of chemical reactions  Ragsdale, Ronald O.; Zipp, Arden P.
One task that seems to baffle many of today's beginning chemistry students is predicting the products of chemical reactions and writing net ionic equations to represent them.
Ragsdale, Ronald O.; Zipp, Arden P. J. Chem. Educ. 1992, 69, 390.
Reactions
Refrigerated dropping funnel and reflux condenser  Cagle, M. D.; Denton, T.; Eisenbraun, E. J.
This one-piece apparatus has proved useful in controlling the temperature of a reagent during addition to a refluxing reaction mixture.
Cagle, M. D.; Denton, T.; Eisenbraun, E. J. J. Chem. Educ. 1992, 69, 331.
Laboratory Equipment / Apparatus |
Reactions
The howling gummy bear   Sullivan, Dan M.
This demonstration illustrates the fact that we consume high-energy foods in order to obtain the reduced carbon they contain.
Sullivan, Dan M. J. Chem. Educ. 1992, 69, 326.
Carbohydrates |
Food Science |
Calorimetry / Thermochemistry
Boiling and freezing simultaneously - with a feeble vacuum pump!   Ellison, Mike
The author uses this demonstration of freezing and boiling at reduced pressure to reinforce concepts about energy effects in phase changes.
Ellison, Mike J. Chem. Educ. 1992, 69, 325.
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Thermodynamics
Enzyme activity: The ping-pong ball torture analogy  Helser, Terry L.
The author uses this analogy to help students visualize and understand the effect of reaction conditions on the initial rate of an enzyme-catalyzed reaction.
Helser, Terry L. J. Chem. Educ. 1992, 69, 137.
Enzymes |
Reactions
Microstate  York, Richard
Microstate allows experimentation with a simulated crystal that is viewed as a set of loosely coupled harmonic oscillators.
York, Richard J. Chem. Educ. 1992, 69, 130.
Crystals / Crystallography |
Thermodynamics
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
The bird-scarer (combustion) demo   Battino, Rubin; Arehart, James D.; Foot, Neville W.; Stott, James B.
This is a demonstration version of a device used to scare birds with loud noises occurring at regular intervals.
Battino, Rubin; Arehart, James D.; Foot, Neville W.; Stott, James B. J. Chem. Educ. 1992, 69, 64.
Reactions |
Oxidation / Reduction
Small-scale thermochemistry experiment   Brouwer, Henry
An inexpensive calorimeter that uses approximately 1/10 of the reagents required for the foam coffee cup.
Brouwer, Henry J. Chem. Educ. 1991, 68, A178.
Heat Capacity |
Thermodynamics |
Microscale Lab
Use of liquid oxygen to support combustion   Sullivan, Dan M.
Production, procedure, and safety of demonstrations involving liquid nitrogen in order to demonstrate: Charles' Law, production and properties of liquid oxygen, effects of concentration on reactions and reaction rates, liquefaction and boiling of oxygen kindling temperature, reactions between substances in two different states of matter, and comparison of partial and complete combustion.
Sullivan, Dan M. J. Chem. Educ. 1991, 68, 1036.
Physical Properties |
Gases |
Reactions |
Equilibrium
Spontaneous detonation of a mixture of two odd electron gases   Briggs, Thomas S.
Instructions for safe detonation of ClO2 and NO (the fastest known reaction between two stable molecules at room temperature).
Briggs, Thomas S. J. Chem. Educ. 1991, 68, 938.
Reactions |
Resonance Theory
The reusable heat pack   McAfee, Lyle V.; Jumper, Charles F.
A commercial product that can be used to demonstrate thermodynamic principles.
McAfee, Lyle V.; Jumper, Charles F. J. Chem. Educ. 1991, 68, 780.
Thermodynamics
Advice from Allied Health faculty to chemistry faculty  Dever, David F.
Finding out what the different health professions would like to see from undergraduate chemistry programs.
Dever, David F. J. Chem. Educ. 1991, 68, 763.
Medicinal Chemistry |
Nuclear / Radiochemistry |
Nutrition |
Vitamins |
Gases
Recovery of silver from and some uses for waste silver chloride  Murphy, J. A.; Ackerman, A. H.; Heeren, J. K.
Procedures for conversion to silver nitrate, using waste AgCl as an oxidizing agent, and electrodepositon experiments.
Murphy, J. A.; Ackerman, A. H.; Heeren, J. K. J. Chem. Educ. 1991, 68, 602.
Reactions |
Oxidation / Reduction |
Electrochemistry
A call for simplification   Schomaker, Verner; Waser, Jurg
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Schomaker, Verner; Waser, Jurg J. Chem. Educ. 1991, 68, 443.
Thermodynamics
A call for simplification   Peterson, Donald
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Peterson, Donald J. Chem. Educ. 1991, 68, 443.
Thermodynamics |
Reactions
Measuring the heat of sublimation of dry ice with a polystyrene foam cup calorimeter  Burgstahler, Albert W.; Bricker, Clark E.
Two versions of an insulated cup calorimetry experiment.
Burgstahler, Albert W.; Bricker, Clark E. J. Chem. Educ. 1991, 68, 332.
Calorimetry / Thermochemistry
The temperature and pressure dependence of the equilibrium properties of a system: Introducing thermodynamics in the classroom  Solomon, Theodros
Introducing thermodynamics in the classroom in a manner that allows students to gain hints at the methods or approaches to be adopted.
Solomon, Theodros J. Chem. Educ. 1991, 68, 294.
Thermodynamics
Ammonia bottle  Sheets, Michael
A suggested variation to this impressive demonstration.
Sheets, Michael J. Chem. Educ. 1991, 68, 247.
Reactions
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
In praise of copper  Tykodi, R. J.
The reactions of copper make impressive lecture demonstrations and worthwhile laboratory activities.
Tykodi, R. J. J. Chem. Educ. 1991, 68, 106.
Reactions |
Oxidation / Reduction
Reactivity of nickel  Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri
A series of experiments which lead to observations about the reactivity of nickel. [Debut]
Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri J. Chem. Educ. 1991, 68, 48.
Reactions |
Quantitative Analysis |
Coordination Compounds |
Oxidation State |
Electrochemistry
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics
Picture biochemistry: A puzzle  Helser, Terry L.
A rebus puzzle of three biochemical equations.
Helser, Terry L. J. Chem. Educ. 1990, 67, 1062.
Reactions
Reaction of bromine with hydrocarbons on the overhead, real or simulated  Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt
A simulation that looks like the addition of bromine to hydrocarbons but is not (the bromine is simulated using a mixture of food colorings).
Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt J. Chem. Educ. 1990, 67, 961.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Addition Reactions
Bomb calorimeter simulation  Olney, David J.
Simulation of the apparatus and use of a bomb calorimeter; contains nine known samples and eight unknowns.
Olney, David J. J. Chem. Educ. 1990, 67, 922.
Calorimetry / Thermochemistry
The H2 + Cl2 explosion as a chemical analogue of the photoelectric effect: A true quantum mechanical demonstration  Knox, Kerro
The photochemical hydrogen-chlorine reaction affords a good example of the quantum aspect of light and its interaction with matter.
Knox, Kerro J. Chem. Educ. 1990, 67, 897.
Reactions |
Quantum Chemistry |
Photochemistry
A Governor's School course emphasizing chemical reactions  Deavor, James P.
Format, lecture content, and laboratory program for a course that emphasizes chemical reactions and the relevancy of chemistry to our lives.
Deavor, James P. J. Chem. Educ. 1990, 67, 669.
Reactions
A catalog of reactions for general chemistry  Tykodi, R. J.
A catalog of chemical reactions intended to help students understand what kinds of chemical reactions commonly occur and why.
Tykodi, R. J. J. Chem. Educ. 1990, 67, 665.
Reactions |
Descriptive Chemistry
Avoid misleading the students  Rich, Ronald L.
Chemists have a long-standing habit, misleading at least to students, of saying that strong bases produce acids in various reactions.
Rich, Ronald L. J. Chem. Educ. 1990, 67, 629.
Acids / Bases |
Reactions
A bromate clock reaction: The formation of purple tris(diphosphato)manganate(III)  Rich, Ronald L.; Noyes, Richard M.
Bromate is used to oxidize nearly colorless Mn(II) to a deep purple complex of Mn(III).
Rich, Ronald L.; Noyes, Richard M. J. Chem. Educ. 1990, 67, 606.
Reactions |
Oxidation / Reduction |
Kinetics
The cadmium-sodium nitrate reaction  Hill, William D., Jr.
A reaction involving lead and sodium nitrate prompted the idea to try reacting cadmium and sodium nitrate with the anticipation of producing cadmium oxide.
Hill, William D., Jr. J. Chem. Educ. 1990, 67, 529.
Quantitative Analysis |
Reactions
Experiments with "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.

Paris, Michel R.; Aymes, Daniel J. J. Chem. Educ. 1990, 67, 510.
Laboratory Equipment / Apparatus |
Thermodynamics |
Calorimetry / Thermochemistry
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
Heat of solution and colligative properties: An illustration of enthalpy and entropy   Mundell, Donald W.
This demonstration provides a means for challenging the students to interpret some examples where both enthalpy and entropy are possible.
Mundell, Donald W. J. Chem. Educ. 1990, 67, 426.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
A small scale equilibrium experiment   Flash, Patrick
An alternative method for the experiment in which the equilibrium constant for the iron-thiocyanate complex is determined.
Flash, Patrick J. Chem. Educ. 1990, 67, 341.
Equilibrium |
Reactions
The pitfalls of precipitation reactions   Slade, Peter W.; Rayner-Canham, Geoffrey W.
This is an overview of specific equilibria problems in precipitation reactions.
Slade, Peter W.; Rayner-Canham, Geoffrey W. J. Chem. Educ. 1990, 67, 316.
Precipitation / Solubility |
Reactions
An alternate use of dilithium crystals   Lang, Frank T.
A Star Trek example of a mass-to-energy conversion important in nuclear reactions.
Lang, Frank T. J. Chem. Educ. 1990, 67, 277.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
The hydrolysis of salts derived from a weak monoprotic acid and a weak monoprotic base  Cardinali, Mario Emilio; Giomini, Claudio; Marrosu, Giancarlo
The limitations as well as the conditions under which this simplified approach to the hydrolysis of salts from a weak acid and a weak base can yield almost exact results are discussed.
Cardinali, Mario Emilio; Giomini, Claudio; Marrosu, Giancarlo J. Chem. Educ. 1990, 67, 221.
Acids / Bases |
Reactions
The extent of acid-base reactions  Thompson, Ralph J.
How to calculate the equilibrium constant of an acid-base reaction.
Thompson, Ralph J. J. Chem. Educ. 1990, 67, 220.
Acids / Bases |
Reactions |
Equilibrium
Calculating entropy changes at different extents of reaction  Brosnan, Tim
The Revised Nuffield Chemistry course uses a simple statistical approach to entropy a a unifying idea in its treatment of thermodynamics. It was for these students that the author developed this method of calculating entropy changes at different extents of reaction which are listed here.
Brosnan, Tim J. Chem. Educ. 1990, 67, 48.
Thermodynamics
The toppling box: A macroscopic analogy to single-step exothermic reactions  Eberlein, Thomas H.
Students who are unfamiliar with energy diagrams may find it difficult to visualize the energy changes associated with the processes occurring during a reaction.
Eberlein, Thomas H. J. Chem. Educ. 1990, 67, 26.
Calorimetry / Thermochemistry
Chemical Reactions, Reactions in Aqueous Solution, and Oxidation Reduction Reactions, Review II (Weyh, J. A.; Crook, J. R.; Hauge, L. N.)  Coleman, William F.
Programs intended to provide students with drill and practice in equation writing (including formula writing), equation balancing, and reaction predicting.
Coleman, William F. J. Chem. Educ. 1989, 66, A172.
Reactions |
Aqueous Solution Chemistry |
Oxidation / Reduction |
Enrichment / Review Materials
Chemical Reactions, Reactions in Aqueous Solution, and Oxidation Reduction Reactions, Review I (Weyh, J. A.; Crook, J. R.; Hauge, L. N.)  Balahura, Robert J.
Programs intended to provide students with drill and practice in equation writing (including formula writing), equation balancing, and reaction predicting.
Balahura, Robert J. J. Chem. Educ. 1989, 66, A172.
Reactions |
Aqueous Solution Chemistry |
Oxidation / Reduction |
Enrichment / Review Materials
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
How good is your bleach?  McCullough, Thomas, C. S. C.; Tyminski, Herminia
The exothermic reaction between acetone and household bleach is used to compare the strengths of various brands of bleach.
McCullough, Thomas, C. S. C.; Tyminski, Herminia J. Chem. Educ. 1989, 66, 973.
Consumer Chemistry |
Quantitative Analysis |
Calorimetry / Thermochemistry
The iodine clock reaction: A surprising variant  Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L.
Substituting malonic acid for sulfuric acid.
Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L. J. Chem. Educ. 1989, 66, 852.
Reactions |
Kinetics |
Mechanisms of Reactions
The bismuth-sodium nitrate reaction  Hill, William D., Jr.
Reaction for preparing bismuth(III) oxide and determining its percentage yield.
Hill, William D., Jr. J. Chem. Educ. 1989, 66, 709.
Reactions |
Synthesis
A clinical digital thermometer for calorimetry  Hon, Ping-Kay
Modifying an inexpensive clinical thermometer for making thermochemical measurements.
Hon, Ping-Kay J. Chem. Educ. 1989, 66, 695.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Early exposure to chemical reactions in general chemistry  Richardson, W. S.; Teggins, J. E.
An experiment that introduces general chemistry students to a variety of chemical reactions at the beginning of the course.
Richardson, W. S.; Teggins, J. E. J. Chem. Educ. 1989, 66, 644.
Reactions |
Qualitative Analysis
On a Reaction Involving Oxygen and Metal Sulfides  Hill, William D., Jr.
The role of iron(III) oxide as a catalyst in the production of oxygen by the thermal decomposition of potassium chlorate promoted the idea to use this oxide to repeat the reactions involving oxygen and the metal sulfides described in an earlier article.
Hill, William D., Jr. J. Chem. Educ. 1989, 66, 448.
Catalysis |
Reactions
The formaldehyde-sulfite clock reaction revisited  Warneck, Peter
The purpose of this present note is to discuss the mechanism and the change of pH during the reaction.
Warneck, Peter J. Chem. Educ. 1989, 66, 334.
Mechanisms of Reactions |
pH |
Rate Law
Chemical generation and visualization of hydrodynamic instability: An extremely simple demonstration of self-organization  Bowers, Peter G.; Soltzberg, Leonard J.
The chemical convection system described here is the pattern formation seen when an acidic vapor comes into contact with the surface of an aqueous solution containing indicator.
Bowers, Peter G.; Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 210.
