TIGER

Journal Articles: 120 results
A Dramatic Classroom Demonstration of Limiting Reagent Using the Vinegar and Sodium Hydrogen Carbonate Reaction  Romklao Artdej and Tienthong Thongpanchang
This demonstration, appropriate for high school chemistry level and recommended for a large classroom presentation, is designed to illustrate the concept of limiting reagent via a series of experiments in which increasing amounts of sodium bicarbonate are added to a fixed amount of vinegar is fixed until the volume of carbon dioxide generated remains constant.
Artdej, Romklao; Thongpanchang, Tienthong. J. Chem. Educ. 2008, 85, 1382.
Acids / Bases |
Food Science |
Gases |
Stoichiometry
Teaching Avogadro's Hypothesis and Helping Students to See the World Differently  Brett Criswell
This article uses a model from educational psychologyChi's theory of ontological misclassificationto explain the source of students' difficulties in understanding Avogadro's hypothesis and provide a method to successfully teach this fundamental concept.
Criswell, Brett. J. Chem. Educ. 2008, 85, 1372.
Atomic Properties / Structure |
Gases
Similarity and Difference in the Behavior of Gases: An Interactive Demonstration  Guy Ashkenazi
A demonstration that concurrently exposes differences and similarities in the behavior of two different gases has been designed to bridge the gap between students' understanding at the algorithmicmacroscopic and conceptualmicroscopic levels.
Ashkenazi, Guy. J. Chem. Educ. 2008, 85, 72.
Gases |
Kinetics |
Learning Theories
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
Determining the Pressure inside an Unopened Carbonated Beverage  Hans de Grys
Determining the pressure of carbon dioxide inside a sealed soft drink can represents a challenging student exercise. Several methods are discussed for solving the problem, including applying the ideal gas law, gas collection via water displacement, and Henry's law.
de Grys, Hans. J. Chem. Educ. 2007, 84, 1117.
Applications of Chemistry |
Aqueous Solution Chemistry |
Consumer Chemistry |
Food Science |
Gases |
Solutions / Solvents |
Student-Centered Learning
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Using Dalton's Law of Partial Pressures To Determine the Vapor Pressure of a Volatile Liquid  Fred R. Hilgeman, Gary Bertrand, and Brent Wilson
This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid.
Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent. J. Chem. Educ. 2007, 84, 469.
Gases |
Liquids |
Physical Properties |
Solutions / Solvents
An Inquiry-Based Chemistry Laboratory Promoting Student Discovery of Gas Laws  A. M. R. P. Bopegedera
This article describes a laboratory in which students discover the gas laws using Vernier sensors and Microsoft Excel.
Bopegedera, A. M. R. P. J. Chem. Educ. 2007, 84, 465.
Gases |
Instrumental Methods |
Physical Properties
Cp/Cv Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology  Mario Branca and Isabella Soletta
The values ? = Cp /Cv (heat capacity at a constant pressure / heat capacity at constant volume) for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of sound through these gases at room temperature using Calculator-Based Laboratory Technology.
Branca, Mario; Soletta, Isabella. J. Chem. Educ. 2007, 84, 462.
Gases |
Thermodynamics |
Physical Properties
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Teaching Physical Chemistry Experiments with a Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
This article reports on a computer simulation developed with the software LabVIEW of the physical chemistry experiment regarding the vapor pressure measurements of a pure liquid as a function of temperature, as well as a system of data collecting that emphasizes the similarities between the virtual and real experiment.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2006, 83, 1353.
Equilibrium |
Laboratory Computing / Interfacing |
Liquids |
Thermodynamics |
Gases |
Student-Centered Learning
General Education and General Chemistry—Redux  Leslie S. Forster
This paper discusses the desirability of including non-technical general education topics in chemistry courses intended for science and engineering students.
Forster, Leslie S. J. Chem. Educ. 2006, 83, 614.
Enrichment / Review Materials |
Gases |
Learning Theories
The Fizz-Keeper: A Useful Science Tool  John P. Williams, Sandy Van Natta, and Rebecca Knipp
The Fizz-Keeper is well suited for a great variety of pressure-based activities.
Williams, John P.; Van Natta, Sandy; Knipp, Rebecca. J. Chem. Educ. 2005, 82, 1454.
Applications of Chemistry |
Colloids |
Gases
Balloon—Toy of Many Colors  Kathryn R. Williams
Balloon-related articles previously published in JCE describe gas law experiments and demonstrations, large-scale molecular models, demonstrations of reaction rates and stoichiometry, hydrogen-filled balloon explosions, and miscellaneous laboratory uses.
Williams, Kathryn R. J. Chem. Educ. 2005, 82, 1448.
