TIGER

Journal Articles: 90 results
Molecular Models of EDTA and Other Chelating Agents  William F. Coleman
EDTA and related chelating agents, including EGTA, DCTA, NTA, BAPTA, and DTPA, are this months Featured Molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1296.
Molecular Modeling |
Molecular Properties / Structure
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
A2: Element or Compound?  Marilyne Stains and Vicente Talanquer
Particulate questions are used to investigate the mental association between the concepts of molecule and compound in chemistry students with different levels of academic preparation. A significant proportion of students misclassify molecular elements as chemical compounds, and this association is stronger in students with higher levels of preparation.
Stains, Marilyne; Talanquer, Vicente. J. Chem. Educ. 2007, 84, 880.
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Fountain Pen Ink  William F. Coleman
This months Featured Molecules are involved in the composition and stability of inks and include gallic and gallotannic acid.
Coleman, William F. J. Chem. Educ. 2006, 83, 1568.
Molecular Modeling |
Molecular Properties / Structure
Copper and Nickel Complex Ions  William F. Coleman
The Featured Molecules this month include all eight isomeric forms of [Ni(en)3]2+, demonstrating the effects of ligand backbone conformation.
Coleman, William F. J. Chem. Educ. 2006, 83, 1248.
Amino Acids |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Structure and Nuclear Magnetic Resonance. An Experiment for the General Chemistry Laboratory  Rosa M. Dávila and R. K. Widener
Lab exercise to introduce first-year students to the concepts of functional groups and isomerism, as well as using NMR spectroscopy to determine simple molecular structures.
Dávila, Rosa M.; Widener, R. K. J. Chem. Educ. 2002, 79, 997.
NMR Spectroscopy |
Molecular Properties / Structure |
Instrumental Methods
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
Using Computer-Based Visualization Strategies to Improve Students' Understanding of Molecular Polarity and Miscibility  Michael J. Sanger and Steven M. Badger II
Study of how the use of visualization strategies associated with dynamic computer animations and electron density plots affect students' conceptual understanding of molecular polarity and miscibility.
Sanger, Michael J.; Badger, Steven M., II. J. Chem. Educ. 2001, 78, 1412.
Molecular Properties / Structure |
Solutions / Solvents |
Molecular Modeling |
Molecular Mechanics / Dynamics
Blood-Chemistry Tutorials: Teaching Biological Applications of General Chemistry Material  Rachel E. Casiday, Dewey Holten, Richard Krathen, and Regina F. Frey
Four, Web-based tutorials that deal with chemical processes in the blood and provide an integrated biological context for a variety of chemical concepts.
Casiday, Rachel E.; Holten, Dewey; Krathen, Richard; Frey, Regina F. J. Chem. Educ. 2001, 78, 1210.
Applications of Chemistry |
Medicinal Chemistry |
Proteins / Peptides |
Acids / Bases |
Equilibrium |
Molecular Properties / Structure
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Molecular Modeling in the Undergraduate Chemistry Curriculum  Martin B. Jones
Project to expose all chemistry students at all levels to computer-based molecular modeling.
Jones, Martin B. J. Chem. Educ. 2001, 78, 867.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
Drawing Lewis Structures from Lewis Symbols: A Direct Electron-Pairing Approach  Wan-Yaacob Ahmad and Mat B. Zakaria
We describe a different, more student-friendly approach to writing Lewis structures for covalent molecules and ions based on Lewis theory and Abegg's rule. Several rules for selecting central atoms are provided. Separate sets of rules are provided for diatomic molecules and ions and for polyatomic molecules and ions.
Ahmad, Wan-Yaacob; Zakaria, Mat B. J. Chem. Educ. 2000, 77, 329.
Molecular Properties / Structure |
Lewis Structures
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
Simplified Lewis Structure Drawing for Nonscience Majors  Barnabe B. Miburo
Lewis structures are drawn using a simplified novel method with the following features: 1) the atoms used are brought in carrying all their valence electrons; 2) bonds are created by pairing up valence electrons between the central atoms and peripheric atoms; 3) anions are formed by addition of electrons to single electrons on appropriate atoms, while cations are formed by removal of single electrons.
Miburo, Barnabe B. J. Chem. Educ. 1998, 75, 317.
Learning Theories |
Lewis Structures |
Nonmajor Courses |
Molecular Properties / Structure
A Simple Demonstration of How Intermolecular Forces Make DNA Helical  Michael F. Bruist
The usage of stacked identical boxes can be used to demonstrate the helical shape of DNA by the effect of intermolecular forces.
Bruist, Michael F. J. Chem. Educ. 1998, 75, 53.
Molecular Properties / Structure |
Hydrogen Bonding |
Noncovalent Interactions |
Molecular Modeling
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
From UNIX to PC via X-Windows: Molecular Modeling for the General Chemistry Lab  Donald Pavia and Mark Wicholas
A 3-hour experiment that attempts to illustrate the relationship between molecular geometry as predicted by the VSEPR model and valence bond theory. As a pre-laboratory take-home exercise, students are given a list of 23 species and asked to predict bond angles, geometry, and hybridization.