Thermodynamics |
Aqueous Solution Chemistry |
Acids / Bases
A simple explanation of the salt water oscillator  Noyes, Richard M.
Yoshikawa et al. have described a simple device that undergoes repeated oscillations and that can also illustrate some of the principles essential to the oscillators driven by chemical reactions.
Noyes, Richard M. J. Chem. Educ. 1989, 66, 207.
Laboratory Equipment / Apparatus |
Thermodynamics |
Equilibrium
Amusement with a salt-water oscillator  Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi
Rhythmic oscillations of water flow are generated when a vertically oriented hypodermic syringe, with the plunger removed, is filled with salt water and partially submerged in a beaker of pure water.
Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi J. Chem. Educ. 1989, 66, 205.
Thermodynamics |
Equilibrium |
Laboratory Equipment / Apparatus
Some models of chemical oscillators   Noyes, Richard M.
This review concentrates on models of chemical oscillations, which constitute the self-organization of a system in time without any accompanying organization in space.
Noyes, Richard M. J. Chem. Educ. 1989, 66, 190.
Thermodynamics
Self-organization in chemistry: The larger context   Soltzberg, Leonard J.
The following three papers in this symposium will serve the reader as a good introduction to self-organization in chemical systems.
Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 187.
Thermodynamics
In pursuit of chemical literacy: A place for chemical reactions  Bond, Douglas
The author has described one method of implementing a course for nonscience majors in which an early and repeated exposure to chemical reactions in tandem with a set of scientific values is the key to approaching scientific literacy.
Bond, Douglas J. Chem. Educ. 1989, 66, 157.
Nonmajor Courses |
Reactions
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Two multipurpose thermochemical experiments for general chemistry  Wentworth, R. A. D.
Two multipurpose thermochemical experiments are described in this paper.
Wentworth, R. A. D. J. Chem. Educ. 1988, 65, 1022.
Thermodynamics
Oscillating reactions   Kolb, Doris.
A demonstration done on the overhead that oscillates.
Kolb, Doris. J. Chem. Educ. 1988, 65, 1004.
Reactions |
Equilibrium |
Kinetics
Determination of the effect of various modes of cooking on the vitamin C content of a common food, green pepper: An introductory biochemistry experiment  Johnson, Eric R.
A great laboratory experiment that examines the effects of baking, boiling, steaming, and microwaving a green pepper on the pepper's nutritional level.
Johnson, Eric R. J. Chem. Educ. 1988, 65, 926.
Nutrition |
Titration / Volumetric Analysis |
Vitamins |
Food Science |
Applications of Chemistry
The Australian Academy of Science School Chemistry Project: A new-generation secondary school chemistry course  Bucat, R. B.; Cole, A. R. H.
The purpose of this paper is to summarize the philosophies behind the courses described in this paper and the consequent design decisions regarding the selection and sequence of the chemistry content.
Bucat, R. B.; Cole, A. R. H. J. Chem. Educ. 1988, 65, 777.
Atmospheric Chemistry |
Metabolism |
Thermodynamics
The study of a simple redox reaction as an experimental approach to chemical kinetics  Elias, Horst; Zipp, Arden P.
The authors present a kinetics experiment based on the oxidation of iodide ions that, like the iodine clock, is quick and easy to perform but has the advantage of being followed directly rather than indirectly.
Elias, Horst; Zipp, Arden P. J. Chem. Educ. 1988, 65, 737.
Kinetics |
Reactions |
Rate Law
Heating values of fuels: An introductory experiment  Rettich, Timothy R.; Battino, Rubin; Karl, David J.
This experiment is a simple, inexpensive way for students to determine the heats of combustion of common solid, liquid, and gaseous fuels.
Rettich, Timothy R.; Battino, Rubin; Karl, David J. J. Chem. Educ. 1988, 65, 554.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
The endothermic dissolution of ammonium nitrate   Kauffman, George B.; Ferguson, Craig A.
A brief procedure for demonstrating the endothermic dissolution of ammonium nitrate.
Kauffman, George B.; Ferguson, Craig A. J. Chem. Educ. 1988, 65, 267.
Thermodynamics
Thermodynamics should be built on energy-not on heat and work  Barrow, Gordon M.
This author looks closely at the concepts of heat, work, energy, and the laws of thermodynamics to back up his title argument.
Barrow, Gordon M. J. Chem. Educ. 1988, 65, 122.
Thermodynamics
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Demonstration of chemical inhibition  Cooke, David O.
This demonstration convincingly shows shows the effect of an inhibitor on a chemical system.
Cooke, David O. J. Chem. Educ. 1988, 65, 68.
Catalysis |
Reactions
Computer-Assisted Blackboard (Soltzberg, L. J.)  Kruger, J. D.
8-disk set of programs (Apple II) designed to help a lecturer illustrate gas laws, the Rutherford atomic model, quantization in a Bohr atom, wave-functions and orbitals, heat and changes in state, kinetics and simple reaction mechanisms, equilibrium, acid-base reactions, and titrations.
Kruger, J. D. J. Chem. Educ. 1987, 64, A135.
Acids / Bases |
Gases |
Atomic Properties / Structure |
Phases / Phase Transitions / Diagrams |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Titration / Volumetric Analysis
Correct equilibrium constants for water (the authors reply)  Starkey, Ronald; Norman, Jack; Hinitze, Mark
Water and hydronium ion Ka values are special cases.
Starkey, Ronald; Norman, Jack; Hinitze, Mark J. Chem. Educ. 1987, 64, 1068.
Equilibrium |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Acids / Bases |
Thermodynamics
Heat of vaporization of nitrogen  Hamlet, Peter
A very simple procedure for measuring the heat of vaporization of nitrogen.
Hamlet, Peter J. Chem. Educ. 1987, 64, 1060.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Calorimetry / Thermochemistry
A new road to reactions. Part 5. The elements and their atoms  de Vos, Wobbe; Verdonk, Adri H.
It is worthwhile considering introductory students' concepts of chemical reactions and the significance of these concepts for a strategy for teaching the conservation of elements.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1987, 64, 1010.
Reactions |
Learning Theories
Converting sunlight to mechanical energy: A polymer example of entropy  Mathias, Lon J.
Demonstrating entropy using an elastomer and a virtual foolproof "light engine".
Mathias, Lon J. J. Chem. Educ. 1987, 64, 889.
Thermodynamics
Preparation of lead compounds: An exercise in applied chemistry  Laing, Michael; Williams-Wynn, David; Suhramoney, Saroj
Uses and synthesis of Pb(NO3)2, PbO2, PbCrO4, PbS, PbO, lead carbonate, lead acetate, and lead metal itself.
Laing, Michael; Williams-Wynn, David; Suhramoney, Saroj J. Chem. Educ. 1987, 64, 811.
Synthesis |
Metals |
Oxidation / Reduction |
Oxidation State |
Reactions |
Descriptive Chemistry
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Thermodynamics
A spectacular demonstration: 2H2 + O2 -> 2H2O  Skinner, James F.
Detonating hydrogen in a copper combustion chamber.
Skinner, James F. J. Chem. Educ. 1987, 64, 545.
Reactions |
Free Radicals
Another auto analogy: Rate-determining steps  Ball, David W.
An analogy to describe the physical meaning of a rate-determining step.
Ball, David W. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Mechanisms of Reactions
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
A simple, safe, and inexpensive laboratory exercise in the guided inquiry format  de Moura, John M.; Marcello, Joseph A.
Introductory laboratory exercise that illustrates stoichiometry, limiting reagents, and proportionality by reacting calcium chloride and sodium hydroxide.
de Moura, John M.; Marcello, Joseph A. J. Chem. Educ. 1987, 64, 452.
Stoichiometry |
Gravimetric Analysis |
Reactions
The cola clock: A new flavor to an old classic  Russell, Richard A.; Switzer, Robert W.
The classic iodine clock reaction with Vitex replacing starch as the indicator.
Russell, Richard A.; Switzer, Robert W. J. Chem. Educ. 1987, 64, 445.
Kinetics |
Reactions
Thermodynamics of the rhodamine B lactone zwitterion equilibrium: An undergraduate laboratory experiment  Hinckley, Daniel A.; Seybold, Paul G.
An experiment to derive thermodynamic values from a thermochromic equilibrium that uses a commercially available dye, attains equilibrium rapidly, and employs a simple, single-beam spectrophotometer.
Hinckley, Daniel A.; Seybold, Paul G. J. Chem. Educ. 1987, 64, 362.
Thermodynamics |
Dyes / Pigments |
Spectroscopy |
Equilibrium
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
Kinetics and mechanism of the iodine azide reaction: A videotaped experiment  Haight, Gilbert P.; Jones, Loretta L.
A clock reaction suitable for videotaping and presenting to a large lecture class of general chemistry for analysis.
Haight, Gilbert P.; Jones, Loretta L. J. Chem. Educ. 1987, 64, 271.
Kinetics |
Mechanisms of Reactions |
Rate Law
The arsenic(III) sulfide clock reaction  Watkins, Kenneth W.
Two colorless solutions, one containing sodium arsenite and acetic acid and the other containing sodium thiosulfate are mixed in a beaker; after about 20 seconds, the mixture turns a brilliant yellow color. This clock reaction is well suited for determining the order of reaction and the activation energy.
Watkins, Kenneth W. J. Chem. Educ. 1987, 64, 255.
Reactions
A new method to balance chemical equations  Garcia, Arcesio
A simple method, applicable to any kind of reaction, that does not require the knowledge of oxidation numbers.
Garcia, Arcesio J. Chem. Educ. 1987, 64, 247.
Stoichiometry |
Oxidation State |
Reactions
Annotating reaction equations  Tykodi, R. J.
Annotating aqueous solution reactions fosters recognition of the fundamental reaction categories; ready recognition of a reaction type is the first step toward understanding the "whys and wherefores" inherent in the reaction.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 243.
Aqueous Solution Chemistry |
Reactions |
Acids / Bases |
Gases |
Precipitation / Solubility |
Oxidation / Reduction
A nuts and bolts approach to explain limiting reagents  Blankenship, Craig
Using nuts and bolts to simulate the stoichiometry of a chemical reaction and the concept of limiting and excess reactants.
Blankenship, Craig J. Chem. Educ. 1987, 64, 134.
Stoichiometry |
Reactions
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Stretched elastomers: A case of decreasing length upon heating  Clough, S. B.
Demonstrating and explaining the decrease in length of a heated rubber band.
Clough, S. B. J. Chem. Educ. 1987, 64, 42.
Thermodynamics |
Molecular Properties / Structure
The energy relationships of corn production and alcohol fermentation  Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J.
The production of alcohol from corn lends itself well to illustrating the practical applications of scientific principles that deal with energy transformations and inefficiencies.
Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J. J. Chem. Educ. 1987, 64, 11.
Natural Products |
Applications of Chemistry |
Plant Chemistry |
Green Chemistry |
Alcohols |
Calorimetry / Thermochemistry |
Photosynthesis
Fire walking, temperature, and heat   DeLorenzo, Ronald
Student interest piques when chemistry concepts are applied to this popular "trick".
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 976.
Thermodynamics
A new road to reactions: Part III. Teaching the heat effect of reactions  de Vos, Wobbe; Verdonk, Adri H.
This series of work summarizes the authors' work on the concept of chemical reactions as a teaching and learning problem.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1986, 63, 972.
Thermodynamics |
Reactions |
Solutions / Solvents |
Acids / Bases
The coming renaissance of descriptive chemistry  Zuckerman, J. J.
Inorganic chemistry is facing an identity crises.
Zuckerman, J. J. J. Chem. Educ. 1986, 63, 829.
Descriptive Chemistry |
Spectroscopy |
Synthesis |
Reactions |
Physical Properties |
Solutions / Solvents
A useful balloon demonstration: Pressure difference behavior  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
The authors contribute an interesting variant on the 'crushed can' experiment. [typo: first author's middle initial should be E.]
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1986, 63, 629.
Gases |
Thermodynamics
A multipurpose, dramatic combustion effect  Fenster, Ariel E.; Harpp, David N.; Dore, Marcel; Schwarcz, Joseph A.
A powerful demonstration on combustion that has been used in and out of the classroom is described in this note.
Fenster, Ariel E.; Harpp, David N.; Dore, Marcel; Schwarcz, Joseph A. J. Chem. Educ. 1986, 63, 349.
Reactions
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Dangerous demos  Nagel, Miriam C.
The author questions the pedagogical value of demonstrations that pose great danger, such as reacting sodium and water.
Nagel, Miriam C. J. Chem. Educ. 1986, 63, 81.
Reactions
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume I (Shakhashiri, Bassam Z.)  Kauffman, George B.
81 tested demonstrations grouped into 4 chapters: thermochemistry, chemiluminescence, polymers, and color and equilibria of metal ion precipitates and complexes.
Kauffman, George B. J. Chem. Educ. 1985, 62, A31.
Calorimetry / Thermochemistry |
Photochemistry |
Metals
Doing the dishes: An analogy for use in teaching reaction kinetics  Last, Arthur M.
An analogy between doing dishes and a two-step reaction.
Last, Arthur M. J. Chem. Educ. 1985, 62, 1015.
Kinetics |
Reactions
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
A note concerning safety in bomb calorimetry  Wilson, Leland Y.; Tatum, Roger
Safety measures when using bomb calorimeters.
Wilson, Leland Y.; Tatum, Roger J. Chem. Educ. 1985, 62, 902.
Calorimetry / Thermochemistry
Interstellar chemistry  Carbo, R.; Ginebreda, A.
Surveys some of the features that characterize interstellar chemistry, particularly the composition of the interstellar medium and the nature of the changes that occur there.
Carbo, R.; Ginebreda, A. J. Chem. Educ. 1985, 62, 832.
Astrochemistry |
Gases |
Reactions |
Mechanisms of Reactions
New stoichiometry for copper dissolution in nitric acid  El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A.
NO2 does not appear to be a primary product in the oxidation of copper metal by nitric acid.
El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A. J. Chem. Educ. 1985, 62, 761.
Reactions |
Stoichiometry |
Oxidation / Reduction
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
A new road to reactions. Part 2  de Vos, Wobbe; Verdonk, Adri H.
Helping introductory students understand the nature of chemical reactions.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1985, 62, 648.
Reactions |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Kinetic-Molecular Theory
A pictorial framework to aid conceptualization of reaction stoichiometry  Cameron, David L.
Approach to teaching stoichiometry that promotes students' understanding of a reaction as a coherent process.
Cameron, David L. J. Chem. Educ. 1985, 62, 510.
Stoichiometry |
Reactions
Chain reaction wheel: An approach to free radical reactions  Monroe, Manus; Abrams, Karl
Using a "chain reaction wheel" to help students understand the mechanism of free radical reactions.
Monroe, Manus; Abrams, Karl J. Chem. Educ. 1985, 62, 467.
Free Radicals |
Reactions |
Mechanisms of Reactions
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Organic chemistry for health-science students   Schumm, Margot K.