Gases |
Laboratory Equipment / Apparatus |
VSEPR Theory
A Note on Dalton's Law: Myths, Facts, and Implementation  Ronald W. Missen and William R. Smith
The treatment of Dalton's law for gas mixtures commonly includes the improper designation "Dalton's law of partial pressures", rather than the correct "Dalton's law of additivity of (pure component) pressures". It also identifies the pure component pressure as the partial pressure, although these are only numerically equal for a mixture of ideal gases. The situation is clarified by examination of an appropriate statement of the law and definitions, eventually in operational form with reference to mixtures of nonideal gases.
Missen, Ronald Wi.; Smith, William R. J. Chem. Educ. 2005, 82, 1197.
Thermodynamics |
Gases
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Steel Wool and Oxygen: A Look at Kinetics  James Gordon and Katherine Chancey
An experimental method is described to study the kinetics of the reaction of the iron in steel wool with molecular oxygen. A calculator-based data collection system is used with an oxygen gas sensor to determine the order of the reaction with respect to oxygen. Using the graphical method, students determine that the reaction follows first-order kinetics with respect to oxygen.
Gordon, James; Chancey, Katherine. J. Chem. Educ. 2005, 82, 1065.
Atmospheric Chemistry |
Gases |
Kinetics |
Oxidation / Reduction
The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor  James Gordon and Katherine Chancey
A new detection method is applied to a classic experiment in which gaseous atmospheric oxygen in a test tube is reacted with the iron in steel wool to produce rust. A gas pressure sensor interfaced to a calculator-based data collection system was used to measure the percent of oxygen in the air as the reaction proceeded. The results from the calculator-based experiment were compared to the results from a more traditional water-measurement experiment. The average percent of oxygen obtained using the calculator system was 19.4  0.4%.
Gordon, James; Chancey, Katherine. J. Chem. Educ. 2005, 82, 286.
Atmospheric Chemistry |
Gases |
Oxidation / Reduction |
Reactions
Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology  Dorota A. Abramovitch, Latrice K. Cunningham, and Mitchell R. Litwer
Using a sensor to measure changes in the pressure of oxygen produced by the decomposition of hydrogen peroxide as a means of analyzing this reaction and factors that affect its rate.
Abramovitch, Dorota A.; Cunningham, Latrice K.; Litwer, Mitchell R. J. Chem. Educ. 2003, 80, 790.
Gases |
Laboratory Computing / Interfacing |
Kinetics
A Novel Microscale Gas Generator  Jinhua Wang, Zaisheng Lu, and Changcun Zhao
Design of a microscale gas generator.
Wang, Jinhua; Lu, Zaisheng; Zhao, Changcun. J. Chem. Educ. 2003, 80, 181.
Gases |
Laboratory Equipment / Apparatus |
Microscale Lab
Unknown Gases: Student-Designed Experiments in the Introductory Laboratory  John Hanson and Tim Hoyt
Investigation in which students must determine the identity of three unknown gases by developing their own tests.
Hanson, John; Hoyt, Tim. J. Chem. Educ. 2002, 79, 845.
Gases |
Qualitative Analysis |
Physical Properties
Determination of the Universal Gas Constant, R. A Discovery Laboratory  David B. Moss and Kathleen Cornely
Discovery laboratory in which groups of students collect oxygen, hydrogen, and nitrogen gas over water and determine the value of the universal gas constant, R, using the ideal gas law.
Moss, David B.; Cornely, Kathleen. J. Chem. Educ. 2001, 78, 1260.
Gases
A Simple Laboratory Experiment for the Determination of Absolute Zero  Myung-Hoon Kim, Michelle Song Kim, and Suw-Young Ly
A novel method that employs a remarkably simple and inexpensive apparatus and is based on the extrapolation of the volume of a given amount of dry air to zero volume after a volume of air trapped inside a 10-mL graduated cylinder is measured at various temperatures.
Kim, Myung-Hoon; Kim, Michelle Song; Ly, Suw-Young. J. Chem. Educ. 2001, 78, 238.
Gases |
Physical Properties |
Chemometrics
Potentiometric Determination of CO2 Concentration in the Gaseous Phase: Applications in Different Laboratory Activities  Eduardo Cortón, Santiago Kocmur, Liliana Haim, and Lydia Galagovsky
The first lab comprises the calibration of a CO2 potentiometric detector with gas mixtures. The CO2 and CO2-free air required for the gaseous samples are produced in the lab by an inexpensive and simple apparatus. In the second lab, the CO2 potentiometric device is used to measure CO2 uptake and release during different metabolic processes.
Cortón, Eduardo; Kocmur, Santiago; Haim, Liliana; Galagovsky, Lydia. J. Chem. Educ. 2000, 77, 1188.
Electrochemistry |
Gases |
Quantitative Analysis |
Metabolism
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight  Jason C. DeMuro, Hovanes Margarian, Artavan Mkhikian, Kwang Hi No, and Andrew R. Peterson
Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet.
DeMuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R. J. Chem. Educ. 1999, 76, 1113.