Pavia, Donald; Wicholas, Mark. J. Chem. Educ. 1997, 74, 444.
VSEPR Theory |
Molecular Properties / Structure
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
Solid State Structures for MacMolecule  Mayer, Ludwig A.
Provides an effective visualization of extended structure solids.
Mayer, Ludwig A. J. Chem. Educ. 1994, 71, 421.
Solid State Chemistry |
Solids |
Molecular Modeling |
Molecular Properties / Structure
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
Drawing Lewis structures: A step-by-step approach  Ahmad, Wan-Yaacob; Omar, Siraj
A simple step-by-step approach for deriving Lewis structures for students studying introductory chemistry.
Ahmad, Wan-Yaacob; Omar, Siraj J. Chem. Educ. 1992, 69, 791.
Lewis Structures |
VSEPR Theory |
Molecular Properties / Structure
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Molecular models constructed in an easy way: Part 1. Models of tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, and capped octahedron  He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan
An improved technique for making various molecular models using polyhedral units constructed from a strip of paper.
He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan J. Chem. Educ. 1990, 67, 556.
Molecular Modeling |
Molecular Properties / Structure
Molecular diffusion coefficients: Experimental determination and demonstration.  Fate, Gwendolyn; Lynn, David G.
This demonstration highlights the dependence of molecular transport on molar mass and temperature.
Fate, Gwendolyn; Lynn, David G. J. Chem. Educ. 1990, 67, 536.
Transport Properties |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Visualization of electron clouds in atoms and molecules  Douglas, John E.
110. Visualization of the electron orbital concept continues to challenge and intrigue chemical educators. [October and November 1989 Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Douglas, John E. J. Chem. Educ. 1990, 67, 42.
Atomic Properties / Structure |
Molecular Properties / Structure
Teaching a model for writing Lewis structures  Pardo, Juan Quilez
A general procedure for the representation of Lewis structures.
Pardo, Juan Quilez J. Chem. Educ. 1989, 66, 456.
Lewis Structures |
Molecular Properties / Structure |
Molecular Modeling
A simple qualitative technique for pattern recognition in structure-activity relationships  Roy, Glenn
Acetate Overlay Repeating Topology Assay (AORTA) provides an inexpensive way to introduce high school or college students to the ever expanding library of structure-taste relationships without the need of a computer.
Roy, Glenn J. Chem. Educ. 1989, 66, 435.
Qualitative Analysis |
Molecular Properties / Structure |
Aromatic Compounds
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
How to use crystallographic information in teaching first-year chemistry   Bevan, D. J. M.; Taylor, M. R.; Rossi, M.
These authors describe material appropriate for inclusion in a first-year chemistry lecture course. This article stresses how basic chemical principles have been derived from crystallographic results. A potential instructor need not have crystallographic training to incorporate these lectures.
Bevan, D. J. M.; Taylor, M. R.; Rossi, M. J. Chem. Educ. 1988, 65, 477.
X-ray Crystallography |
Crystals / Crystallography |
Molecular Properties / Structure
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Lewis structures for compounds with expanded octets  Malerich, Charles J.
A simple method for recognizing expanded octets given only the molecular formula of the compound.
Malerich, Charles J. J. Chem. Educ. 1987, 64, 403.
Lewis Structures |
Molecular Properties / Structure
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
Teaching the concept of resonance with transparent overlays  Richardson, W. S.
The overlap method can be useful in the development of the concept of a partial charge on the atoms of an ion.
Richardson, W. S. J. Chem. Educ. 1986, 63, 518.
Resonance Theory |
Molecular Properties / Structure
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
MOLEC, Review II (Owen, G. Scott; Currie, James O.)  Hull, Leslie
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Hull, Leslie J. Chem. Educ. 1984, 61, A246.
Molecular Properties / Structure
MOLEC, Review I (Owen, G. Scott; Currie, James O.)  Coleman, William F.
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Coleman, William F. J. Chem. Educ. 1984, 61, A245.
Molecular Properties / Structure
The "6N+2 Rule" for writing Lewis octet structures  Zandler, Melvin E.; Talaty, Erach R.
Applying the "6N+2 Rule" to writing Lewis octet structures.
Zandler, Melvin E.; Talaty, Erach R. J. Chem. Educ. 1984, 61, 124.
Lewis Structures |
Molecular Properties / Structure
Another procedure for writing Lewis structures  Clark, Thomas J.
A simple procedure for writing a correct Lewis structure for a molecule or ion containing only s- and p-block elements.
Clark, Thomas J. J. Chem. Educ. 1984, 61, 100.
Lewis Structures |
Molecular Properties / Structure
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
A different approach to hybridization and geometric structure of simple molecules and ions  Eberlin, Diana; Monroe, Manus
A step-by-step teaching technique that directly correlates hydridization with structure.
Eberlin, Diana; Monroe, Manus J. Chem. Educ. 1982, 59, 285.
Molecular Properties / Structure
Molecular Geometry  Mickey, Charles D.
Methods for determining molecular geometry and the application of VSEPR theory to real molecules.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 210.