It is important to teach health-science students reaction mechanisms when teaching them organic and biochemistry.
Schumm, Margot K. J. Chem. Educ. 1985, 62, 272.
Medicinal Chemistry |
Nonmajor Courses |
Mechanisms of Reactions
A new road to reactions. Part 1  de Vos, Wobbe; Verdonk, Adri H.
Suggestions on how to carry out discovery learning as a teaching method in chemistry; recommends several specific reactions for use in activities.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1985, 62, 238.
Reactions |
Kinetic-Molecular Theory
Le Châtelier's principle, temperature effects, and entropy  Campbell, J. Arthur
A useful extension of Le Chatelier's Principle to predict concentration, pressure, and temperature effects solely from the equation for the net reaction.
Campbell, J. Arthur J. Chem. Educ. 1985, 62, 231.
Equilibrium |
Thermodynamics
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Thermodynamics
A thermochemistry experiment for freshman chemistry lab  Miller, D. P.
A thermochemistry procedure in which colors change during the experiment.
Miller, D. P. J. Chem. Educ. 1985, 62, 172.
Calorimetry / Thermochemistry
Using a dissecting microscope in teaching introductory chemistry  Winokur, Robert; Monroe, Manus
Using microscopes to observe the physical characteristics and chemical reactions of several substances.
Winokur, Robert; Monroe, Manus J. Chem. Educ. 1985, 62, 157.
Reactions |
Physical Properties
Nutrition and problem solving: Food for thought  Denio, Allen A.; Bennett, Charles R.
Calculating the number of Calories, carbohydrates, protein, and fat per dollar of various foods.
Denio, Allen A.; Bennett, Charles R. J. Chem. Educ. 1984, 61, 1076.
Nutrition |
Carbohydrates |
Proteins / Peptides |
Lipids |
Fatty Acids
Kinetics and mechanism-a games approach  Harsch, Gunther
Using statistical games to simulate and illustrate a variety of chemical kinetics.
Harsch, Gunther J. Chem. Educ. 1984, 61, 1039.
Kinetics |
Mechanisms of Reactions |
Catalysis |
Rate Law
Iodine clock reaction mechanisms  Lambert, Jack L.; Fina, Gary T.
Outlines the mechanism for the simple iodine clock reaction and the "Old Nassau" modification.
Lambert, Jack L.; Fina, Gary T. J. Chem. Educ. 1984, 61, 1037.
Mechanisms of Reactions |
Reactions |
Kinetics |
Oxidation / Reduction
An inexpensive thermistor thermometer for beginning chemistry laboratories  Srivastava, Shyam B.; Meloan, Clifton E.
Design of a thermistor thermometer for heats-of-reaction measurements to 0.1C over short temperature ranges.
Srivastava, Shyam B.; Meloan, Clifton E. J. Chem. Educ. 1984, 61, 1027.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
The deceptive difficulty of descriptive chemistry and the chemistry curriculum  Bent, Henry A.
Considers the unique challenges of teaching and understanding descriptive and provides 12 descriptive, chemical equation puzzles.
Bent, Henry A. J. Chem. Educ. 1984, 61, 985.
Descriptive Chemistry |
Reactions
Thermo in the general chemistry course (the author replies)  Schaffrath, Robert E.
A conceptual approach to thermodynamics is appropriate for general chemistry.
Schaffrath, Robert E. J. Chem. Educ. 1984, 61, 936.
Thermodynamics
Thermo in the general chemistry course  Kimmell, Howard
A conceptual approach to thermodynamics is appropriate for general chemistry.
Kimmell, Howard J. Chem. Educ. 1984, 61, 936.
Thermodynamics
How to get the most from the dichromate volcano demonstration: Aluminothermy  Trogler, William C.
Reducing the green ash produced by the dichromate volcano (Cr2O3) with aluminum in a thermite-like display.
Trogler, William C. J. Chem. Educ. 1984, 61, 908.
Reactions |
Oxidation / Reduction
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
The thermite reaction: A chemical ground breaking  Eastland, George W., Jr.
Technique for initiating the thermite reaction at a safe distance.
Eastland, George W., Jr. J. Chem. Educ. 1984, 61, 723.
Reactions
Photon-initiated hydrogen-chloride reaction: Improvements on a lecture demonstration  Ramette, R. W.
Improvements to the photon-initiated reaction between hydrogen and chlorine gas - the gas mixture is generated by the electrolysis of 8 M HCl.
Ramette, R. W. J. Chem. Educ. 1984, 61, 722.
Photochemistry |
Reactions
Start the term with a bang  Clare, Sheldon I.
The reaction of sodium in water is used to ignite a piece of filter paper.
Clare, Sheldon I. J. Chem. Educ. 1984, 61, 635.
Reactions
Nutrition (diet) and athletics  Lineback, David R.
Nutritional requirements of athletes, energy use for various activities, carbohydrate loading, and myths and fallacies.
Lineback, David R. J. Chem. Educ. 1984, 61, 536.
Nutrition |
Bioenergetics |
Metabolism |
Calorimetry / Thermochemistry |
Carbohydrates
Teaching of chemical reactions and syntheses  Basolo, Fred
We are obliged to teach students some fundamental reactions that all chemists should know.
Basolo, Fred J. Chem. Educ. 1984, 61, 520.
Reactions |
Synthesis
Chemical storage of solar energy using an old color change demonstration  Spears, L. Gene, Jr.; Spears, Larry G.
The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage.
Spears, L. Gene, Jr.; Spears, Larry G. J. Chem. Educ. 1984, 61, 252.
Photochemistry |
Coordination Compounds |
Solutions / Solvents |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Error in the minimum free energy curve  Willis, Grover; Ball, David
Correction to the minimum free energy curve shown in some general chemistry texts.
Willis, Grover; Ball, David J. Chem. Educ. 1984, 61, 173.
Thermodynamics
A demonstration to aid in differentiating the concepts of heat and temperature  Stevens, George H.
An easy, effective, "real world" demonstration on the distinction between heat and temperature. From "Using 'Real World' Examples in the Teaching of Chemistry - A Symposium", 7th BCCE, Stillwater OK, 1982.
Stevens, George H. J. Chem. Educ. 1983, 60, 1035.
Thermodynamics
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
THERMPRO - A thermodynamics program   Joshi, Bhairav D.
44. Bits and pieces, 16. THERMPRO is an interactive screen-oriented computer program written in BASICA for an IBM-PC with a graphics capability. It represents a general method of calculating standard thermodynamic properties of chemical reactions from heat capacity data for reactants and products.
Joshi, Bhairav D. J. Chem. Educ. 1983, 60, 733.
Thermodynamics
Hazardous chemical storage  Williamson, J. R.
Some tips on safe chemical storage: maximum separation of reactive chemicals equals minimum risk; do not store in alphabetical order; don't store water sensitive chemicals in a water sprinkled storage area; don't store solvents in anything but vented cabinets; don't store incompatible chemicals together; don't store oxidizers and fuels together; do store non-reactive chemicals together, and do store chemicals by reactivity class or by compatibility.
Williamson, J. R. J. Chem. Educ. 1983, 60, 668.
Reactions |
Laboratory Management
Indigo  Fernelius, W. Conard; Renfrew, Edgar E.
A brief history of the uses and origins of indigo as well as a look at the molecular structure of this molecule.
Fernelius, W. Conard; Renfrew, Edgar E. J. Chem. Educ. 1983, 60, 633.
Dyes / Pigments |
Heterocycles |
Oxidation / Reduction |
Reactions
Influence of temperature and catalyst on the decomposition of potassium chlorate in a simple DTA apparatus  Wiederholt, Erwin
The authors describe the use of a simple DTA-apparatus in demonstrating the catalytic effects of MnO2 and Al2O3 on the decomposition temperature of KClO3.
Wiederholt, Erwin J. Chem. Educ. 1983, 60, 431.
Kinetics |
Instrumental Methods |
Catalysis |
Reactions |
Rate Law
A safe and simple demonstration of the effect of temperature on reaction rate  Boring, Wayne C.; McMillan, Ernest T.
The demonstration described here utilizes a safe and familiar reaction to illustrate the concept of reaction rate to students.
Boring, Wayne C.; McMillan, Ernest T. J. Chem. Educ. 1983, 60, 414.
Kinetics |
Reactions
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
Treat 'em to Tchaikovsky  Whitman, Mark
The author shares a demonstration that attracts great student attention. Students are highly successful when answering questions about the phenomenon in this demonstration on ensuing exams.
Whitman, Mark J. Chem. Educ. 1983, 60, 229.
Reactions |
Rate Law
Solar energy experiment for beginning chemistry  Davis, Clyde E.
This article introduces an experiment that incorporates chemical applications of solar energy into the curriculum.
Davis, Clyde E. J. Chem. Educ. 1983, 60, 158.
Thermodynamics |
Applications of Chemistry
Spontaneous combustion of familiar substances in chlorine  Briggs, Thomas S.
Reacting chlorine generated from liquid bleach with red phosphorus (from a match book) and iron from steel wool.
Briggs, Thomas S. J. Chem. Educ. 1982, 59, 788.
Reactions |
Oxidation / Reduction
Chemical energy: A learning package  Cohen, Ita; Ben-Zvi, Ruth
Problems associated with the teaching of chemical energy and an instructional package designed to overcome those difficulties.
Cohen, Ita; Ben-Zvi, Ruth J. Chem. Educ. 1982, 59, 656.
Thermodynamics |
Calorimetry / Thermochemistry
Entropy and its relation to work  Richardson, W. S.
The relationship of entropy to the disorder of a system can be explained using a deck of playing cards.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Thermodynamics
A unified approach to the study of chemical reactions in freshman chemistry  Cassen, T.; DuBois, Thomas D.
An approach that aims to provide students with the background that will enable them to make reasonable predictions as to the likely products of a chemical reaction.
Cassen, T.; DuBois, Thomas D. J. Chem. Educ. 1982, 59, 377.
Reactions |
Atomic Properties / Structure |
Oxidation State |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Periodicity / Periodic Table
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Group IA elements: Chemical properties (a); Group IA elements: Chemical properties (b)  Dombrink, Kathleen J.
Film loop that demonstrates reactions between alkali metals and halogens.
Dombrink, Kathleen J. J. Chem. Educ. 1982, 59, 260.
Periodicity / Periodic Table |
Reactions |
Metals
A laboratory learning cycle: Hot stuff  Silberman, Robert G.
A calorimetry lab that allows students to design an experiment to solve a problem.
Silberman, Robert G. J. Chem. Educ. 1982, 59, 229.
Calorimetry / Thermochemistry
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
An improved copper cycle experiment  Umans, Ton; de Vos, Wobbe
This simple lab demonstrates chemical transformations in and the conservation of copper.
Umans, Ton; de Vos, Wobbe J. Chem. Educ. 1982, 59, 52.
Reactions
Weight-loss diets and the law of conservation of energy   Hill, John W.
The law of conservation of mass is has real-life relevance to those who diet to lose weight.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Metabolism |
Thermodynamics
Entropy rules in my class too!  White, Alvan D.
A simple analogy that will help students understand entropy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Thermodynamics
Be a millionaire - Get with the action!  White, Alvan D.
When talking about the distribution of molecular velocities, we can use money as an analogy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Reactions |
Thermodynamics
An illustration of applied calorimetry - Dieting students  Perkins, Robert R.
The author shares a question that catches student interest and exemplifies the theoretical concepts of calorimetry.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 548.
Calorimetry / Thermochemistry |
Thermodynamics |
Applications of Chemistry
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
Notation for order of addition  Niewahner, J. H.
The notation described here will enable a student to include in the chemical equation an implied statement regarding the order of addition.
Niewahner, J. H. J. Chem. Educ. 1981, 58, 461.
Reactions |
Nomenclature / Units / Symbols
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
Temperature effect on reaction rates   Eliason, Robert; McMahon, Terence
A demonstration has been developed which nicely illustrates the temperature effect on reaction rates and the general rule relating temperature increases with rate increases.
Eliason, Robert; McMahon, Terence J. Chem. Educ. 1981, 58, 354.
Kinetics |
Reactions
Entropy as a driving force  Salzsieder, John C.
An inexpensive demonstration that requires virtually no setup time (and always works!) can be used to illustrate the driving force of entropy.
Salzsieder, John C. J. Chem. Educ. 1981, 58, 280.
Thermodynamics
An experimental introduction to stoichiometry   Webb, Michael J.
A procedure for an experiment with the purpose: To show via experiment that the quantities of materials used in chemical reactions are related to balanced chemical equations.
Webb, Michael J. J. Chem. Educ. 1981, 58, 192.
Stoichiometry |
Reactions
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
What is the rate-limiting step of a multistep reaction?  Murdoch, Joseph R.
The purpose of this paper is to point out the circumstances where analogies can be used successfully and to develop a generalization which can be used for all reactions, including those with polymolecular steps.
Murdoch, Joseph R. J. Chem. Educ. 1981, 58, 32.
Kinetics |
Reactions |
Rate Law
A specific heat analogy  McCullough, Brother Thomas, CSC
An analogy for helping students to understand the concepts of specific heat and heat transfer problems.
McCullough, Brother Thomas, CSC J. Chem. Educ. 1980, 57, 896.
Calorimetry / Thermochemistry |
Chemometrics
Sweet heat  O'Connor, Rod
What would be the net enthalpy change for the complete combustion of 5.00 g of glucose at body temperature?
O'Connor, Rod J. Chem. Educ. 1980, 57, 889.
Carbohydrates |
Calorimetry / Thermochemistry |
Chemometrics
C6H22O11 + H2SO4 = CO + ?  Smith, Douglas D.
Explaining the dehydration of sucrose by sulfuric acid.
Smith, Douglas D. J. Chem. Educ. 1980, 57, 805.
Reactions
Synthesis and decomposition of ZnI2  Walker, Noojin
Illustrates direct combination, decomposition, the effect of a catalyst, recrystallization of sublimed I2, and electrolysis.
Walker, Noojin J. Chem. Educ. 1980, 57, 738.
Synthesis |
Reactions |
Catalysis |
Electrochemistry
Stormy weather  Taylor, Thomas E.
Question regarding the formation of rain clouds and the exothermic process of condensation.
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 732.
Thermodynamics |
Atmospheric Chemistry |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
Alternate energy  Taylor, Thomas E.
At what concentration does the uranium impurities found in coal equal its energy content?
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 500.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
The heat of combustion of cereals  Glachino, Gary G.
Determining the heat of combustion of common children's cereals.
Glachino, Gary G. J. Chem. Educ. 1980, 57, 372.
Calorimetry / Thermochemistry |
Food Science
The experimental determination of the heat of vaporization of volatile liquids  Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry
An experiment whereby the heat of vaporization of a volatile liquid can be determined from an Arrhenius plot.
Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry J. Chem. Educ. 1980, 57, 362.
Calorimetry / Thermochemistry |
Liquids |
Phases / Phase Transitions / Diagrams
Photochemical reactions of tris(oxalato)iron (III): A first year chemistry experiment  Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M.
An experiment based on the photoreduction of potassium ferrioxalate.
Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M. J. Chem. Educ. 1980, 57, 314.
Photochemistry |
Kinetics |
Reactions
Artifacts and the Electromotive Series  Mickey, Charles D.
The chemistry of metals and its application to archeology.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 275.
Electrochemistry |
Metals |
Applications of Chemistry |
Metallurgy |
Reactions
An introductory level kinetics investigation  McGarvey, J. E. B.; Knipe, A. C.
A kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid.
McGarvey, J. E. B.; Knipe, A. C. J. Chem. Educ. 1980, 57, 155.
Kinetics |
Rate Law |
Mechanisms of Reactions
Rossini, William Tell and the iodine clock reaction: A lecture demonstration  Brice, L. K.
The iodine clock reaction is timed to coincide with three portions of the William Tell Overture.
Brice, L. K. J. Chem. Educ. 1980, 57, 152.
Reactions |
Kinetics |
Rate Law
Paradigms and paradoxes  Campbell, J. A.
Examines the commonly held tenets "systems tend to a minimum potential energy," "the entropy of a shuffled deck of cards is greater than that of a new deck," and "energy is the ability to do work."
Campbell, J. A. J. Chem. Educ. 1980, 57, 41.
Thermodynamics
Bent thermometer  Smith, Douglas D.
Reducing the breakage of thermometers, using CO2 as an insecticide, and improving the demonstration of the reaction between sodium and water.
Smith, Douglas D. J. Chem. Educ. 1979, 56, 742.
Laboratory Management |
Applications of Chemistry |
Metals |
Reactions
Electronegativity, bond energy, and chemical reactivity  Myers, R. Thomas
The Pauling electronegativity concept can be used to help rationalize several kinds of chemical reactions.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 711.
Atomic Properties / Structure |
Covalent Bonding |
Reactions
The thermite lecture demonstration  Bozzelli, Joseph W.; Barat, Robert B.
Glycerine plus KMnO4 are used to ignite the thermite in a clay flower pot.
Bozzelli, Joseph W.; Barat, Robert B. J. Chem. Educ. 1979, 56, 675.
Reactions |
Oxidation / Reduction
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Solar energy storage: A demonstration experiment  Kimmel, Howard S.; Tomkins, Reginald P. T.
A demonstration of a phase transition that can be used for heat storage.
Kimmel, Howard S.; Tomkins, Reginald P. T. J. Chem. Educ. 1979, 56, 615.
Phases / Phase Transitions / Diagrams |
Calorimetry / Thermochemistry |
Applications of Chemistry
Simulation in the chemistry classroom of decision-making processes for social issues involving chemistry  White, David H.
Simulations of a Senate subcommittee hearing a bill to ban tobacco and an FDA panel to award a research grant in the area of nutrition and food additives.
White, David H. J. Chem. Educ. 1979, 56, 600.
Vitamins |
Nutrition |
Applications of Chemistry |
Consumer Chemistry
Effects of ethanol on nutrition  Shorey, RoseAnn L.
The relationships between alcohol and obesity, malnutrition, vitamin and mineral absorption and utilization, and toxicity.
Shorey, RoseAnn L. J. Chem. Educ. 1979, 56, 532.
Alcohols |
Nutrition |
Vitamins |
Toxicology |
Applications of Chemistry |
Consumer Chemistry
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
Determination of solution enthalpy: An easy and simple method  Karunakaran, K.
A method that does not involve the preparation and analysis of saturated solutions at different temperatures.
Karunakaran, K. J. Chem. Educ. 1979, 56, 389.
Solutions / Solvents |
Calorimetry / Thermochemistry |
Laboratory Management
Comments on the criterion of spontaneity  Senozan, N. M.
Draws attention to the incomplete or misleading presentations sometimes made in connection with the criteria for spontaneous reactions.
Senozan, N. M. J. Chem. Educ. 1979, 56, 381.
Thermodynamics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
A freshman chemistry thermodynamics experiment: The cyclic rule revisited  Dezube, Bruce
A verification of the cyclic rule through measurements of a stretched rubber band.
Dezube, Bruce J. Chem. Educ. 1979, 56, 313.
Thermodynamics
Acid-base half-reactions - A useful formalism for review lessons  Atkinson, G. F.
An effective way to draw analogies between acid-base and redox effects while reviewing both.
Atkinson, G. F. J. Chem. Educ. 1979, 56, 238.
Oxidation / Reduction |
Reactions |
Acids / Bases |
Enrichment / Review Materials
Thermodynamics and solubilities of salts of dipositive ions  Riley, Gary F.; Eberhardt, William H.
Used to illustrate the application of the principle that a decrease in free energy is a criterion for the spontaneity of a chemical reaction.
Riley, Gary F.; Eberhardt, William H. J. Chem. Educ. 1979, 56, 206.
Thermodynamics |
Precipitation / Solubility |
Physical Properties |
Reactions
A few chemical magic tricks based on the clock reaction  Shigematsu, Euchi
Three tricks based on the clock reaction involving KIO3 and NaHSO3.
Shigematsu, Euchi J. Chem. Educ. 1979, 56, 184.
Reactions |
Kinetics
Chemistry concatenated  Beaumont, R. C.
A series of chemical reactions featuring reversible equilibria and nine major color changes.
Beaumont, R. C. J. Chem. Educ. 1979, 56, 37.
Reactions |
Equilibrium
I. How much work can a person do?  Bent, Henry A.
This article relates concepts of work and energy by walking through a calculation of how much work is produced during exercise. [Debut]
Bent, Henry A. J. Chem. Educ. 1978, 55, 456.
Thermodynamics |
Biophysical Chemistry
A Demonstration of burning magnesium and dry ice  Driscoll, Jerry A.
This demonstration is a new, exciting approach to an older demonstration.
Driscoll, Jerry A. J. Chem. Educ. 1978, 55, 450.
Thermodynamics |
Kinetics |
Reactions
Hammond's postulate and the slinky  Macomber, Roger S.
The transition state of a one-step chemical reaction is one of the most fundamental concepts in chemistry. The author shares an in-class analogy that can be used to help students understand this concept better.
Macomber, Roger S. J. Chem. Educ. 1978, 55, 449.
Thermodynamics
Variation of radioactive decay rates  Wolsey, Wayne C.
133. It is stated frequently in introductory chemistry texts that radioactive decay rates are invariant. Students are led to the impression, implicitly, if not explicitly, that changes in chemical form, temperature, pressure, etc. have no effect upon the half-lives of unstable nuclei. This constancy of decay is perhaps true for some particular modes of decay, but by no means is it true for all.
Wolsey, Wayne C. J. Chem. Educ. 1978, 55, 302.
Nuclear / Radiochemistry |
Thermodynamics
The Landolt, "Old Nassau", and variant reactions   Moss, Arthur
Instructions for a modification to the classic "iodine clock" reaction.
Moss, Arthur J. Chem. Educ. 1978, 55, 244.
Kinetics |
Reactions
Collision theory  Myers, Richard S.
The question presented here can be employed in general or physical chemistry courses.
Myers, Richard S. J. Chem. Educ. 1978, 55, 243.
Chemometrics |
Thermodynamics |
Kinetics
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Le Chtelier's principle demonstrated with a rubber band  Smith, Douglas D.
Heating a rubber band causes it to contract and stretching it causes it to become warmer.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 701.
Equilibrium |
Thermodynamics
Discarded energy: The heat of combustion of garbage  Jensen, Trescott E.; Eatough, Delbert J.; Hansen, Lee D.
Calorimetry data for burning different samples of shredded garbage is found to be higher than that for wood.
Jensen, Trescott E.; Eatough, Delbert J.; Hansen, Lee D. J. Chem. Educ. 1977, 54, 700.
Calorimetry / Thermochemistry |
Applications of Chemistry
Pharmacological projects/case studies for teaching molecular structure and reactivity  Webb, John; Rasmussen, Malcolm
Using pharmacological agents to provide projects that develop and illustrate concepts of molecular stereochemistry, functional groups, and types of reactions and reactivity.
Webb, John; Rasmussen, Malcolm J. Chem. Educ. 1977, 54, 677.
Drugs / Pharmaceuticals |
Stereochemistry |
Reactions |
Mechanisms of Reactions
The burning sugar cube  Smith, Douglas D.
A wide range of powdered solids can be used to produce a burning sugar cube.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 552.
Carbohydrates |
Oxidation / Reduction |
Reactions |
Catalysis
Using oxidation state diagrams to teach thermodynamics and inorganic chemistry  Friedel, A.; Murray, R.
Using oxidation state diagrams is suggested as a means of solving some of the problems associated with the teaching of thermodynamics and inorganic group chemistry.
Friedel, A.; Murray, R. J. Chem. Educ. 1977, 54, 485.
Thermodynamics |
Oxidation State
The relationship of lead and sulfur in a chemical reaction  Chapman, V. L.
Investigating the stoichiometric synthesis of lead and sulfur to form lead sulfide.
Chapman, V. L. J. Chem. Educ. 1977, 54, 436.
Reactions |
Stoichiometry
The Preparation of polyurethane foam: A lecture demonstration  Dirreen, Glen E.; Shakhashiri, Bassam Z.
A polyurethane foam is produced by forming a polyurethane polymer concurrently with a gas evolution process.
Dirreen, Glen E.; Shakhashiri, Bassam Z. J. Chem. Educ. 1977, 54, 431.
Reactions |
Polymerization
Free energy surfaces and transition state theory  Cruickshank, F. R.; Hyde, A. J.; Pugh, D.
130/131. Unless free energy diagrams are very precisely labeled and explained they are seriously misleading and often incorporate a major error of principle. [Note: This should be #130 in the series, as shown in the table of contents. But p. 288 shows #131. The error was not caught, so the next one in the series is #132. The present article is both #130 and #131.]
Cruickshank, F. R.; Hyde, A. J.; Pugh, D. J. Chem. Educ. 1977, 54, 288.
Thermodynamics
Hydrogen bonding and heat of solution  Friedman, Norman
An experiment that clearly illustrates the role of hydrogen bond formation and its effect on the heat of solution.
Friedman, Norman J. Chem. Educ. 1977, 54, 248.
Hydrogen Bonding |
Calorimetry / Thermochemistry |
Solutions / Solvents
A simple lab demonstrating energy transformation  Miller, Daniel W.
Building and investigating a sulfuric acid / lead electrolytic cell.
Miller, Daniel W. J. Chem. Educ. 1977, 54, 245.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Thermodynamics
Chemical oscillations as an undergraduate experiment  Deb, B. M.
Hitherto unreported observations regarding the Briggs-Rauscher oscillating system.
Deb, B. M. J. Chem. Educ. 1977, 54, 236.
Reactions |
Kinetics
The Old Nassau reaction  Alyea, Hubert N.
A description of the chemistry and history of the Old Nassau reactions.
Alyea, Hubert N. J. Chem. Educ. 1977, 54, 167.
Kinetics |
Reactions
Lap-dissolve slides. Multiple-use formats for pre-laboratory instruction  Fine, Leonard W.; Harpp, David N.; Krakower, Earl; Snyder, James P.
Describes and provides examples of the lap-dissolve effect, a technique that uses two 35mm slide projectors to convey changing images in a large lecture setting.
Fine, Leonard W.; Harpp, David N.; Krakower, Earl; Snyder, James P. J. Chem. Educ. 1977, 54, 72.
Reactions |
Mechanisms of Reactions
Vitalizing the lecture. Lap-dissolve projection  Harpp, David N.; Snyder, James P.
Describes and provides examples of the lap-dissolve effect, a technique that uses two 35mm slide projectors to convey changing images in a large lecture setting.
Harpp, David N.; Snyder, James P. J. Chem. Educ. 1977, 54, 68.
Molecular Properties / Structure |
Mechanisms of Reactions
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Understanding chemistry by developing body chemistry awareness  Barelski, Paul M.
The activities outlined in this note were conducted during the author's lectures as an attempt to involve students actively and personally in observing and experiencing chemistry.
Barelski, Paul M. J. Chem. Educ. 1976, 53, 450.
Physical Properties |
Reactions
Remembering the sign conventions for q and w in ?E = q - w  Gasparro, Francis P.
The author developed a quasi-historical rationalization to help students remember the mathematical statement of the First Law of Thermodynamics.
Gasparro, Francis P. J. Chem. Educ. 1976, 53, 389.
Thermodynamics
Singlet oxygen in aqueous solution: A lecture demonstration   Shakhashiri, Bassam Z.; Williams, Lloyd G.
Lecture demonstrations involving chemiluminescence are useful for the purpose both of displaying chemical phenomena and of illustrating specific principles.
Shakhashiri, Bassam Z.; Williams, Lloyd G. J. Chem. Educ. 1976, 53, 358.
Photochemistry |
Reactions |
Oxidation / Reduction |
Spectroscopy
A laboratory course for students in science-related fields  Morse, Karen W.
The authors have revised their laboratory experiences so that students see the relevance between chemistry and some potential majors: animal science, soil science, nutrition, food science, and more.
Morse, Karen W. J. Chem. Educ. 1976, 53, 316.
Food Science |
Nutrition |
Nonmajor Courses
The chemistry involved in the preparation of a paint pigment. An experiment for the freshman laboratory  Daines, Terri L.; Morse, Karen W.
This experiment allows for students to see a demonstration of a variety of chemical principles and reactions.
Daines, Terri L.; Morse, Karen W. J. Chem. Educ. 1976, 53, 117.
Reactions |
Dyes / Pigments |
Applications of Chemistry
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
A simple general chemistry kinetics experiment  Gellender, Martin
The oxidation of iodide ion by persulfate provides a gradual and clearly distinguishable appearance of color as the reaction proceeds.
Gellender, Martin J. Chem. Educ. 1975, 52, 806.
Kinetics |
Rate Law |
Reactions |
Oxidation / Reduction
Footnote to the drinking duck exemplum  Plumb, Robert C.; Cross, Judson B.; Keil, Robert G.
Variations on the drinking bird demonstration.
Plumb, Robert C.; Cross, Judson B.; Keil, Robert G. J. Chem. Educ. 1975, 52, 728.
Thermodynamics |
Phases / Phase Transitions / Diagrams
The chemistry of color photography  Guida, Wayne C.; Raber, Douglas J.
Provides a brief introduction to the chemical reaction involved in color photography and the physical principles that permit those reactions to reproduce colored images.
Guida, Wayne C.; Raber, Douglas J. J. Chem. Educ. 1975, 52, 622.
Photochemistry |
Applications of Chemistry |
Consumer Chemistry |
Dyes / Pigments |
Reactions
Near 100% student yields with the "cycle of copper reactions" experiment  Condike, George F.