Aqueous Solution Chemistry |
Gases |
Microscale Lab |
Phases / Phase Transitions / Diagrams
Variations on the "Whoosh" Bottle Alcohol Explosion Demonstration Including Safety Notes  John J. Fortman, Andrea C. Rush, and Jennifer E. Stamper
The explosion or burning of methanol, ethanol, n-propanol, and isopropanol in large small-necked bottles when ignited with a match has been studied with respect to the nature of the alcohol, temperature, concentration dilutions with water, oxygen concentration, plastic versus glass bottles, and salts added for color.
Fortman, John J.; Rush, Andrea C.; Stamper, Jennifer E. J. Chem. Educ. 1999, 76, 1092.
Gases |
Alcohols
The Persistence of the Candle-and-Cylinder Misconception  James P. Birk and Anton E. Lawson
There is a persistent misconception that when a lighted candle is supported in a container of water and a closed cylinder is lowered over the candle, the candle is extinguished after a time by complete consumption of the oxygen in the cylinder, with a volume change corresponding to the amount of oxygen in the air. This misconception has appeared in the literature periodically for many years. Here, we present a number of experiments that refute this misconception.
Birk, James P.; Lawson, Anton E. J. Chem. Educ. 1999, 76, 914.
Gases |
Atmospheric Chemistry |
Quantitative Analysis |
Reactions
Pressure and Stoichiometry  Charles E. Roser and Catherine L. McCluskey
This experiment determines the stoichiometry of the reaction of a carbonate or hydrogen carbonate and HCl by measuring the pressure of the CO2 produced using a Vernier pressure sensor, TI CBL interface, and a TI-82/83 graphing calculator. Various amounts of the carbonate are reacted with a constant amount of HCl.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 638.
Stoichiometry |
Gases |
Laboratory Computing / Interfacing
A Precise Method for Determining the CO2 Content of Carbonate Materials  Donald L. Pile, Alana S. Benjamin, Klaus S. Lackner, Christopher H. Wendt, and Darryl P. Butt
The design and use of a buret apparatus for CO2 gas capture and mass determination are described. The derivation of a comprehensive equation to determine the CO2 mass and percent carbonation of the material is outlined. Experimental factors such as temperature and pressure, including elevation effects, and apparatus parameters are discussed and incorporated into one general equation.
Pile, Donald L.; Benjamin, Alana S.; Lackner, Klaus S.; Wendt, Christopher H.; Butt, Darryl P. J. Chem. Educ. 1998, 75, 1610.
Laboratory Equipment / Apparatus |
Gases |
Quantitative Analysis
Gas Experiments with Plastic Soda Bottles  Patrick Kavanah and Arden P. Zipp
The construction and use of a new device to study gases is described. The device, which is made from a plastic soda bottle and an automobile tire valve, can be used to demonstrate that air has mass, find the mass of the "evacuated" device, determine the molar mass of air and other gases, investigate the pressure-volume relationship, and build a cloud chamber.
Kavanah, Patrick; Zipp, Arden P. J. Chem. Educ. 1998, 75, 1405.
Gases |
Laboratory Equipment / Apparatus
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Experimentally Determining the Molar Mass of Carbon Dioxide Using a Mylar Balloon  Barbara Albers Jackson and David J. Crouse
The molar mass of carbon dioxide was experimentally determined using a Mylar balloon. Mylar balloons are lightweight, have a fixed definite volume, and require minimal additional pressure for inflation. Using the Ideal Gas Equation, the number of moles of air in the balloon was calculated.
Jackson, Barbara Albers; Crouse, David J. J. Chem. Educ. 1998, 75, 997.
Gases |
Physical Properties
On Laboratory Work  Dave Olney
Suggestions for maximizing learning in the laboratory.
Olney, Dave. J. Chem. Educ. 1997, 74, 1343.
Gases |
Laboratory Computing / Interfacing |
Microscale Lab
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
A U-Tube Experiment To Discover the Curve in Boyle's Law  Thomas G. Richmond and Amy Parr
A discovery-style experiment is described to enable introductory chemistry students to determine the pressure versus volume behavior of a gas over a wide pressure range to "discover" Boyle's Law.
Richmond, Thomas G.; Parr, Amy. J. Chem. Educ. 1997, 74, 414.
Gases |
Laboratory Equipment / Apparatus
A Simple Boyle's Law Experiment  Don L. Lewis
Student-conducted experiments over a range of pressures from about 14 psi to about 120 psi can safely and accurately be made utilizing a 60 ml syringe and an ordinary bathroom scale. No pressure gauge is required and no value for initial pressure in the syringe (near atmospheric pressure) need be assumed.
Lewis, Don L. J. Chem. Educ. 1997, 74, 209.
Gases
Small-Scale Experiments Involving Gas Evolution  Brouwer, H.
Apparatus for measuring very small volume changes of gases and several experimental procedures involving the evolution of gases.
Brouwer, H. J. Chem. Educ. 1995, 72, A100.