Molecular Properties / Structure |
VSEPR Theory
The aromatic ring  Kolb, Doris
Historic analysis and attempts to explain the structure of benzene, the concept of resonance, Huckel's rule, polycyclic aromatic compounds, non-classical aromatic compounds, and a definition for aromaticity.
Kolb, Doris J. Chem. Educ. 1979, 56, 334.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Teaching ion-ion, ion-dipole, and dipole-dipole interactions  Yoder, Claude H.
Shows how electrostatic interactions can be expressed quantitatively through Coulomb's law and taught at a variety of places in the chemistry curriculum.
Yoder, Claude H. J. Chem. Educ. 1977, 54, 402.
Molecular Properties / Structure
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Why is the oxygen in water negative?  Liebman, Joel F.
Oxygen in water is negative because a negative charge, unlike a positive, can be stabilized using ground state ionic resonance structures.
Liebman, Joel F. J. Chem. Educ. 1972, 49, 415.
Water / Water Chemistry |
Molecular Properties / Structure |
Oxidation State
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
Is ammonia like water?  Gill, J. B.
This article sets out to compare some of the properties of the two most widely studied solvents, water and liquid ammonia, and in particular illustrate some comparative aspects that are not normally considered.
Gill, J. B. J. Chem. Educ. 1970, 47, 619.
Water / Water Chemistry |
Molecular Properties / Structure |
Aqueous Solution Chemistry
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
Infrared spectrometry of inorganic salts: A general chemistry experiment  Ackermann, Martin N.
An experiment in inorganic qualitative analysis for general chemistry.
Ackermann, Martin N. J. Chem. Educ. 1970, 47, 69.
IR Spectroscopy |
Qualitative Analysis |
Molecular Properties / Structure
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Prediction of molecular polarity by V.S.E.P.R. theory  Daugherty, N. A.
Suggestion for predicting molecular polarity using VSEPR theory.
Daugherty, N. A. J. Chem. Educ. 1969, 46, 283.
Molecular Properties / Structure |
VSEPR Theory
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
Molecular symmetry models  Craig, Norman C.
Presents the use of physical models in helping the general chemistry student to begin to replace his intuitive concept of symmetry with a more rigorous one.
Craig, Norman C. J. Chem. Educ. 1969, 46, 23.
Molecular Modeling |
Molecular Properties / Structure |
Group Theory / Symmetry
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
Stereo molecular models  Godfrey, John C.
Presents a system of stereo molecular models designed by the author and their various applications.
Godfrey, John C. J. Chem. Educ. 1965, 42, 404.
Molecular Modeling |
Molecular Properties / Structure
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Precise atomic and molecular models  Adler, Alan D.; Steele, William J.
Presents designs for skeletal or lattice and space-filling models
Adler, Alan D.; Steele, William J. J. Chem. Educ. 1964, 41, 656.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Would Mendeleev have predicted the existence of XeF4?  Ward, Roland
The author suggests that a contemporary Mendeleev might have used the concept of molecular orbitals to predict the existence of XeF4.
Ward, Roland J. Chem. Educ. 1963, 40, 277.
Nonmetals |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Geometry in the beginning chemistry course  Strong, Laurence E.; Clapp, L. B.; Edwards, J. O.
Presents a series of common general chemistry questions and their answers based on a structural analysis.
Strong, Laurence E.; Clapp, L. B.; Edwards, J. O. J. Chem. Educ. 1961, 38, 530.
Molecular Properties / Structure
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Antecedents to modern concepts of configurational symmetry in chemistry  Gorman, Mel
The application of geometric shapes to various scientific concepts is one of the oldest practices in the intellectual heritage of man.
Gorman, Mel J. Chem. Educ. 1961, 38, 99.
Molecular Properties / Structure
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
Accurate molecular models  Godfrey, John C.
Describes the construction of molecular models that rely on plastics to represents as accurately as possible all of the physical characteristics of real molecules.
Godfrey, John C. J. Chem. Educ. 1959, 36, 140.
Molecular Modeling |
Molecular Properties / Structure
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Amphoteric molecules, ions and salts  Davidson, David
It is the aim of this paper to call attention to the splendid opportunity amphoteric substances afford for the teaching of acid-base principles.
Davidson, David J. Chem. Educ. 1955, 32, 550.
Molecular Properties / Structure |
Acids / Bases |
pH |
Aqueous Solution Chemistry
Cork-ball experiments on crystalline and molecular structure  Davidson, Norman
Cork balls and pins are used to construct models of crystalline and molecular structures.
Davidson, Norman J. Chem. Educ. 1952, 29, 249.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling
Effects of molecular shapes  Foster, Laurence S.
A brief discussion of basic molecular shapes and how they help to determine the physical and chemical properties of substances.
Foster, Laurence S. J. Chem. Educ. 1952, 29, 156.
Molecular Properties / Structure
Molecular models of silicates for lecture demonstrations  Noyce, William K.
Describes the construction and use of molecular models of silicates for lecture demonstrations.
Noyce, William K. J. Chem. Educ. 1951, 28, 29.
Molecular Properties / Structure |
Molecular Modeling