Improvements to the "cycle of copper reactions" experiment to improve yields.
Condike, George F. J. Chem. Educ. 1975, 52, 615.
Reactions
Conversion of black and white prints to color in daylight. A demonstration lecture for general and organic courses  Wheeler, Thomas N.
A black and white print is converted to a full color print with the lights on; includes a detailed discussion of the chemical processes involved in the demonstration.
Wheeler, Thomas N. J. Chem. Educ. 1975, 52, 607.
Photochemistry |
Reactions |
Consumer Chemistry |
Dyes / Pigments |
Oxidation / Reduction
Questions [and] Answers  Campbell, J. A.
203-205. Three chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 587.
Enrichment / Review Materials |
Thermodynamics |
Calorimetry / Thermochemistry
The reactions of ferroin complexes. A color-to-colorless freshman kinetic experiment  Edwards, John O.; Edwards, Kathleen; Palma, Jorge
A group of related reactions that can be easily followed with a colorimeter which show that the mechanism by which a reaction takes place may not be at all obvious from the stoichiometry.
Edwards, John O.; Edwards, Kathleen; Palma, Jorge J. Chem. Educ. 1975, 52, 408.
Kinetic-Molecular Theory |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Stoichiometry |
Mechanisms of Reactions
An alternative to AgNO3: Interaction of metallic zinc with aqueous lead acetate  Williams, Helen L.
The reaction between zinc and aqueous lead acetate is selected as being the best for replacing the copper-silver nitrate reaction (due to the high cost of silver nitrate).
Williams, Helen L. J. Chem. Educ. 1975, 52, 391.
Laboratory Management |
Reactions |
Aqueous Solution Chemistry
Questions [and] Answers  Campbell, J. A.
188-192. Five biochemistry related questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 390.
Enrichment / Review Materials |
Nuclear / Radiochemistry |
Chromatography |
Gases |
Nutrition
A general chemistry experiment on the identification of reaction products  Preer, James R.
Reaction products are identified by comparison of directly observable properties with those of known substances; the student writes reactants and products and proceeds to balance the equation.
Preer, James R. J. Chem. Educ. 1975, 52, 389.
Reactions |
Quantitative Analysis
An experiment for introductory college chemistry. How to establish a chemistry equation  Masaguer, J. R.; Coto, M. Victoria; Casas, J. S.
The stoichiometry of the reaction between potassium chromate and barium chloride in an aqueous state is determined by using the height of of the precipitate formed when different amounts of both solutions are mixed in a graduated cylinder.
Masaguer, J. R.; Coto, M. Victoria; Casas, J. S. J. Chem. Educ. 1975, 52, 387.
Stoichiometry |
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Heat of combustion of zirconium. A general chemistry experiment  Banks, Richard C.; Carter, Loren; Peterson, Ellis R.
Experiment consists of a flash bulb surrounded by water and fired by a battery.
Banks, Richard C.; Carter, Loren; Peterson, Ellis R. J. Chem. Educ. 1975, 52, 235.
Calorimetry / Thermochemistry
P-Chem crossword puzzle  Snead, Claybourne C.
A physical chemistry crossword puzzle. The answer from p. 174 is reproduced in this PDF.
Snead, Claybourne C. J. Chem. Educ. 1975, 52, 158.
Thermodynamics
Thermodynamics, folk culture, and poetry  Smith, Wayne L.
The principles of the first, second, and third laws of thermodynamics are illustrated in songs and poems.
Smith, Wayne L. J. Chem. Educ. 1975, 52, 97.
Thermodynamics
What is oxidation?  Herron, J. Dudley
Why do most teachers continue to define oxidation and reduction in terms of a gain and loss of electrons rather than in terms of a change in oxidation number? [Debut]
Herron, J. Dudley J. Chem. Educ. 1975, 52, 51.
Oxidation / Reduction |
Oxidation / Reduction |
Atomic Properties / Structure |
Reactions
A vigorous, spontaneous endothermic reaction   Hawkins, Malcolm D.

Hawkins, Malcolm D. J. Chem. Educ. 1974, 51, A178.
Thermodynamics
An endothermic reaction   Burt, Norman E.

Burt, Norman E. J. Chem. Educ. 1974, 51, A178.
Thermodynamics
Properties of air-A freshman chemistry lecture demonstration  Schultz, C. W.
A simple yet dramatic lecture demonstration can help tie together concepts of oxygen chemistry, combustion, gas properties and rates of reactions.
Schultz, C. W. J. Chem. Educ. 1974, 51, 751.
Oxidation / Reduction |
Reactions |
Gases
Goal-oriented teaching of thermodynamics in general chemistry  Canham, G. W. Rayner
Thermodynamics can be more interesting if biological applications are emphasized.
Canham, G. W. Rayner J. Chem. Educ. 1974, 51, 600.
Biophysical Chemistry |
Thermodynamics
The octane cannon experiment updated for television  Richtol, H. H.; Nelson, D. L.; Reeves, R. R.
Video recording the detonation of octane in a clear tube for frame-by-frame analysis of a rapid reaction.
Richtol, H. H.; Nelson, D. L.; Reeves, R. R. J. Chem. Educ. 1973, 50, 856.
Alkanes / Cycloalkanes |
Reactions |
Oxidation / Reduction
Some reactions of tungsten: A lecture demonstration  Nelson, D. L.; Reeves, R. R.; Richtol, H. H.
Several demonstrations involving reactions of tungsten.
Nelson, D. L.; Reeves, R. R.; Richtol, H. H. J. Chem. Educ. 1973, 50, 810.
Metals |
Reactions |
Oxidation / Reduction
The reduction of CuO with burner gas and without a fume hood. A high school chemistry experiment  Zidick, Clem; Weismann, Thomas
This experiment is a modification of the classic reduction of CuO with hydrogen gas, except natural gas is used as the reducing agent, eliminating the danger of working with hydrogen.
Zidick, Clem; Weismann, Thomas J. Chem. Educ. 1973, 50, 717.
Oxidation / Reduction |
Reactions |
Stoichiometry
Computer-enhanced laboratory experience. An example of a totally integrated approach  Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J.
A gas law experiment (Boyle's Law) adapted to make use of computer assisted instruction.
Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J. J. Chem. Educ. 1973, 50, 711.
Gases |
Thermodynamics
A simplified undergraduate calorimetry experiment  Bartle, K. D.; Osborn, P. M.
A glass calorimeter for determining ?H for the neutralization of a strong acid with a strong base.
Bartle, K. D.; Osborn, P. M. J. Chem. Educ. 1973, 50, 637.
Acids / Bases |
Reactions |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A practical energy experiment or lecture demonstration  Garin, David L.
Presents two demonstrations: one involves heating different volumes of water on the same heater and measuring their temperatures; the other involves heating different volumes of water on the same heater and calculating the heat of vaporization.
Garin, David L. J. Chem. Educ. 1973, 50, 497.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
An oscillating iodine clock  Briggs, Thomas S.; Rauscher, Warren C.
An oscillating iodine clock reaction that gives striking cyclic changes from colorless to gold to blue using simple reagents.
Briggs, Thomas S.; Rauscher, Warren C. J. Chem. Educ. 1973, 50, 496.
Reactions |
Kinetics
A computer program for heat of combustion calculations  Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol
A computer program is available for converting raw combustion data to the standard state energy of combustion.
Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol J. Chem. Educ. 1973, 50, 486.
Calorimetry / Thermochemistry |
Chemometrics
Scuba diving and the gas laws  Cooke, E. D.; Baranowski, Conrad
Three illustrations of physical-chemical principles drawn from scuba diving.
Cooke, E. D.; Baranowski, Conrad J. Chem. Educ. 1973, 50, 425.
Gases |
Applications of Chemistry |
Thermodynamics
Footnote to the house heating exemplum  Plumb, Robert C.; Campbell, J. A.
Offers a simple proof regarding an earlier column.
Plumb, Robert C.; Campbell, J. A. J. Chem. Educ. 1973, 50, 365.
Thermodynamics |
Gases
The first law. For scientists, citizens, poets and philosophers  Bent, Henry A.
Practical experiences and phenomena that serve to illustrate the first law of thermodynamics.
Bent, Henry A. J. Chem. Educ. 1973, 50, 323.
Thermodynamics
Syphon and the potential energy diagrams  Sarbolouki, M. N.
An analogy between the operation of a syphon and potential energy diagrams.
Sarbolouki, M. N. J. Chem. Educ. 1973, 50, 245.
Reactions |
Thermodynamics
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
The iron content of breakfast cereals  Laswick, Patty Hall
Determination of the amount of iron in commercial cereal products using an atomic absorption spectrophotometer.
Laswick, Patty Hall J. Chem. Educ. 1973, 50, 132.
Food Science |
Consumer Chemistry |
Nutrition |
Quantitative Analysis |
Atomic Spectroscopy
LeChatelier's principle and a rubber band  DeLorenzo, Ronald
The cited demonstration can also be sued to illustrate LeChatelier's principle .
DeLorenzo, Ronald J. Chem. Educ. 1973, 50, 124.
Equilibrium |
Thermodynamics
A socially relevant problem in unit and dimension conversions  Bernstein, Stanley
An activity in which students determine the cheapest source of nutritional iron by considering a variety of food products.
Bernstein, Stanley J. Chem. Educ. 1973, 50, 65.
Nomenclature / Units / Symbols |
Nutrition |
Food Science |
Consumer Chemistry
Two lecture experiments demonstrating limiting quantities  Dillard, Clyde R.
Uses reactions between HCl and magnesium and HCl and calcium to demonstrate the concept of limiting reactants.
Dillard, Clyde R. J. Chem. Educ. 1972, 49, A694.
Stoichiometry |
Reactions
Effect of temperature on reaction rate  Simon, J.
The reaction of aluminum in HCl.
Simon, J. J. Chem. Educ. 1972, 49, A85.
Rate Law |
Reactions
The reducing property of ammonia  Long, Robert H.
Heating black copper (II) oxide with ammonium carbonate yields metallic copper, red copper (I) oxide, and water.
Long, Robert H. J. Chem. Educ. 1972, 49, A85.
Oxidation / Reduction |
Reactions
The phenomenon of synergism in the field of chemistry  Sunier, Arthur A.
Presents examples of synergism in chemistry and examines its underlying causes.
Sunier, Arthur A. J. Chem. Educ. 1972, 49, 805.
Reactions
Questions [and] Answers  Campbell, J. A.
Seven questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 769.
Enrichment / Review Materials |
Applications of Chemistry |
Thermodynamics |
Gases |
Astrochemistry
A computer program for balancing chemical equations  Brown, John P.; Brown, L. Pearl; Redd, Robert M.
Availability of a Fortran IV program that uses the matrix method for balancing chemical equations.
Brown, John P.; Brown, L. Pearl; Redd, Robert M. J. Chem. Educ. 1972, 49, 754.
Stoichiometry |
Reactions
Pseudo first-order kinetics  Corbett, John F.
A kinetic study of second-order reactions under first-order conditions can yield accurate second-order rate constants provided an empirical allowance is made for the depletion of the reactant in excess.
Corbett, John F. J. Chem. Educ. 1972, 49, 663.
Kinetics |
Reactions |
Rate Law
Definition of standard states  Lukens, David C.
A suggested sequence of definitions for the standard state.
Lukens, David C. J. Chem. Educ. 1972, 49, 654.
Thermodynamics |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Solutions / Solvents
Freezing curves for Salol  Laswick, Patty Hall
The convenient freezing temperature of salol (40-43 C) means that students can easily and safely melt the material using warm water
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 537.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Nonmajor Courses |
Kinetic-Molecular Theory
Passage of fruit flies through a hole. A model for a reversible chemical reaction  Runquist, Elizabeth A.; Runquist, Olaf
The passage of fruit flies through a single orifice provides an excellent model for illustrating the principles of equilibrium and chemical dynamics; the results are found to be temperature dependent and reproducible.
Runquist, Elizabeth A.; Runquist, Olaf J. Chem. Educ. 1972, 49, 534.
Reactions |
Equilibrium |
Kinetics |
Rate Law
When You Heat Your House Does the Thermal Energy Content Increase?  Bilkadi, Zayn; Bridgman, Wilbur B.
Whether or not the total energy content of the air increases or decreases cannot be answered unambiguously.
Bilkadi, Zayn; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 493.
Thermodynamics
Entropy and a rubber band  Laswick, Patty Hall
A temperature change is noted when a rubber band held against the cheek is stretched and then released.
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 469.
Thermodynamics
Convenient, inexpensive unknowns for oxygen bomb calorimetry  Shearer, Edmund C.
Ordinary aspirin tablets make excellent samples for oxygen bomb calorimetry.
Shearer, Edmund C. J. Chem. Educ. 1972, 49, 410.
Calorimetry / Thermochemistry
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 328.
Enrichment / Review Materials |
Applications of Chemistry |
Nuclear / Radiochemistry |
Thermodynamics |
Mass Spectrometry |
Isotopes
The color blind traffic light. An undergraduate kinetics experiment using an oscillating reaction  Lefelhocz, John F.
This kinetics experiment involves the student with a qualitative study of the influence of chemical and physical variables on the rate of a specific reaction.
Lefelhocz, John F. J. Chem. Educ. 1972, 49, 312.
Kinetics |
Reactions |
Rate Law
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 269.
Enrichment / Review Materials |
Agricultural Chemistry |
Metabolism |
Calorimetry / Thermochemistry |
Proteins / Peptides
The chemistry of winemaking. An unique lecture demonstration  Church, L. B.
This paper shows that a very complex series of reactions present in the preparation of wine can be used as the focal point to illustrate many other general classes of chemical reactions and physical processes.
Church, L. B. J. Chem. Educ. 1972, 49, 174.
Alcohols |
Consumer Chemistry |
Reactions
The hydrolysis of 4-nitrophenol phosphate. A freshman class investigation  Hopkins, Harry P., Jr.; Mather, Jane H.
A study of the hydrolysis of 4-nitrophenol phosphate is made the basis of a biochemistry-oriented quarter in freshman chemistry; after completing the simple hydrolysis studies, the student proceeds to investigate the enzymatic hydrolysis of 4-nitrophenol phosphate.
Hopkins, Harry P., Jr.; Mather, Jane H. J. Chem. Educ. 1972, 49, 126.
Reactions |
pH |
Esters |
Enzymes |
Catalysis
Computer program for the treatment of data for a kinetic study of the persulfate-iodide clock reaction  Lyndrup, Mark L.
Notes the availability of a BASIC program designed to aid students in the treatment of data collected for a kinetic study of the clock reaction between the persulfate and iodide ions.
Lyndrup, Mark L. J. Chem. Educ. 1972, 49, 30.
Kinetics |
Reactions |
Rate Law
The effervescence of ocean surf  Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B.