Gases |
Laboratory Equipment / Apparatus |
Stoichiometry |
Acids / Bases |
Reactions |
Mechanisms of Reactions |
Microscale Lab
The Environmental Chemistry of Trace Atmospheric Gases  William C. Trogler
Information regarding the composition of trace gases in the Earth's atmosphere, changes in these amounts, their sources, and potential future impact on the environment.
Trogler, William C. J. Chem. Educ. 1995, 72, 973.
Gases |
Atmospheric Chemistry
A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory  Luis H. Blanco and Carmen M. Romero
A series of experiments that study all the gas laws in an integrated fashion.
Blanco, Luis H.; Romero, Carmen M. J. Chem. Educ. 1995, 72, 933.
Gases |
Kinetic-Molecular Theory
More Chemistry in a Soda Bottle: A Conservation of Mass Activity  Daniel Q. Duffy, Stephanie A. Shaw, William O. Bare, and Kenneth A. Goldsby
Conservation of mass activity using vinegar and baking soda in a 2-L soda bottle.
Duffy, Daniel Q.; Shaw, Stephanie A.; Bare, William D.; Goldsby, Kenneth A. J. Chem. Educ. 1995, 72, 734.
Reactions |
Gases |
Acids / Bases
Experiments for Modern Introductory Chemistry: The Temperature Dependence of Vapor Pressure  Kildahl, Nicholas; Berka, Ladislav H.
Gas chromatography experiment that allows the discovery of the temperature dependence of the vapor pressure of a pure liquid; includes sample data and analysis.
Kildahl, Nicholas; Berka, Ladislav H. J. Chem. Educ. 1995, 72, 258.
Gases |
Liquids |
Gas Chromatography
A Charles' Law Experiment for Beginning Students  Rockley, Mark G.; Rockley, Natalie L.
Experimental procedure and simple apparatus for illustrating Charles' Law and determining absolute zero; sample data and analysis are included.
Rockley, Mark G.; Rockley, Natalie L. J. Chem. Educ. 1995, 72, 179.
Gases |
Laboratory Equipment / Apparatus
A New Quantitative Pressure-Volume Experiment Based on the "Cartesian Diver"  Thompson, Judith U. S.; Goldsby, Kenneth A.
Modified Cartesian Diver to illustrate qualitatively and quantitatively the inverse, nonlinear relationship between gas pressure and volume.
Thompson, Judith U. S.; Goldsby, Kenneth A. J. Chem. Educ. 1994, 71, 801.
Gases
Experiments for Modern Introductory Chemistry: Intermolecular Forces and Raoult's Law  Berka, Ladislav H.; Kildahl, Nicholas
Procedure that illustrates the liquid-vapor phase equilibrium of ideal and nonideal solutions.
Berka, Ladislav H.; Kildahl, Nicholas J. Chem. Educ. 1994, 71, 613.
Noncovalent Interactions |
Gas Chromatography |
Gases |
Liquids |
Equilibrium |
Solutions / Solvents
Collapsing Containers  Brown, Justina L.; Battino, Rubin
Using plastic containers instead of metal containers in air pressure demonstrations.
Brown, Justina L.; Battino, Rubin J. Chem. Educ. 1994, 71, 514.
Gases |
Physical Properties
Computer-interfaced apparatus to study osmosis and diffusion   Fox, John N.; Hershman, Kenneth; Peard, Terry
Two experiments that lend themselves particularly well to computer interfacing dealing with osmosis and gas diffusion.
Fox, John N.; Hershman, Kenneth; Peard, Terry J. Chem. Educ. 1993, 70, A258.
Gases |
Laboratory Computing / Interfacing
LIMSport (II): Use of the Interfaced Balance for Pressure Measurements, Streamlined Syntheses, and Titrations  Vitz, Ed
145. LIMSport facilitates direct acquisition of data from a variety of sensors into a spreadsheet.. This article explores the use of LIMSport in understanding gas laws.
Vitz, Ed J. Chem. Educ. 1993, 70, 63.
Gases |
Instrumental Methods
Equipment for gas law experiments  Hennings, David G.
Using the plastic bottles sold with popcorn as leveling bulbs.
Hennings, David G. J. Chem. Educ. 1992, 69, 773.
Gases |
Laboratory Equipment / Apparatus
A modern vapor pressure apparatus based on the isoteniscope.  Van Hecke, Gerald R.
Equipment used for vapor pressure measurements that eliminates use of a mercury manometer.
Van Hecke, Gerald R. J. Chem. Educ. 1992, 69, 681.
Laboratory Equipment / Apparatus |
Gases |
Liquids
Vapor pressure demonstrations using a butane lighter  Delumyea, R. Del
The concept of the change of state of matter and particularly the volatitlity of liquids is an important concept taught in introductory chemistry courses.
Delumyea, R. Del J. Chem. Educ. 1992, 69, 321.
Gases |
Physical Properties |
Liquids |
Phases / Phase Transitions / Diagrams
Space-filling P-V-T models  Hilton, Don B.
Space-filling models help beginning students visualize the numerical aspects of the empirical gas laws.
Hilton, Don B. J. Chem. Educ. 1991, 68, 496.
Gases |
Noncovalent Interactions |
Kinetic-Molecular Theory |
Chemometrics
Overhead projection of Graham's law of gaseous diffusion  Epp, Dianne N.
Demonstration of gaseous diffusion through the combination of NH3 and HCl to produce NH4Cl.
Epp, Dianne N. J. Chem. Educ. 1990, 67, 1061.
Gases |
Transport Properties
A simple apparatus to demonstrate differing gas diffusion rates (Graham's law)  Keller, Philip C.
The apparatus described in this note dramatically demonstrates relative diffusion rate effects for common gases like methane and carbon dioxide.
Keller, Philip C. J. Chem. Educ. 1990, 67, 160.
Gases |
Laboratory Equipment / Apparatus |
Separation Science
A precise determination of absolute zero  Strange, Ronald S.; Lang, Frank T.
Excellent extrapolations to absolute zero can be obtained for dry air using a simple apparatus constructed from an Erlenmeyer flask, an oil manostat and a plastic syringe.
Strange, Ronald S.; Lang, Frank T. J. Chem. Educ. 1989, 66, 1054.
Gases |
Laboratory Equipment / Apparatus
A microscale study of gaseous diffusion   Epp, Dianne N.; Lyons, Edward J.; Brooks, David W.
The following microscale experiment compares qualitatively the rates of diffusion in air of chlorine molecules and ammonia molecules.
Epp, Dianne N.; Lyons, Edward J.; Brooks, David W. J. Chem. Educ. 1989, 66, 436.
Gases |
Microscale Lab
Determination of the universal gas constant  Lebman, Thomas A.; Harms, Gwen
An experiment for the calculation of R using R-PV/nT.
Lebman, Thomas A.; Harms, Gwen J. Chem. Educ. 1988, 65, 811.
Gases |
Stoichiometry
Soap bubbles and precipitate membranes: Two historical semipermeability experiments adapted for teaching purposes  Nicolini, Nicoletta; Pentella, Antonio
These demonstrations are based on the historical experiments that established our understanding of semipermeability and osmosis.
Nicolini, Nicoletta; Pentella, Antonio J. Chem. Educ. 1988, 65, 614.
Gases |
Surface Science |
Transport Properties |
Electrochemistry
Two fundamental constants  McNaught, Ian J.; Peckham, Gavin D.
Experiment to produce accurate values for both the absolute zero of temperature and the gas constant.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1987, 64, 999.
Gases
Charles's law: Students develop their own procedure  Rose, Diane
Students are asked to write their own procedure and execute it in the lab.
Rose, Diane J. Chem. Educ. 1987, 64, 712.
Gases
Gas cans and gas cubes: Visualizing Avogadro's Law   Bouma, J.
The author shares a strategy for making gas laws "visible" for students.
Bouma, J. J. Chem. Educ. 1986, 63, 586.
Gases |
Stoichiometry
TRS-80 Chemistry Lab, Volume 1, Review II (Hallgren, Richard C.)  Beck, James D.
Programs covering the kinetic theory, Charles' law, Boyle' law, titration, and solubility.
Beck, James D. J. Chem. Educ. 1985, 62, A106.
Kinetic-Molecular Theory |
Gases |
Titration / Volumetric Analysis |
Precipitation / Solubility
TRS-80 Chemistry Lab, Volume 1, Review I (Hallgren, Richard C.)  Rowe, Frederick J.
Programs covering the kinetic theory, Charles' law, Boyle' law, titration, and solubility.
Rowe, Frederick J. J. Chem. Educ. 1985, 62, A105.
Kinetic-Molecular Theory |
Gases |
Titration / Volumetric Analysis |
Precipitation / Solubility
Measuring the atomic or molecular mass of a gas with a tire gauge and a butane lighter fluid can  Bodner, George M.; Magginnis, Lenard J.
Also demonstrating the mass of air and the dependence of the pressure of a gas on the mass of the sample.
Bodner, George M.; Magginnis, Lenard J. J. Chem. Educ. 1985, 62, 434.
Atomic Properties / Structure |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Gases
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Cooking with chemistry  Grosser, Arthur E.
Two demonstrations involving cooking eggs and suggestions for many more examples of cooking that illustrate important principles of chemistry. From the "State-of-the-Art Symposium for Chemical Educators: Chemistry of the Food Cycle".
Grosser, Arthur E. J. Chem. Educ. 1984, 61, 362.
Food Science |
Gases |
Acids / Bases |
Equilibrium |
Kinetics
Gas laws and gas behavior  Schmuckler, Joseph S.
A collection of activities from past issues of the Journal and The Science Teacher.
Schmuckler, Joseph S. J. Chem. Educ. 1984, 61, 73.
Gases
Boyle's law experiment  Hermens, Richard A.