A pure liquid will not foam, but all true solutions will, as dictated by the fundamental concepts of surface thermodynamics enunciated by Gibbs.
Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 29.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Solutions / Solvents |
Thermodynamics
When your car rusts out  Knockemus, Ward
Explains the rusting of a car by considering electrochemical corrosion and the Nernst equation.
Knockemus, Ward J. Chem. Educ. 1972, 49, 29.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Reactions
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents
Tire Inflation Thermodynamics  Plumb, Robert C.; Connors, John J.
Explains why inflating a tire with a hand pump heats the air being pumped into the tire.
Plumb, Robert C.; Connors, John J. J. Chem. Educ. 1971, 48, 837.
Gases |
Thermodynamics |
Applications of Chemistry
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
Illustrating the laws of chemistry without chemicals  Schlegel, James M.; Chin, Anna
The authors share an experiment designed to stress by analogy the observations which led to an understanding of the law of chemical combinations.
Schlegel, James M.; Chin, Anna J. Chem. Educ. 1971, 48, 334.
Reactions
Heat of hydration  Dannhauser, Walter
A commonly published experiment can be expanded so that students may obtain the enthalpy of the reaction between anhydrous salts and water.
Dannhauser, Walter J. Chem. Educ. 1971, 48, 329.
Thermodynamics |
Crystals / Crystallography |
Water / Water Chemistry |
Noncovalent Interactions
A study of the physical and chemical rates of CaCO3 dissolution in HCl  Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben
The authors describe the experimental procedure and a discussion of results for a study of the physical and chemical rates of CaCO3 dissolution in HCl.
Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben J. Chem. Educ. 1971, 48, 327.
Acids / Bases |
Kinetics |
Reactions |
Rate Law
A color indicating time reaction  Chen, Philip S.
Combining solutions of sodium thoisulfate and ferric chloride produces a dramatic color change.
Chen, Philip S. J. Chem. Educ. 1970, 47, A784.
Reactions |
Oxidation / Reduction |
Aqueous Solution Chemistry
Demonstration notes: Spontaneous combustion  Johnson, Joseph E.
Modifications or additions to previously published demonstration.
Johnson, Joseph E. J. Chem. Educ. 1970, 47, A439.
Oxidation / Reduction |
Reactions |
Gases |
Transport Properties |
Coordination Compounds
Miscellaneous  Alyea, Hubert N.
These twelve overhead projection demonstrations include rates of reactions, clock reactions, the effect of temperature and the presence of a catalyst on the decomposition of hydrogen peroxide, the relationship between viscosity and temperature, equilibria, solubility product, and the common ion effect.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A437.
Oxidation / Reduction |
Kinetics |
Rate Law |
Reactions |
Acids / Bases |
Catalysis |
Equilibrium |
Precipitation / Solubility
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
Catalysis demonstrations with Cr2O3  Briggs, Thomas S.
Cr2O3 is used as a catalyst in the oxidation of nonflammable substances such as glycerine and glacial acetic acid.
Briggs, Thomas S. J. Chem. Educ. 1970, 47, A206.
Oxidation / Reduction |
Reactions |
Catalysis
A classroom demonstration of exothermicity  Boschmann, Erwin
The heat generated by dissolving NaOH in water causes iodine crystals to sublime.
Boschmann, Erwin J. Chem. Educ. 1970, 47, A206.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
Hydrolysis of the carbonate ion  Walker, Noojin; Mintz, James
Predicting and testing the product of the reaction between aqueous Cu(NO3)2 and Na2CO3.
Walker, Noojin; Mintz, James J. Chem. Educ. 1970, 47, A119.
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
Hydrolysis of the carbonate ion  Walker, Noojin; Mintz, James
Predicting and testing the product of the reaction between aqueous Cu(NO3)2 and Na2CO3.
Walker, Noojin; Mintz, James J. Chem. Educ. 1970, 47, A119.
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
Autoxidation of benzoin  Chen, Philip S.
Benzoin in its enediol form undergoes autoxidation in alkaline solution in the presence of air.
Chen, Philip S. J. Chem. Educ. 1970, 47, A67.
Oxidation / Reduction |
Reactions
Computer evaluation of rates experiment  Krieger, Albert G.
Notes the availability of a Fortran IV computer program for the numerical evaluation of the "Oxidation of Iodide Ion by Persulfate Ion."
Krieger, Albert G. J. Chem. Educ. 1970, 47, 839.
Reactions |
Kinetic-Molecular Theory |
Oxidation / Reduction
So-called zeroth law of thermodynamics  Redlich, Otto
The "zeroth law of thermodynamics" elucidates the difference between the axiomatic and the epistemological method; it is neither a law nor a statement of fact but a guideline for checking our description of nature.
Redlich, Otto J. Chem. Educ. 1970, 47, 740.
Thermodynamics
Simple method for demonstrating an enzymatic reaction  Tang, Chung-Shih
Uses taste sensations of papaya seeds under varying conditions to demonstrate an enzymatic reaction.
Tang, Chung-Shih J. Chem. Educ. 1970, 47, 692.
Enzymes |
Proteins / Peptides |
Food Science |
Reactions |
Consumer Chemistry |
Applications of Chemistry
Demonstrating the relation between rate constants and the equilibrium constant  Meyer, Edwin F.; Glass, Edward
Presents an approach used with an apparatus to demonstrate quantitatively the relationship between rate constants and the equilibrium constant for simple reversible reactions.
Meyer, Edwin F.; Glass, Edward J. Chem. Educ. 1970, 47, 646.
Rate Law |
Equilibrium |
Reactions
Instant first aid  Kaufman, James A.
Explains how instant ice and hot packs work.
Kaufman, James A. J. Chem. Educ. 1970, 47, 518.
Calorimetry / Thermochemistry |
Reactions |
Applications of Chemistry |
Consumer Chemistry
Culture and the conservation laws  Bent, Henry A.
There are no consumers of mass or energy, only converters.
Bent, Henry A. J. Chem. Educ. 1970, 47, 518.
Thermodynamics
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
An alternative to free energy for undergraduate instruction  Strong, Laurence E.; Halliwell, H. Frank
It is the purpose of this paper to question the usefulness of the Gibbs function for the student and to propose an alternative based on the use of entropy functions that help the student to focus more sharply on the features of a system that relate to its capacity to change.
Strong, Laurence E.; Halliwell, H. Frank J. Chem. Educ. 1970, 47, 347.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
Demonstration of photochemistry and the dimerization and trapping of free radicals  Silversmith, Ernest F.
This demonstration uses simple equipment and involves a rapid, readily noticeable color change and also illustrates dimerization and the trapping of free radicals.
Silversmith, Ernest F. J. Chem. Educ. 1970, 47, 315.
Photochemistry |
Free Radicals |
Reactions
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Cloud Caps on High Mountains  Stevenson, Philip E.
The formation of cloud caps on high mountains illustrates cooling in an adiabatic expansion and the change in vapor pressure of a liquid with temperature.
Stevenson, Philip E. J. Chem. Educ. 1970, 47, 272.
Atmospheric Chemistry |
Gases |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The Methanol Lighter  Bailar, John C., Jr.
The methanol lighter illustrates the roles that thermodynamics, kinetics, and catalysis play in determining if a reaction will take place.
Bailar, John C., Jr. J. Chem. Educ. 1970, 47, 272.
Thermodynamics |
Kinetics |
Catalysis |
Consumer Chemistry |
Applications of Chemistry
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
Definition of reaction rate and the steady state assumption  Rasiel, Yecheskel; Freeman, Wade A.
Clarifies the definition of reaction rate and the steady state assumption.
Rasiel, Yecheskel; Freeman, Wade A. J. Chem. Educ. 1970, 47, 159.
Rate Law |
Reactions
Energy of activation  Idoux, John P.
Spinning a half sphere until it comes to a rest on its flat side serves as an analogy to a system of molecules that must acquire a certain amount of energy until they become products.
Idoux, John P. J. Chem. Educ. 1969, 46, A547.
Reactions
Oxidizing action of sulfur dioxide  Lauren, Paul M.
A burning ribbon of magnesium is dropped into a flask of sulfur dioxide produces elemental sulfur.
Lauren, Paul M. J. Chem. Educ. 1969, 46, A55.
Oxidation / Reduction |
Reactions
A spontaneous endothermic reaction  Hambly, Arthur N.
Barium hydroxide and ammonium thiocyanate react in a flask, causing the water beneath it to freeze.
Hambly, Arthur N. J. Chem. Educ. 1969, 46, A55.
Calorimetry / Thermochemistry |
Reactions
The oxidation of hydrazine by basic iodine solutions: A stoichiometric study  Cooper, J. N.; Ramette, R. W.
This experiment relies on an oxidation-reduction reaction for which a variety of products is energetically possible.
Cooper, J. N.; Ramette, R. W. J. Chem. Educ. 1969, 46, 872.
Stoichiometry |
Oxidation / Reduction |
Reactions
Volkswagen versus the hummingbird  Nebbia, Giorgio
Questions the cited (046-07-0455) thermodynamic calculations.
Nebbia, Giorgio J. Chem. Educ. 1969, 46, 701.
Thermodynamics |
Calorimetry / Thermochemistry |
Chemometrics
An improved equivalent weight apparatus  Brown, Oliver L.
Presents an improved apparatus for the reaction of weighed samples of metals with hydrochloric acid and the measurement of the volume of hydrogen evolved.
Brown, Oliver L. J. Chem. Educ. 1969, 46, 617.
Laboratory Equipment / Apparatus |
Metals |
Laboratory Management |
Reactions |
Gases |
Stoichiometry
Fuel conversion in transport phenomena  Gerlach, E. R.
Calculations comparing the fuel efficiency of a hummingbird with that of a Volkswagen.
Gerlach, E. R. J. Chem. Educ. 1969, 46, 455.
Calorimetry / Thermochemistry |
Chemometrics |
Nomenclature / Units / Symbols
A distribution experiment  Campbell, J. A.; Nelson, Douglas; Rudesill, John
An experiment to determine the distribution coefficient of an acid between an aqueous and nonaqueous phase.
Campbell, J. A.; Nelson, Douglas; Rudesill, John J. Chem. Educ. 1969, 46, 454.
Acids / Bases |
Aqueous Solution Chemistry |
Thermodynamics |
Equilibrium |
Titration / Volumetric Analysis
Indirect calorimetry by computer in the general chemistry course  DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel
Describes the use of a Fortran IV program to stimulate student interest in the applications and potential of computer techniques in chemistry.
DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1969, 46, 398.
Calorimetry / Thermochemistry |
Thermodynamics
A computer program for the analysis of the N2O4 dissociation equilibrium  Erickson, Luther E.
Describes a Fortran IV program for the analysis of empirical data collected for the N2O4 dissociation equilibrium.
Erickson, Luther E. J. Chem. Educ. 1969, 46, 383.
Equilibrium |
Thermodynamics
Quantities of work in thermodynamic equations  Wright, P. G.
Examines distinctions to be made between work done by forces exerted by external bodies and acting on a system with work done by forces exerted by the system on external bodies.
Wright, P. G. J. Chem. Educ. 1969, 46, 380.
Thermodynamics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
Group VI. The Sulfur Family D. Sulfur Dioxide  Alyea, Hubert N.
Seven demonstrations involving sulfur dioxide.
Alyea, Hubert N. J. Chem. Educ. 1968, 45, A977.
Phases / Phase Transitions / Diagrams |
Reactions |
Precipitation / Solubility |
Oxidation / Reduction
Reactions of metals and sulfur  Walker, Noojin
An iron nail reacts with sulfur to produce iron(II) sulfide.
Walker, Noojin J. Chem. Educ. 1968, 45, A901.
Metals |
Reactions
A transparent dust explosion apparatus  Haight, G. P., Jr.; Duvall, Robert.; Phillips, Stanley
Design for a transparent dust explosion apparatus
Haight, G. P., Jr.; Duvall, Robert.; Phillips, Stanley J. Chem. Educ. 1968, 45, A833.
Oxidation / Reduction |
Reactions
Nitrogen chemistry. C. Fixation of nitrogen  Mancuso, Carl J.
Demonstrations include air + Al-amalgam; the arc process for NO2; and the Ostwald process: NH3 + O2 and NO to HNO3.
Mancuso, Carl J. J. Chem. Educ. 1968, 45, A567.
Agricultural Chemistry |
Reactions
Nitrogen chemistry. A. Nitrogen. B. Ammonia  Mancuso, Carl J.; Alyea, Hubert N.
Demonstration include an ammonia generator; ammonia diffusion throughout a rubber balloon; ammonium chloride smoke; and secret writing using HgNH2Cl + Hg.
Mancuso, Carl J.; Alyea, Hubert N. J. Chem. Educ. 1968, 45, A567.
Reactions
Spontaneous combustion  Geoghegan, John T.; Sheers, Edward H.
Linseed oil is observed to char cotton over a period of time.
Geoghegan, John T.; Sheers, Edward H. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Reactions |
Calorimetry / Thermochemistry
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
The revolution in elementary kinetics and freshman chemistry  Wolfgang, Richard
New developments in kinetics so fundamentally affect our most elementary conception of chemical change that they must inevitably be reflected in beginning courses in chemistry; includes an outline for freshmen on elementary chemical dynamics.
Wolfgang, Richard J. Chem. Educ. 1968, 45, 359.
Kinetics |
Rate Law |
Mechanisms of Reactions
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
Silver tree  Smith, Donald Z.
A suggestion for improving the silver:copper ratio in the silver tree experiment.
Smith, Donald Z. J. Chem. Educ. 1968, 45, 275.
Stoichiometry |
Reactions
Energy and Entropy in Chemistry (Wyatt, P. A. H.)  Strong, Laurence E.

Strong, Laurence E. J. Chem. Educ. 1968, 45, 71.
Thermodynamics
A calorimeter for general chemistry  Garin, D. L.
Suggests an insulated food jar as a durable and suitable calorimeter for general chemistry.
Garin, D. L. J. Chem. Educ. 1968, 45, 37.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
Group 1. The Alkali Metals. The Copper Group   Mancuso, Carl J.; Alyea, Hubert N.
Demonstrations include the density and melting point of copper versus sodium, the conductivity of sodium, the reactivity with water of groups IA vs IB, and the stability of CO3--, HCO3-, and hydroxides of groups IA vs IB.
Mancuso, Carl J.; Alyea, Hubert N. J. Chem. Educ. 1967, 44, A919.
Metals |
Reactions |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Physical Properties
Recent developments in calorimetry: Part two. Some associated measurements (cont.)  Wilhoit, Randolph C.
Examines the measurement of electricity, calorimetric standards, solution calorimetry, and specific types of calorimeters.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A685.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry (continued) Part 2. Some associated measurements  Wilhoit, Randolph C.