This experiment regarding Boyle's law adheres to qualifications which allow the experiment to be meaningful to the students, is safe and simple to perform, low in cost, easy to set up and maintain, obtains reproducible results, and is capable of being performed in a reasonable length of time.
Hermens, Richard A. J. Chem. Educ. 1983, 60, 764.
Gases
The titration of air with nitric oxide: An application of Gay-Lussac's law of combining volumes in a general chemistry experiment  Everett, Kenneth G.
Gay-Lussac's law of combining volumes is demonstrated through the reaction between NO and the oxygen in air.
Everett, Kenneth G. J. Chem. Educ. 1982, 59, 802.
Titration / Volumetric Analysis |
Atmospheric Chemistry |
Gases
A simple experiment for determining vapor pressure and enthalpy of vaporization of water  Levinson, Gerald S.
It is possible to determine the vapor pressure of water using only a tall beaker, a graduated cylinder, and a thermometer.
Levinson, Gerald S. J. Chem. Educ. 1982, 59, 337.
Water / Water Chemistry |
Gases |
Phases / Phase Transitions / Diagrams
Balloons and the teaching of chemistry  Dewhurst, F.; Dewhurst, F. R.
Balloons are a remarkably useful tool for the chemical educationalist. Balloons can not only provide cheap, safe, and easy-to-use alternatives to more complex and costly equipment, but also they can be used as effective teaching aids to demonstrate principles of structural chemistry.
Dewhurst, F.; Dewhurst, F. R. J. Chem. Educ. 1981, 58, 44.
Gases |
Laboratory Equipment / Apparatus
Gases and their behavior  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1980, 57, 885.
Gases
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Bicarbonate in Alka-Seltzer: A general chemistry experiment  Peck, Larry; Irgolic, Kurt; O'Connor, Rod
Determining the percentage bicarbonate ion by mass in Alka-Seltzer.
Peck, Larry; Irgolic, Kurt; O'Connor, Rod J. Chem. Educ. 1980, 57, 517.
Quantitative Analysis |
Gases |
Stoichiometry |
Acids / Bases
Balloon balance thermometer: A lecture demonstration of Charles' Law  Carney, G. D.; Kern, C. W.
The balloon-balance thermometer makes use of air as a thermometric fluid, a water bath as the thermometric vessel, and the readings of a triple beam balance as a thermometer scale.
Carney, G. D.; Kern, C. W. J. Chem. Educ. 1979, 56, 823.
Gases
The variation of vapor pressure with temperature  Davenport, Derek A.; Srinivasan, Viswanathan
Comparing the pressure of three cans of lighter fluid at different temperatures.
Davenport, Derek A.; Srinivasan, Viswanathan J. Chem. Educ. 1979, 56, 474.
Gases |
Kinetic-Molecular Theory
Ga(U)Ge pressure and absolute pressure  Davenport, Derek A.
Air is progressively removed from a test tube; the pressure inside is measured using a standard tire-pressure gauge that is found to read atmospheric pressure when the test tube is fully evacuated.
Davenport, Derek A. J. Chem. Educ. 1979, 56, 322.
Gases
Boyle's law  Davenport, Derek A.
Increasing weights are placed on a sealed syringe, compressing the air inside, and increasing weights pull the plunger from a held syringe, expanding the air inside. In both cases, plots of "P" vs. V are recorded.
Davenport, Derek A. J. Chem. Educ. 1979, 56, 322.
Gases
An experiment oriented approach to teaching the kinetic molecular theory  Wiseman, Frank L., Jr.
A series of experiments designed to illustrate the kinetic molecular theory and the differences between solids, liquids, and gases.
Wiseman, Frank L., Jr. J. Chem. Educ. 1979, 56, 233.
Kinetic-Molecular Theory |
Gases |
Solids |
Liquids |
Nonmajor Courses
A discovery experiment. CO2 soap bubble dynamics  Millikan, Roger C.
Students often make a choice of major based upon the view of a subject that they derive from the beginning course. Rare are the chemistry courses that provide the excitement and chance for discovery, while providing a basic understanding of chemistry. This article describes an experiment that does provide such an opportunity.
Millikan, Roger C. J. Chem. Educ. 1978, 55, 807.
Gases |
Physical Properties |
Surface Science
An Exercise with Boyle's law  Moeller, Michael B.
A procedure for doing a demonstration of Boyles' law.
Moeller, Michael B. J. Chem. Educ. 1978, 55, 584.
Gases
Bubble pressure and volume. A demonstration experiment  Christian, Sherril D.; Enwall, Eric
An interesting phenomenon which illustrates several important principles, is the dependence of the size of a soap bubble on pressure. The subject is introduced to the class by the black box experiment presented in this article.
Christian, Sherril D.; Enwall, Eric J. Chem. Educ. 1978, 55, 536.
Gases |
Surface Science
Gasoline vapor: An invisible pollutant  Stephens, Edgar R.
An apparatus and procedure to demonstrate the substantial contribution vaporized gasoline makes to hydrocarbon pollution.
Stephens, Edgar R. J. Chem. Educ. 1977, 54, 682.
Physical Properties |
Gases |
Atmospheric Chemistry
Ideal and non-ideal gases. An experiment with surprise value  Chirpich, Thomas P.
Compares the behavior of an ideal gas (air) with a non-ideal gas (water vapor) as they are cooled from 100C to room temperature.
Chirpich, Thomas P. J. Chem. Educ. 1977, 54, 378.
Gases
Simplified Boyle's Law demonstration  Miller, Daniel W.
Placing a sealed syringe in bell jar attached to a vacuum pump and reading the volume of air inside the syringe at various reduced pressures.
Miller, Daniel W. J. Chem. Educ. 1977, 54, 245.
Gases
Ideal gas laws. Experiments for general chemistry  Deal, Walter J.
Several gas-law experiments designed to verify the relationship PV = constant at constant temperature and to calculate the gas constant R.
Deal, Walter J. J. Chem. Educ. 1975, 52, 405.
Gases
Computer-enhanced laboratory experience. An example of a totally integrated approach  Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J.
A gas law experiment (Boyle's Law) adapted to make use of computer assisted instruction.
Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J. J. Chem. Educ. 1973, 50, 711.
Gases |
Thermodynamics
A Charles' Law experiment using a balloon or a plastic bag  Murdock, Howard D.; Hawthorne, Robert M., Jr.
A general chemistry experiment that demonstrates Charles' Law clearly, quickly, and relatively quantitatively.
Murdock, Howard D.; Hawthorne, Robert M., Jr. J. Chem. Educ. 1973, 50, 528.
Gases
Scuba diving and the gas laws  Cooke, E. D.; Baranowski, Conrad
Three illustrations of physical-chemical principles drawn from scuba diving.
Cooke, E. D.; Baranowski, Conrad J. Chem. Educ. 1973, 50, 425.
Gases |
Applications of Chemistry |
Thermodynamics
The determination of dissolved oxygen by the Winkler method. A student laboratory experiment  McCormick, Patrick G.
This method is based on the reaction between oxygen and a suspension of manganese(II) hydroxide in a strongly alkaline solution.
McCormick, Patrick G. J. Chem. Educ. 1972, 49, 839.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Quantitative Analysis |
Titration / Volumetric Analysis
Tire Inflation Thermodynamics  Plumb, Robert C.; Connors, John J.
Explains why inflating a tire with a hand pump heats the air being pumped into the tire.
Plumb, Robert C.; Connors, John J. J. Chem. Educ. 1971, 48, 837.
Gases |
Thermodynamics |
Applications of Chemistry
Improvement in a Charles' law capillary tube experiment for introductory chemistry laboratory  Sawyer, Albert K.
Improving a Charles' law capillary tube experiment for the determination of absolute zero by using a volume-temperature measurement at about -80C using a dry ice/acetone cooling mixture.
Sawyer, Albert K. J. Chem. Educ. 1970, 47, 573.
Gases
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Baby bottles and elementary chemistry  Davenport, D. A.
Presents several experiments that rely on baby bottles, including Charles' Law expansion, vapor pressure of volatile liquids, molecular weights of volatile liquids, and closed-atmosphere experiments.
Davenport, D. A. J. Chem. Educ. 1969, 46, 878.
Laboratory Equipment / Apparatus |
Laboratory Management |
Gases |
Liquids |
Oxidation / Reduction
An inexpensive vacuum and gas handling system for the freshman laboratory  Zuehlke, R. W.; Cartier, P. G.
Presents an inexpensive vacuum and gas handling system for the freshman laboratory.
Zuehlke, R. W.; Cartier, P. G. J. Chem. Educ. 1969, 46, 874.
Laboratory Equipment / Apparatus |
Laboratory Management |
Gases
A pseudo-Charles law experiment to teach vapor pressure concepts  Sinclair, Dean L.
This deliberately deceptive experiment impresses upon students the basic ideas of vapor pressure and illustrates the scientific method.
Sinclair, Dean L. J. Chem. Educ. 1969, 46, 814.
Gases
The noble gases and the periodic table: Telling it like it was  Wolfenden, John H.
It is instructive to discover that many great scientists have reported erroneous observations as well as mistaken interpretations of experimental data.
Wolfenden, John H. J. Chem. Educ. 1969, 46, 569.
Gases |
Periodicity / Periodic Table
Friday experiments  Bissey, Jack E.
Provides data on an unknown gas and asks readers to determine if it is ideal, as well as its molecular weight and chemical formula.
Bissey, Jack E. J. Chem. Educ. 1969, 46, 497.
Gases |
Molecular Properties / Structure
The thermal decomposition of 2,5-dihydrofuran vapor: An experiment in gas kinetics  Rubin, Jay A.; Filseth, Stephen V.
Describes an experiment designed to illustrate manipulations with a vacuum system and the conduct of kinetic measurements.