Topics examined include thermocouples, resistance thermometers, thermistors, and quartz crystal thermometers.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A629.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry. Part 1. Introductory survey of calorimetry  Wilhoit, Randolph C.
Explores the scope and purpose of calorimetric investigation, types of calorimeters, areas of calorimetric investigation and the procedures and calculations involved.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A571.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Burning without access to air  Alfthan, Voldemar
Permanganate in the presence of sulfuric acid furnishes the oxygen needed for rapid combustion.
Alfthan, Voldemar J. Chem. Educ. 1967, 44, A465.
Oxidation / Reduction |
Reactions
Reaction Rates and Equilibria A. Rate of Reaction 1. Effect of concentration  Cooper, Edwin H., Alyea, Hubert N.
Demonstrations of the effect of concentration on the rate of a reaction include H2O2+Cu(NH3)4++, Zn+acid, and the "long delay" iodine clock reaction.
Cooper, Edwin H., Alyea, Hubert N. J. Chem. Educ. 1967, 44, A274.
Reactions |
Rate Law |
Kinetics
Energy E. Mechanical Energy   Owens, Charles
A steam engine demonstrates the transformation of heat into motion.
Owens, Charles J. Chem. Educ. 1967, 44, A273.
Thermodynamics
Energy C. Electrical Energy  Soule, Dean; Hornbeck, Leroy G.; Jackson, Kenneth V.; Barnard, Robert; Noerdin, Isjrin
Demonstrations include aluminum flashed in oxygen; photo-bromination of cinnamic acid, hexane, tartaric acid, toluene; photochemical H2+Cl2 explosion and the slow photochemical H2+Cl2 into 2HCl.
Soule, Dean; Hornbeck, Leroy G.; Jackson, Kenneth V.; Barnard, Robert; Noerdin, Isjrin J. Chem. Educ. 1967, 44, A83.
Reactions |
Oxidation / Reduction |
Photochemistry
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
The stoichiometry of an oxidation-reduction reaction  Latimer, George W., Jr.
A short note on the titration of hydrazine sulfate with standard bromate in the presence of sodium molybdate that requires students to identify the products through the use of some elementary qualitative analysis.
Latimer, George W., Jr. J. Chem. Educ. 1967, 44, 537.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Titration / Volumetric Analysis |
Qualitative Analysis
A study of the silver tree experiment  Carmody, Walter R.; Wiersma, Jack
Examines the errors associated with and efforts to improve the results of the silver tree experiment.
Carmody, Walter R.; Wiersma, Jack J. Chem. Educ. 1967, 44, 417.
Laboratory Equipment / Apparatus |
Reactions
Determination of the combining weight of tin: A new look at an old experiment  Carmody, Walter R.
Describes efforts to improve the determination of the combining weight of tin
Carmody, Walter R. J. Chem. Educ. 1967, 44, 416.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Synthesis
A simple analogy of the relationship of ?G to the position of equilibrium  Marks, D. J.
This short note describes a simple demonstration to serve as an analogy of the relationship of ?G to the position of equilibrium.
Marks, D. J. J. Chem. Educ. 1967, 44, 402.
Thermodynamics |
Equilibrium
VII - Combustion and flame  Anderson, Robbin C.
Presents and describes an extensive bibliography on the study of combustion and flames.
Anderson, Robbin C. J. Chem. Educ. 1967, 44, 248.
Oxidation / Reduction |
Reactions |
Gases
The stoichiometry of an oxidation-reduction reaction: An elementary chemistry experiment  Child, W. C., Jr.; Ramette, R. W.
Students are asked to decide which of a number of nitrogen containing species is a reasonable product of the reaction between the hydroxylammonium ion and iron (III) on the basis of the experimentally determined stoichiometry of the reaction.
Child, W. C., Jr.; Ramette, R. W. J. Chem. Educ. 1967, 44, 109.
Stoichiometry |
Oxidation / Reduction |
Reactions
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
Energy B. Heat energy  Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N.
Demonstrations presented include the absorption of black vs white surfaces, the heat ignition of touching flash-bulbs, the low heat of combustion of guncotton, and the heats of displacement of metals.
Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A978.
Metals |
Thermodynamics
Lectures on Matter and Equilibrium (Hill, Terrell L.)  Rosenburg, Robert

Rosenburg, Robert J. Chem. Educ. 1966, 43, A1086.
Thermodynamics |
Enrichment / Review Materials
Energy B. Heat energy   Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N.
Demonstrations of the heat of crystallization (sodium acetate and Na2S2O3[5H2O]), heat of formation (ZnCl2), heat of hydration (CaO and CuSO4), heat of neutralization, heat of solvation (alcohols), evaporation of ether and methyl chloride, and heat of solution (NH4NO3).
Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A1079.
Reactions |
Calorimetry / Thermochemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Precipitation / Solubility
The fundamental assumptions of chemical thermodynamics  MacRae, Duncan
Examines the fundamental terms, definitions, and assumptions of chemical thermodynamics.
MacRae, Duncan J. Chem. Educ. 1966, 43, 586.
Thermodynamics
Demonstrations of spontaneous endothermic reactions  Matthews, G. W. J.
The reaction between hydrated metal chlorides and thionyl chloride provides a series of valuable experiments that can be used to demonstrate spontaneous endothermic reactions.
Matthews, G. W. J. J. Chem. Educ. 1966, 43, 476.
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry
Fusion reactions under the microscope  Benedetti-Pichler, A. A.; Vikin, Joe
An electrically heated wire is used to identify a variety of cations and anions according to colors observed under a microscope.
Benedetti-Pichler, A. A.; Vikin, Joe J. Chem. Educ. 1966, 43, 421.
Reactions |
Qualitative Analysis |
Atomic Properties / Structure
Demonstration of chemical reaction via aerosol spray reagents  Stedman, Earl D.
Demonstrations of chemical reactions via aerosol spray reagents may include acid-base indicators and precipitation reactions.
Stedman, Earl D. J. Chem. Educ. 1966, 43, 377.
Acids / Bases |
Precipitation / Solubility |
Reactions
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
Demonstrating concepts of statistical thermodynamics: More on the Maxwell Demon bottle  Sussman, M. V.
The Maxwell Demon bottle can illustrate the nature of entropy, the difference between a work effect and a heat effect, the difference between reversible and irreversible work effects, the mechanical equivalent of heat, and similar intangibles.
Sussman, M. V. J. Chem. Educ. 1966, 43, 105.
Thermodynamics
Acid-catalyzed hydrolysis of sucrose: A student study of a reaction mechanism  Dawber, J. G.; Brown, D. R.; Reed, R. A.
By extending the experimental work in a kinetic study of the hydrolysis of sucrose, the beginning student in chemistry can gather some insight into the mechanism of the reaction.
Dawber, J. G.; Brown, D. R.; Reed, R. A. J. Chem. Educ. 1966, 43, 34.
Kinetics |
Mechanisms of Reactions |
Reactions |
Carbohydrates
Combustion versus biological oxidation  Asenjo, Conrado F.
Describes a simple toy that can be used to illustrate the difference between combustion and biological oxidation.
Asenjo, Conrado F. J. Chem. Educ. 1965, 42, 558.
Oxidation / Reduction |
Reactions
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
A sensitive inexpensive thermometer  Slabaugh, W. H.
Presents a circuit diagram for a simple thermistor.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 467.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Teaching principles of quantitative analysis with "qual" reactions  O'Donnell, T. A.
A series of test-tube reactions using semi-micro techniques has been devised to precede each section of the course in quantitative analysis designed to illustrate qualitatively or semi-qualitatively the chemical reactions or principles that are the basis of each quantitative exercise.
O'Donnell, T. A. J. Chem. Educ. 1965, 42, 434.
Quantitative Analysis |
Reactions
A simple model for the SN2 mechanism.  Nyquist, H. LeRoy
Presents a simple, physical model for the SN2 mechanism.
Nyquist, H. LeRoy J. Chem. Educ. 1965, 42, 103.
Molecular Modeling |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions
Thermochemical investigations for a first-year college chemistry course. A survey of existing literature  Ewing, Galen W.
The purpose of this article is to review some of the experiments that appear in the literature involving thermochemistry.
Ewing, Galen W. J. Chem. Educ. 1965, 42, 26.
Calorimetry / Thermochemistry
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Continuous process for catalytic oxidation of ammonia  Olmsted, Michael P.
A heated platinum coil catalyzes the oxidation of ammonia.
Olmsted, Michael P. J. Chem. Educ. 1964, 41, A973.
Catalysis |
Oxidation / Reduction |
Reactions
Concerning equilibrium, free energy changes, LeChatelier's Principle. III. Halide-halate equilibria  Eberhardt, William H.
Compares four equilibria: KI + KIO3, KI + KBrO3, KBR + KBrO3, and KBr + KIO3.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A883.
Equilibrium |
Aqueous Solution Chemistry |
Thermodynamics
Concerning equilibrium, free energy changes, Le Châtelier's principle II  Eberhardt, William H.
This demonstration involves a reversible, temperature-based transformation from blue tetrahedrally coordinated Co2+ to pink sixfold coordinated Co2+.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Equilibrium |
Thermodynamics |
Aqueous Solution Chemistry |
Coordination Compounds
Metallic reduction of aqueous hydrogen chloride  Walker, Noojin, Jr.
Calcium reacts with HCl to liberate hydrogen gas.
Walker, Noojin, Jr. J. Chem. Educ. 1964, 41, A477.
Reactions |
Oxidation / Reduction |
Metals |
Electrochemistry
Concerning equilibrium, free energy changes, Le Chtelier's principle  Eberhardt, William H.
Aqueous KI is added to a solution of CuSO4 in a separatory funnel; adding more CuSO4 demonstrates an equilibrium sift.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A477.
Equilibrium |
Thermodynamics |
Reactions
Thermal expansion of gases  Barnard, W. Robert
Liquid nitrogen is poured over an inflated balloon.
Barnard, W. Robert J. Chem. Educ. 1964, 41, A139.
Gases |
Thermodynamics |
Kinetic-Molecular Theory
A new clock reaction preparation of dicinnamalacetone  King, L. Carroll; Ostrum, G. Kenneth
Presents a new clock reaction preparation of dicinnamalacetone.
King, L. Carroll; Ostrum, G. Kenneth J. Chem. Educ. 1964, 41, A139.
Reactions |
Kinetics |
Rate Law
Maximum work revisited (Letters)  Mysels, Karol J.
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Mysels, Karol J. J. Chem. Educ. 1964, 41, 677.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Bauman, Robert
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Bauman, Robert J. Chem. Educ. 1964, 41, 676.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Kokes, Richard J.
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Kokes, Richard J. J. Chem. Educ. 1964, 41, 675.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Bauman, Robert
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Bauman, Robert J. Chem. Educ. 1964, 41, 675.
Thermodynamics |
Gases
Infrared spectrometry to study second order reaction kinetics  Gastambide, B.; Blanc, J.; Allamagny, Y.
The change studied is a synthesis reaction between menthol and phenyl isocyanate.
Gastambide, B.; Blanc, J.; Allamagny, Y. J. Chem. Educ. 1964, 41, 613.
Spectroscopy |
IR Spectroscopy |
Reactions |
Kinetics |
Synthesis
The hydration of carbon dioxide: A double clock experiment  Jones, P.; Haggett, Max L.; Longridge, Jethro L.
This extension of the "Soda Water Clock" experiment provides a quantitative kinetics investigation.
Jones, P.; Haggett, Max L.; Longridge, Jethro L. J. Chem. Educ. 1964, 41, 610.
Reactions |
Rate Law |
Kinetics |
pH |
Acids / Bases |
Aqueous Solution Chemistry
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
Reversible and irreversible work: A lecture demonstration  Eberhardt, William H.
This lecture demonstration illustrates the concepts of reversible and irreversible work using a pendulum and attached pan balance.
Eberhardt, William H. J. Chem. Educ. 1964, 41, 483.
Thermodynamics
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Teaching the entropy concept  Plumb, Robert C.
Presents a macroscopic lecture demonstration illustrating both potential energy and entropy driving forces and showing their interrelationship.
Plumb, Robert C. J. Chem. Educ. 1964, 41, 254.
Thermodynamics |
Statistical Mechanics
Work of compressing an ideal gas  Bauman, Robert P.
In formulating examples of compression problems there should be an explicit statement that the process is reversible, or at least slow.
Bauman, Robert P. J. Chem. Educ. 1964, 41, 102.
Thermodynamics |
Gases
Colorimetric chemical kinetics experiment  Corsaro, Gerald
This article describes an experiment in which a photocolorimetric technique is employed to follow a bimolecular reaction rate; the reactants are crystal violet and the hydroxide ion.
Corsaro, Gerald J. Chem. Educ. 1964, 41, 48.
Kinetics |
Rate Law |
Reactions
Homogeneous catalysis: A reexamination of definitions  Leisten, J. A.
Considers common questions regarding the action of catalysts by examining various typical examples.
Leisten, J. A. J. Chem. Educ. 1964, 41, 23.
Catalysis |
Reactions |
Acids / Bases
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Solvay processes  Johns, Robert J.
A simple demonstration of the Solvay process.
Johns, Robert J. J. Chem. Educ. 1963, 40, A535.
Reactions
PolystyreneA multistep synthesis  Wilen, S. H.
Suggestions for research to accompany a previously published article.
Wilen, S. H. J. Chem. Educ. 1963, 40, A463.
Undergraduate Research |
Reactions |
Polymerization |
Synthesis
Heat of precipitation  Clever, H. L.
Provides suggestions for research to accompany earlier published articles.
Clever, H. L. J. Chem. Educ. 1963, 40, A386.
Undergraduate Research |
Calorimetry / Thermochemistry |
Precipitation / Solubility
Oxidation of bromide and iodide ions  Dutton, Frederic B.
Color changes are indicative of oxidation reactions of bromide and iodide ions.
Dutton, Frederic B. J. Chem. Educ. 1963, 40, A241.
Oxidation / Reduction |
Reactions |
Electrochemistry
Oxidation of bromide and iodide ions  Dutton, Frederic B.
Color changes are indicative of oxidation reactions of bromide and iodide ions.
Dutton, Frederic B. J. Chem. Educ. 1963, 40, A241.
Oxidation / Reduction |
Reactions |
Electrochemistry
The direct reactions of solids  Feigl, F.
Provides suggestions for student research based on an earlier article published in the Journal.
Feigl, F. J. Chem. Educ. 1963, 40, A135.
Undergraduate Research |
Reactions |
Solids
Variation in reactivityA demonstration  Bowen, D. M.
Provides suggestions for student research based on an earlier article published in the Journal.
Bowen, D. M. J. Chem. Educ. 1963, 40, A135.
Reactions |
Molecular Properties / Structure
A reaction tube for sodium and chlorine  Barnard, W. Robert
Describes reacting sodium and chlorine in Pyrex tubing.
Barnard, W. Robert J. Chem. Educ. 1963, 40, A49.
Reactions |
Laboratory Equipment / Apparatus
Alkali metal-water reactions  Markowitz, Meyer M.
The typical open-air demonstration of sodium reacting with water does not in reality represent the typical reaction of an alkali metal with liquid water; the article goes on to consider other factors that may influence these reactions.
Markowitz, Meyer M. J. Chem. Educ. 1963, 40, 633.
Reactions |
Metals |
Water / Water Chemistry
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Entropy: The significance of the concept of entropy and its applications in science and technology (Fast, J. D.)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1963, 40, 442.
Thermodynamics
A simple approach to the second law  Breck, W. G.
Uses a reversible Carnot cycle as a simple approach to explicating the second law.
Breck, W. G. J. Chem. Educ. 1963, 40, 353.
Thermodynamics
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
Mnemonics for thermodynamic equations  Radley, Edward T.; Cohen, Irwin; McCullough, Brother Thomas, C. S. C.
Presents several mnemonics devices for remembering thermodynamic equations.
Radley, Edward T.; Cohen, Irwin; McCullough, Brother Thomas, C. S. C. J. Chem. Educ. 1963, 40, 261.
Thermodynamics
Letters to the editor  Day, Jesse H.
The author suggests how the importance of thermodynamics might be demonstrated to students.
Day, Jesse H. J. Chem. Educ. 1963, 40, 229.
Thermodynamics
Letters to the editor  Jurale, Bernard
Compares the catalytic capability of reagent vs. technical grade manganese oxide in the decomposition of potassium chlorate.
Jurale, Bernard J. Chem. Educ. 1963, 40, 94.
Reactions |
Catalysis
Letters to the editor  Meyer, E. Gerald; Weaver, Elbert C.
The authors encourage instructors of introductory chemistry not to distract students with side reactions.
Meyer, E. Gerald; Weaver, Elbert C. J. Chem. Educ. 1963, 40, 94.
Reactions
Maxwell's demon demonstrator  Sussman, M. V.
Describes a simple device used to illustrate the concept of irreversibility.
Sussman, M. V. J. Chem. Educ. 1963, 40, 49.
Thermodynamics
The formation of acetone from acetates  Young, Jay A.; Taylor, John K.
Suggests some research activities based on an article published previously in the Journal.
Young, Jay A.; Taylor, John K. J. Chem. Educ. 1962, 39, A962.
Undergraduate Research |
Aldehydes / Ketones |
Reactions
The preparation of magnesium nitride  Young, Jay A.; Taylor, John K.
Suggests some research activities based on an article published previously in the Journal.
Young, Jay A.; Taylor, John K. J. Chem. Educ. 1962, 39, A960.
Synthesis |
Undergraduate Research |
Reactions
A compact light box  Barnard, Robert
Presents the design of a light box suitable for demonstrations involving solutions, precipitations, or any basic chemical reaction.
Barnard, Robert J. Chem. Educ. 1962, 39, A953.
Precipitation / Solubility |
Solutions / Solvents |
Reactions
Demonstration notes: Spontaneous combustion of H2S  Thomas, P. M.
Hydrogen sulfide passed over lead(IV) oxide bursts into flame.
Thomas, P. M. J. Chem. Educ. 1962, 39, A839.
Oxidation / Reduction |
Reactions
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
The thermal decomposition of KClO3  Bostrup, O.; Demandt, K.; Hansen, K. O.
It is not true that heated potassium chlorate will decompose to produce only KCl and oxygen.
Bostrup, O.; Demandt, K.; Hansen, K. O. J. Chem. Educ. 1962, 39, 573.
Reactions |
Catalysis
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
Some aspects of chemical kinetics for elementary chemistry  Benson, Sidney W.
The author suggests greater efforts to address the issue of kinetics and reaction mechanisms in introductory chemistry.
Benson, Sidney W. J. Chem. Educ. 1962, 39, 321.
Kinetic-Molecular Theory |
Gases |
Kinetics |
Mechanisms of Reactions |
Descriptive Chemistry
Chemical equilibrium: The hydrogenation of benzene  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
This procedure examines the reversible reaction between benzene and hydrogen, forming cyclohexane, in the presence of a metal catalyst.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 91.
Reactions |
Aromatic Compounds |
Equilibrium |
Catalysis
Calorimetry  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
The freshman chemistry lab involves measuring the heat capacities of nickel and copper and the heats of two neutralization reactions.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 90.
Calorimetry / Thermochemistry
Temperature and power measurements in precision solution calorimetry  O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G.
Presents the design of a calorimetric apparatus, and accompanying circuit schematic, and their application to calorimetry measurements.
O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G. J. Chem. Educ. 1961, 38, 512.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Heat of reaction and H2SO4 concentration: A general chemistry experiment  Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander
This procedure measures the heat of reaction between water and sulfuric acid of various concentrations; this information is used to determine the concentration of an unknown acid sample.
Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander J. Chem. Educ. 1961, 38, 472.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Acids / Bases
Heat of precipitation: A general chemistry experiment  Clever, H. Lawrence
This heat of precipitation experiment is conducted in a simple calorimeter constructed by each student from an Erlenmeyer flask.
Clever, H. Lawrence J. Chem. Educ. 1961, 38, 470.
Calorimetry / Thermochemistry |
Precipitation / Solubility
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics
Editorially speaking  Kieffer, William F.
Suggests that more should be done to teach introductory college chemistry students basic principles such as entropy and free energy.
Kieffer, William F. J. Chem. Educ. 1961, 38, 333.
Thermodynamics
Oxidation-reduction mechanisms  Duke, F. R.
Summarizes various types of oxidation-reduction mechanisms.
Duke, F. R. J. Chem. Educ. 1961, 38, 161.
Oxidation / Reduction |
Mechanisms of Reactions
A flashbulb bomb calorimeter  Hornyak, Frederick M.
This report describes a do-it-yourself experiment in thermochemistry using flashbulbs as calorimeter bombs.
Hornyak, Frederick M. J. Chem. Educ. 1961, 38, 97.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Water equivalent of vacuum flask calorimeter by the ice fusion method  Dunicz, Boleslaw Ludwik
Presents the design of a vacuum flask calorimeter and describes the determination of its water equivalent by the ice fusion method.
Dunicz, Boleslaw Ludwik J. Chem. Educ. 1960, 37, 635.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A simple ice calorimeter: A first experiment in thermochemistry  Mahan, Bruce H.
This note describes a relatively crude and simple ice calorimeter that can be supplied to each student.
Mahan, Bruce H. J. Chem. Educ. 1960, 37, 634.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermodynamics
The stability of solutions for the iodine clock reaction  Kauffman, George B.; Hall, Charles R.
The results of attempts to stabilize solutions needed for the iodine clock reaction to allow long-term storage.
Kauffman, George B.; Hall, Charles R. J. Chem. Educ. 1958, 35, 577.
Reactions |
Kinetics |
Oxidation / Reduction |
Aqueous Solution Chemistry
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Chemistry in the manufacture of modern gasoline  Kimberlin, C. N., Jr.
This paper presents a brief review of the chemistry involved in the manufacture of gasoline, particularly catalytic cracking reactions.
Kimberlin, C. N., Jr. J. Chem. Educ. 1957, 34, 569.
Industrial Chemistry |
Applications of Chemistry |
Catalysis |
Mechanisms of Reactions
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
An efficient chemiluminescent system and a chemiluminescent clock reaction  White, Emil H.
Presents the investigation of two chemiluminescent systems - the first is particularly brilliant and the second acts as a clock reaction.
White, Emil H. J. Chem. Educ. 1957, 34, 275.
Photochemistry |
Reactions
Model of a potential energy surface  Dye, J. L.
Describes a physical, three-dimensional model of the potential energy surface for HBr.
Dye, J. L. J. Chem. Educ. 1957, 34, 215.
Kinetics |
Reactive Intermediates |
Reactions
A "clock reaction" for a beginning course in college chemistry  Black, Arthur H.; Dodson, Vance H.
The reduction of the cerium(IV) ion in aqueous sulfuric acid to the cerium(III) ion with oxalate ion can be followed visually and without special colorimetric devices.
Black, Arthur H.; Dodson, Vance H. J. Chem. Educ. 1956, 33, 562.
Reactions
A phosphine fire flask  Dillard, Clyde R.
Presents a flask and demonstration that relies on the spontaneous combustion of phosphine gas.
Dillard, Clyde R. J. Chem. Educ. 1956, 33, 137.
Reactions
Simple generalized reaction schemes  Estok, George K.
In the early development of a student's background in chemistry it seems desirable to encourage an integrated understanding of the types of chemical particles and the formal ways in which they may react.
Estok, George K. J. Chem. Educ. 1956, 33, 115.
Reactions
Why is hydrofluoric acid a weak acid? An answer based on a correlation of free energies, with electronegativities  Pauling, Linus
The puzzling behavior of hydrofluoric acid is explained by considering the factors that determine the free energy of hydrogen halogenide molecules and hydrohalogenide ions.
Pauling, Linus J. Chem. Educ. 1956, 33, 16.
Acids / Bases |
Aqueous Solution Chemistry |
Thermodynamics |
Atomic Properties / Structure
Calorimeter for determining heat capacities of liquids  Greene, Stanley A.
This paper describes a method for utilizing a constant-power heating device that eliminates the need for a preponderance of equipment yet permits reasonable accuracy in determining the heat capacities of liquids.
Greene, Stanley A. J. Chem. Educ. 1955, 32, 577.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Liquids
Effect of water on the interaction of aluminum and iodine  Azmatullah, Syed; Viswanathan, Argot
A drop of water added to powdered aluminum and iodine initiates a vigorous reaction.
Azmatullah, Syed; Viswanathan, Argot J. Chem. Educ. 1955, 32, 447.
Water / Water Chemistry |
Reactions
Lecture demonstrations of incendiaries. II  Antelman, Marvin
Demonstrations described involve gunpowder, the combustion of sulfur dioxide, zirconium, nitric acid, sodium peroxide, hot iron, ammonium nitrate, organic chlorates and nitrates, and zinc stearate.
Antelman, Marvin J. Chem. Educ. 1955, 32, 273.
Reactions |
Oxidation / Reduction
The formaldehyde clock reaction  Barrett, Richard L.
The formaldehyde clock reaction has some advantages over the familiar iodine clock and deserves to be better known.
Barrett, Richard L. J. Chem. Educ. 1955, 32, 78.
Reactions |
Kinetics |
Rate Law |
Aldehydes / Ketones
Le Châtelier's principle and the equilibrium constant  Miller, Arild J.
Many students of chemistry have difficulty in understanding how the position of equilibrium in a gaseous reaction can change when the pressure is altered, in accordance with Le Châtelier's principle, without causing a corresponding variation in the equilibrium constant.
Miller, Arild J. J. Chem. Educ. 1954, 31, 455.
Equilibrium |
Reactions |
Gases
A heat engine run by rubber  Cox, E. G.
Describes a rotating wheel powered by the alternate heating and cooling of rubber bands.
Cox, E. G. J. Chem. Educ. 1954, 31, 307.
Thermodynamics
Ammonia and "ammonium hydroxide"  Davis, John B.
One of several reactions that needs reevaluation in the light of the modern theory of valence is the reaction between ammonia and water and the fiction of the ammonium hydroxide molecule.
Davis, John B. J. Chem. Educ. 1953, 30, 511.
Amines / Ammonium Compounds |
Aqueous Solution Chemistry |
Reactions |
Hydrogen Bonding |
Noncovalent Interactions
Praseodymium tetrafluoride  Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R.
In spite of the experimental failures to prepare praseodymium tetrafluoride, there is strong evidence for its possible formation to be found by calculating the equilibrium constants for some of the reactions by which this compound might be prepared.
Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R. J. Chem. Educ. 1953, 30, 402.
Oxidation State |
Equilibrium |
Thermodynamics
Letters  Miranda, Bienvenido T.
Commmentary on two earlier Journal articles.
Miranda, Bienvenido T. J. Chem. Educ. 1953, 30, 264.
Oxidation State |
Oxidation / Reduction |
Reactions
Silver trees  Gleim, David I.
Describes the classic silver tree and the examination of its crystals under the microscope.
Gleim, David I. J. Chem. Educ. 1953, 30, 151.
Reactions |
Aqueous Solution Chemistry
Thermite ignition assured  Brockett, Clyde P.
Offers a suggestion for igniting course mixtures of commercial grade thermite.
Brockett, Clyde P. J. Chem. Educ. 1952, 29, 525.
Reactions
Letters  Angus, L. H.
Suggests a simple temperature-equilibrium demonstration.
Angus, L. H. J. Chem. Educ. 1952, 29, 472.
Thermodynamics
A simple demonstration of the Carnot cycle  Calingaert, George
This simple demonstration makes use of a stretched rubber band whose temperature changes are noted with the lips.
Calingaert, George J. Chem. Educ. 1952, 29, 405.
Thermodynamics
Qualitative adequacy of phlogiston  Scott, John Howe
The author illustrates the phlogiston theory and the reasoning of those who used it historically (particularly Scheele) by applying them to several simple chemical reactions.
Scott, John Howe J. Chem. Educ. 1952, 29, 360.
Reactions
An ammonium dichromate "volcano"  Deloach, Will S.; McHugh, John W.; Black, Jerry
Describes a model volcano with a mechanism for igniting and disposing of ammonium dichromate.
Deloach, Will S.; McHugh, John W.; Black, Jerry J. Chem. Educ. 1951, 28, 649.
Reactions
A temperature-equilibrium demonstration  Brown, John A.
This demonstration makes use of the colored cobaltous complexes in a mixed solvent to show the dependence of some equilibria on temperature.
Brown, John A. J. Chem. Educ. 1951, 28, 640.
Equilibrium |
Calorimetry / Thermochemistry |
Thermodynamics |
Coordination Compounds
On accenting observations in chemistry  Campbell, J. A.
A chemical equations is, for many a student, such a complete abstraction that he would be hard put to describe the actual observations that would be made in a process for which he was supplied the complete equation.
Campbell, J. A. J. Chem. Educ. 1951, 28, 634.
Reactions |
Stoichiometry |
Nomenclature / Units / Symbols
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
A clock reaction  Suryaraman, M. G.; Viswanathan, Arcot
Ferrous ions in an alkaline solution of a tartrate form of a soluble chelate complex that reacts sluggishly with iodine.
Suryaraman, M. G.; Viswanathan, Arcot J. Chem. Educ. 1951, 28, 386.
Reactions |
Kinetics |
Aqueous Solution Chemistry
Making water gas by cracking methanol  Viertel, William K.
Methanol vapor decomposes very readily at about 1000C into carbon monoxide and hydrogen; presents an apparatus for collecting the hydrogen gas generated through this process.
Viertel, William K. J. Chem. Educ. 1951, 28, 220.
Alcohols |
Reactions