Rubin, Jay A.; Filseth, Stephen V. J. Chem. Educ. 1969, 46, 57.
Kinetics |
Gases
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Bolte, John
(1) Is the mole a number or a weight? (2) Is there an easy way to locate a compound by volume and page in Beilstein? (3) What are the stages evident in a gas discharge tube as the pressure of the gas and the voltage are changed? - answer by Bolte
Young, J. A.; Malik, J. G.; Bolte, John J. Chem. Educ. 1968, 45, 718.
Stoichiometry |
Nomenclature / Units / Symbols |
Gases
An apparatus for the investigation of Graham's law of effusion  Rice, Laurence A.; Chang, James C.
Modification of an earlier apparatus for the investigation of Graham's law of effusion and its applications.
Rice, Laurence A.; Chang, James C. J. Chem. Educ. 1968, 45, 676.
Laboratory Equipment / Apparatus |
Transport Properties |
Gases
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
The range of validity of Graham's Laws  Kirk, A. D.
It is the purpose of this article to discuss effusion, diffusion, and some related processes and to outline the range of validity of Graham's law.
Kirk, A. D. J. Chem. Educ. 1967, 44, 745.
Gases |
Transport Properties
Graham's Laws of diffusion and effusion  Mason, E. A.; Kronstadt, Barbara
The purpose of this article is to review Graham's laws of diffusion and effusion, offer simple but essentially correct theoretical explanations for both laws, and to present experiments on the diffusion law.
Mason, E. A.; Kronstadt, Barbara J. Chem. Educ. 1967, 44, 740.
Transport Properties |
Gases
Analysis for nitrite by evolution of nitrogen: A general chemistry laboratory experiment  Bartlett, J. Kenneth
This experiment involves analysis for the sodium nitrite content of a sodium nitrite-sodium chloride mixture by decomposition to nitrogen while heating in the presence of ammonium chloride solution.
Bartlett, J. Kenneth J. Chem. Educ. 1967, 44, 475.
Gases
Capillary tube experiments for introductory chemistry laboratory  Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian
Describes the use of a capillary tube to determine how vapor changes with temperature.
Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian J. Chem. Educ. 1967, 44, 387.
Gases |
Phases / Phase Transitions / Diagrams
An experimental approach to the ideal gas law  Breck, W. G.; Holmes, F. W.
It is possible to introduce to students the equation of state, PV = nRT, by an experimental method that demonstrates that PV/T remains constant for a given amount of gas.
Breck, W. G.; Holmes, F. W. J. Chem. Educ. 1967, 44, 293.
Gases
VII - Combustion and flame  Anderson, Robbin C.
Presents and describes an extensive bibliography on the study of combustion and flames.
Anderson, Robbin C. J. Chem. Educ. 1967, 44, 248.
Oxidation / Reduction |
Reactions |
Gases
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
Manometric apparatus for vapor and solution studies  Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E.
Presents a device that can be sued to obtain vapor density and PVT measurements, vapor pressures of solutions and liquids, dew-point pressures and compositions, solubilities of gases in liquids, solubilities of slightly-miscible liquids, equilibrium constants for association reactions in solutions, interactions of vapors and gases with solids, and gas and vapor viscosities.
Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E. J. Chem. Educ. 1966, 43, 432.
Laboratory Equipment / Apparatus |
Physical Properties |
Solutions / Solvents |
Gases |
Liquids |
Solids
Maximum work revisited (Letters)  Bauman, Robert
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Bauman, Robert J. Chem. Educ. 1964, 41, 676.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Kokes, Richard J.
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Kokes, Richard J. J. Chem. Educ. 1964, 41, 675.
Thermodynamics |
Gases
"Compounds" (?) of the noble gases prior to 1962  Chernick, Cedric L.
Reviews past efforts to generate compounds of the noble gases.
Chernick, Cedric L. J. Chem. Educ. 1964, 41, 185.
Nonmetals |
Gases
The chemistry of the noble gases  Hyman, Herbert H.
Summarizes the chemistry of the noble gases and their bond-forming abilities.
Hyman, Herbert H. J. Chem. Educ. 1964, 41, 174.
Gases |
Main-Group Elements |
Covalent Bonding
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Letters  Frigerio, Norman A.; Trotter, Phillip J.
Disposable plastic syringes are found to be more suitable than glass ones to demonstrate P, V, T relationships.
Frigerio, Norman A.; Trotter, Phillip J. J. Chem. Educ. 1962, 39, 594.
Gases
Determination of vapor pressure: A general chemistry laboratory experiment  Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden
Provides a method for obtaining good vapor pressure measurements using simple equipment.
Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden J. Chem. Educ. 1959, 36, 494.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams
A test tube automatic gas generator  Alpern, D. K.
A simple design for an automatic gas generator can be used to produce common gases such as hydrogen from zinc and hydrochloric acid.
Alpern, D. K. J. Chem. Educ. 1959, 36, 302.
Laboratory Equipment / Apparatus |
Gases
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols