TIGER

Journal Articles: 874 results
Ionic Blocks  Richard S. Sevcik, Rex Gamble, Elizabet Martinez, Linda D. Schultz, and Susan V. Alexander
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery.
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V. J. Chem. Educ. 2008, 85, 1631.
Ionic Bonding |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Stoichiometry
A Dramatic Classroom Demonstration of Limiting Reagent Using the Vinegar and Sodium Hydrogen Carbonate Reaction  Romklao Artdej and Tienthong Thongpanchang
This demonstration, appropriate for high school chemistry level and recommended for a large classroom presentation, is designed to illustrate the concept of limiting reagent via a series of experiments in which increasing amounts of sodium bicarbonate are added to a fixed amount of vinegar is fixed until the volume of carbon dioxide generated remains constant.
Artdej, Romklao; Thongpanchang, Tienthong. J. Chem. Educ. 2008, 85, 1382.
Acids / Bases |
Food Science |
Gases |
Stoichiometry
Elemental Chem Lab  Antonio Joaquín Franco Mariscal
Three puzzles use the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs.
Franco Mariscal, Antonio Joaquín. J. Chem. Educ. 2008, 85, 1370.
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols |
Periodicity / Periodic Table
Manual Data Processing in Analytical Chemistry: Linear Calibration  Dora Melucci
Most science students are familiar with Excel spreadsheets, but determining which of Excels statistical functions perform a calculation equivalent to a classical equation and calculating errors with Excel are not trivial exercises.
Melucci, Dora. J. Chem. Educ. 2008, 85, 1346.
Calibration |
Chemometrics |
Quantitative Analysis
Oven versus Bunsen Burner When Heating Copper(II) Chloride Dihydrate  Michael C. Wirtz
In "greening up" the classical stoichiometry experiment where students determine the formula of copper(II) chloride dihydrate, it is critical that teachers and instructors use a 110°C oven rather than a Bunsen burner. Copper(II) chloride dihydrate decomposes at temperatures above 300°C, releasing chlorine gas.
Wirtz, Michael C. J. Chem. Educ. 2008, 85, 1345.
Laboratory Management |
Stoichiometry
Helping Students Assess the Relative Importance of Different Intermolecular Interactions  Paul G. Jasien
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipoledipole interactions, and H-bonding on the normal boiling points for a series of simple, straight-chain organic compounds. Application of this model may be useful in addressing student misconceptions related to the additivity of intermolecular interactions.
Jasien, Paul G. J. Chem. Educ. 2008, 85, 1222.
Chemometrics |
Molecular Properties / Structure |
Noncovalent Interactions |
Physical Properties
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
A Simple Penny Analysis  Nicholas C. Thomas and Stephen Faulk
Describes a simple procedure for determining the zinc composition of U.S. pennies in which the penny zinc core is dissolved in acid and the evolved hydrogen gas is collected by water displacement.
Thomas, Nicholas C.; Faulk, Stephen. J. Chem. Educ. 2008, 85, 817.
Acids / Bases |
Gases |
Gravimetric Analysis |
Metals |
Stoichiometry
Using Pooled Data and Data Visualization To Introduce Statistical Concepts in the General Chemistry Laboratory   Robert J. Olsen
This article describes how data pooling and visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set.
Olsen, Robert J. J. Chem. Educ. 2008, 85, 544.
Chemometrics |
Stoichiometry
Yet Another Variation on the Electrolysis of Water at Iron Nails  Mark T. Stauffer and Justin P. Fox
Describes a variation on the electrolysis of water with iron nails in which a sharp contrast in the colors produced effectively demonstrates electrolysis and the diffusion of oxidized and reduced species from the electrodes.
Stauffer, Mark T.; Fox, Justin P. J. Chem. Educ. 2008, 85, 523.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry |
Electrolytic / Galvanic Cells / Potentials
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Using the Relationship between Vehicle Fuel Consumption and CO2 Emissions To Illustrate Chemical Principles  Maria T. Oliver-Hoyo and Gabriel Pinto
This instructional resource utilizes consumer product information by which students compare theoretical stoichiometric calculations to CO2 car emissions and fuel consumption data. Representing graphically the emission of CO2 versus consumption of fuel provides a tangible way of connecting concepts studied in chemistry classes to everyday life.
Oliver-Hoyo, Maria T.; Pinto, Gabriel. J. Chem. Educ. 2008, 85, 218.
Applications of Chemistry |
Consumer Chemistry |
Stoichiometry
Reaction Order Ambiguity in Integrated Rate Plots  Joe Lee
This article provides a theoretical and statistical justification for the necessity of monitoring a reaction to a substantial fraction of completion if integrated rate plots plots are to yield unambiguous orders.
Lee, Joe. J. Chem. Educ. 2008, 85, 141.
Chemometrics |
Kinetics |
Rate Law
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
The Penny Experiment Revisited: An Illustration of Significant Figures, Accuracy, Precision, and Data Analysis  Joseph Bularzik
In this general chemistry laboratory the densities of pennies are measured by weighing them and using two different methods to measure their volumes. The average and standard deviation calculated for the resulting densities demonstrate that one measurement method is more accurate while the other is more precise.
Bularzik, Joseph. J. Chem. Educ. 2007, 84, 1456.
Chemometrics |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Physical Properties
The Origin of the Names Malic, Maleic, and Malonic Acid  William B. Jensen
Explores the origins of the terms malic, maleic, and malonic acid.
Jensen, William B. J. Chem. Educ. 2007, 84, 924.
Nomenclature / Units / Symbols
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Sudoku Puzzles for First-Year Organic Chemistry Students  Alice L. Perez and G. Lamoureux
Sudoku puzzles are used to help the students learn the correspondence between the names of amino acids, their abbreviations, and codes; and the correspondence between the names of functional groups, their structures, and abbreviations.
Perez, Alice L.; Lamoureux, G. J. Chem. Educ. 2007, 84, 614.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkylation |
Amines / Ammonium Compounds |
Amino Acids |
MO Theory |
Nomenclature / Units / Symbols |
Student-Centered Learning |
Alkynes |
Amides
Sudoku Puzzles as Chemistry Learning Tools  Thomas D. Crute and Stephanie A. Myers
Sudoku puzzles that use a mixture of chemical terms and symbols serve as a tool to encourage the necessary repetition and attention to detail desired for mastering chemistry. The classroom-ready examples provided use polyatomic ions, organic functional groups, and strong nucleophiles. Guidelines for developing additional puzzles are described.
Crute, Thomas D.; Myers, Stephanie A. J. Chem. Educ. 2007, 84, 612.
Learning Theories |
Nomenclature / Units / Symbols |
Student-Centered Learning
Let's All Visit Mole City!  Addison Ault
Additional commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Ault, Addison. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Let's All Visit Mole City!  Mark W. Armstrong
Brief commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Armstrong, Mark W. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Thermochemical Analysis of Neutralization Reactions: An Introductory Discovery Experiment  Kenneth V. Mills and Louise W. Guilmette
Describes a guided-inquiry laboratory pedagogy in which students discover chemical concepts in the lab and the instructor uses their pooled data to guide the lecture portion of the course. This method is illustrated by an experiment that reinforces students' understanding of stoichiometry and allows them to discover neutralization reactions and thermochemistry.
Mills, Kenneth V.; Guilmette, Louise W. J. Chem. Educ. 2007, 84, 326.
Acids / Bases |
Stoichiometry |
Calorimetry / Thermochemistry |
Acids / Bases
Understanding Isotopic Distributions in Mass Spectrometry  Juris Meija
Offers a simple graphical tool for obtaining complex isotopic distributions.
Meija, Juris. J. Chem. Educ. 2006, 83, 1761.
Mass Spectrometry |
Isotopes |
Chemometrics
High School Chemistry Content Background of Introductory College Chemistry Students and Its Association with College Chemistry Grades  Robert H. Tai, R. Bruce Ward, and Philip M. Sadler
Do students who focus on some content areas in high school chemistry have an advantage over others in college chemistry? This manuscript seeks to answer this question through the use of a survey of 3521 introductory college chemistry students. The results indicate that studying stoichiometry in high school was most strongly predictive of college chemistry success.
Tai, Robert H.; Ward, R. Bruce; Sadler, Philip M. J. Chem. Educ. 2006, 83, 1703.
Mathematics / Symbolic Mathematics |
Stoichiometry |
Student / Career Counseling
The Importance and Efficacy of Using Statistics in the High School Chemistry Laboratory  Paul S. Matsumoto
This paper describes some statistical concepts and their application to various experiments used in high school chemistry.
Matsumoto, Paul S. J. Chem. Educ. 2006, 83, 1649.
Chemometrics |
Mathematics / Symbolic Mathematics
The Use of Dots in Chemical Formulas  William B. Jensen
Traces the origins and uses of dots in chemical formulas.
Jensen, William B. J. Chem. Educ. 2006, 83, 1590.
Nomenclature / Units / Symbols
Mole City: A Stoichiometric Analogy  Addison Ault
Offers an analogy to illustrate one of chemistry's most fundamental concepts and skills.
Ault, Addison. J. Chem. Educ. 2006, 83, 1587.
Stoichiometry
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Concentration Scales for Sugar Solutions  David W. Ball
Examines several special scales used to indicate the concentration of sugar solutions and their application to industry.
Ball, David W. J. Chem. Educ. 2006, 83, 1489.
Nomenclature / Units / Symbols |
Food Science |
Solutions / Solvents
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
A Laboratory Experiment Using Molecular Models for an Introductory Chemistry Class  Shahrokh Ghaffari
Presents a new approach to using molecular models in teaching general chemistry concepts. Students construct molecular models and use them to balance simple chemical equations, demonstrate the law of conservation of mass, and discover the relationship between the mole and molecules and atoms.
Ghaffari, Shahrokh. J. Chem. Educ. 2006, 83, 1182.
Molecular Modeling |
Stoichiometry |
Student-Centered Learning
Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry  Kristen L. Cacciatore and Hannah Sevian
Presents an experiment with four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary.
Cacciatore, Kristen L.; Sevian, Hannah. J. Chem. Educ. 2006, 83, 1039.
Quantitative Analysis |
Green Chemistry |
Gravimetric Analysis |
Stoichiometry
Acid–Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols  David E. Goodney
Examples of acidbase reactions from Robert Boyle's The Sceptical Chemist are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe what can be done quite simply with a chemical equation.
Goodney, David E. J. Chem. Educ. 2006, 83, 1001.
Acids / Bases |
Descriptive Chemistry |
Nonmajor Courses |
Reactions |
Nomenclature / Units / Symbols
Complexometric Titration of Aluminum and Magnesium Ions in Commercial Antacids. An Experiment for General and Analytical Chemistry Laboratories  Shui-Ping Yang and Ruei-Ying Tsai
A novel experiment for determining the total and individual aluminum and magnesium ion content in commercial antacids is described. This experiment is developed with three independent protocols based on complexometric direct and back titrations containing the concepts and usages of blocking, masking, buffer controls and metallic indicators.
Yang, Shui-Ping; Tsai, Ruei-Ying. J. Chem. Educ. 2006, 83, 906.
Aqueous Solution Chemistry |
Chemometrics |
Consumer Chemistry |
Medicinal Chemistry |
Quantitative Analysis |
Titration / Volumetric Analysis |
UV-Vis Spectroscopy
Octachem Model: Organic Chemistry Nomenclature Companion  Joaquin Palacios
The Octachem model is an educational physical model designed to guide students in the identification, classification, and naming of the chemical structures of organic compounds. In this article the basic concepts of Octachem model are presented, and the physical model and contents are described.
Palacios, Joaquin. J. Chem. Educ. 2006, 83, 890.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amines / Ammonium Compounds |
Esters |
Ethers |
Nomenclature / Units / Symbols
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Interactive Demonstrations for Mole Ratios and Limiting Reagents  Crystal Wood and Bryan Breyfogle
The objective of this study was to develop interactive lecture demonstrations based on conceptual-change learning theory. Experimental instruction was designed for an introductory chemistry course for nonmajors to address misconceptions related to mole ratios and limiting reagents
Wood, Crystal; Breyfogle, Bryan. J. Chem. Educ. 2006, 83, 741.
Learning Theories |
Reactions |
Stoichiometry |
Student-Centered Learning
The Rainbow Wheel and Rainbow Matrix: Two Effective Tools for Learning Ionic Nomenclature  Joseph S. Chimeno, Gary P Wulfsberg, Michael J. Sanger, and Tammy J. Melton
This study compared the learning of ionic nomenclature by three different methods, one traditional and the other two using game formats. The game formats were found to be more effective in helping students develop a working knowledge of chemical nomenclature.
Chimeno, Joseph S.; Wulfsberg, Gary P.; Sanger, Michael J.; Melton, Tammy J. J. Chem. Educ. 2006, 83, 651.
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Nonmajor Courses
What Happens When Chemical Compounds Are Added to Water? An Introduction to the Model–Observe–Reflect–Explain (MORE) Thinking Frame  Adam C. Mattox, Barbara A. Reisner, and Dawn Rickey
This article describes a laboratory designed to help students understand how different compounds behave when dissolved in water, and introduces the modelobservereflectexplain (MORE) thinking frame, an instructional tool that encourages students to connect macroscopic observations with their understanding of the behavior of particles at the molecular level.
Mattox, Adam C.; Reisner, Barbara A.; Rickey, Dawn. J. Chem. Educ. 2006, 83, 622.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents |
Stoichiometry
Revisiting Molar Mass, Atomic Mass, and Mass Number: Organizing, Integrating, and Sequencing Fundamental Chemical Concepts  Stephen DeMeo
It is often confusing for introductory chemistry students to differentiate between molar mass, atomic mass, and mass number as well as to conceptually understand these ideas beyond a surface level. One way to improve understanding is to integrate the concepts, articulate their relationships, and present them in a meaningful sequence.
DeMeo, Stephen. J. Chem. Educ. 2006, 83, 617.
Descriptive Chemistry |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Physical Properties
Nomenclature Made Practical: Student Discovery of the Nomenclature Rules  Michael C. Wirtz, Joan Kaufmann, and Gary Hawley
Presents a method to teach chemical nomenclature to students in an introductory chemistry course that utilizes the discovery-learning model. Inorganic compounds are grouped into four categories and introduced through separate activities interspersed throughout the first semester to provide context and avoid confronting the student with all of the nomenclature rules at once.
Wirtz, Michael C.; Kaufmann, Joan; Hawley, Gary. J. Chem. Educ. 2006, 83, 595.
Nomenclature / Units / Symbols |
Nonmetals |
Student-Centered Learning
Acrostic Puzzles in the Classroom  Dorothy Swain
Acrostic puzzles are an effective vehicle to expose students to the history and philosophy of science without lecturing.
Swain, Dorothy. J. Chem. Educ. 2006, 83, 589.
Atomic Properties / Structure |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Periodicity / Periodic Table
Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water  Jorge E. Loyo-Rosales, Alba Torrents, Georgina C. Rosales-Rivera, and Clifford P. Rice
A known quantity of the sodium salt of octylphenoxyacetic acid is dissolved in water, transformed to the acid (insoluble) form, and extracted using dichloromethane. These changes can be followed visually owing to conspicuous changes in solution turbidity.
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford P. J. Chem. Educ. 2006, 83, 248.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
pH |
Stoichiometry |
Nonmajor Courses |
Water / Water Chemistry
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
A Simple and Easy-To-Learn Chart of the Main Classes of Inorganic Compounds and Their Acid–Base Reactions  Grigoriy Sereda
Presents a two-dimensional chart for the classification of the main classes of inorganic compounds with respect to their acidic and basic properties that makes it possible to predict reaction products and determine the coefficients in chemical equations of acidbase reactions.
Sereda, Grigoriy. J. Chem. Educ. 2005, 82, 1645.
Acids / Bases |
Reactions |
Stoichiometry
Stoichiometry of Calcium Medicines  Gabriel Pinto
Calcium supplements provide an excellent context in which to review most of the core content of general chemistry, namely, stoichiometry, concentration units, hydration of salts, inorganic and organic salts, physiological importance of elements, resonance in ions, geometry of polyatomic ions, and isomerism.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1509.
Stoichiometry |
Applications of Chemistry |
Drugs / Pharmaceuticals |
Medicinal Chemistry
Improving Conceptions in Analytical Chemistry: ci Vi = cf Vf  Margarita Rodríguez-López and Arnaldo Carrasquillo Jr.
A common misconception related to analytical chemistry, which may be generalized as the failure to recognize and to account analytically for changes in substance density, is discussed. A cautionary example is made through the use of mass-based units of composition during volumetric dilution. The correct application of the volumetric dilution equation ci Vi = cf Vf is discussed. A quantitative description of the systematic error introduced by incorrect use of the volumetric dilution equation is also specified.
Rodríguez-López, Margarita; Carrasquillo, Arnaldo, Jr. J. Chem. Educ. 2005, 82, 1327.
Industrial Chemistry |
Nomenclature / Units / Symbols |
Quantitative Analysis |
Solutions / Solvents
Assessing the Effect of Web-Based Learning Tools on Student Understanding of Stoichiometry Using Knowledge Space Theory  Ramesh D. Arasasingham, Mare Taagepera, Frank Potter, Ingrid Martorell, and Stacy Lonjers
This paper reports a comparative study using knowledge space theory (KST) to assess the impact of a Web-based instructional software program on students' understanding of the concept of stoichiometry. The software program called Mastering Chemistry Web (MCWeb) allows students to practice problems that emphasize the development of molecular-level conceptualization and visualization, analytical reasoning, and proportional reasoning, as well as learning to recognize and relate different representations in chemistry. The experimental design compared students in two sections taught by the same instructor. One section used the MCWeb instructional software as homework (MCWeb group) while the other section used text-based homework (non-MCWeb group, control).
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Martorell, Ingrid; Lonjers, Stacy. J. Chem. Educ. 2005, 82, 1251.
Stoichiometry |
Student-Centered Learning
Mass Relationships in a Chemical Reaction: Incorporating Additional Graphing Exercises into the Introductory Chemistry Laboratory  Stephen DeMeo
The purpose of this article is to increase student involvement with graph construction specifically in the context of introductory laboratory activities that involve mass relationships between reacting substances and products. In this regard, five massmass plots derived from a synthesis of a binary compound from its elements are presented as well as a set of questions to focus learners on the significance of each plot. The benefit of providing learners with these types of graphing activities include the use of higher-order cognitive processes as well as the elucidation of fundamental chemical knowledge such as the law of the conservation of mass, the law of constant composition, limiting and excess reactants, and empirical formula.
DeMeo, Stephen. J. Chem. Educ. 2005, 82, 1219.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Quantitative Analysis
Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills  Elzbieta Cook and Robert L. Cook
This paper focuses attention on the cross-proportion (C-P) method of mathematical problem solving, which was once widely used in chemical calculations. We propose that this method regain currency as an alternative to the dimensional analysis (DA) method, particularly in lower-level chemistry courses. In recent years, the DA method has emerged as the only problem solving mechanism offered to high-school and general chemistry students in contemporary textbooks, replacing more conceptual methods, C-P included.
Cook, Elzbieta; Cook, Robert L. J. Chem. Educ. 2005, 82, 1187.
Learning Theories |
Stoichiometry |
Chemometrics |
Student-Centered Learning
Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry  Ed Vitz
Calculations demonstrating amino acid complementarity are presented as an interesting application of stoichiometry. Food proteins are said to have complementary amino acids when the proteins combine to provide amino acids in the proper stoichiometric ratios to synthesize human protein. Implications for vegetarian diet, efficiency of food production, and diet adaptations in various cultures are explored briefly.
Vitz, Ed. J. Chem. Educ. 2005, 82, 1013.
Amino Acids |
Proteins / Peptides |
Stoichiometry |
Food Science
Analysis of OxiClean: An Interesting Comparison of Percarbonate Stain Removers  Jeffrey D. Bracken and David Tietz
Several different brands of oxygen-based multipurpose stain removers consist of simple mixtures of sodium percarbonate and sodium carbonate. A small sample of each brand of stain remover is decomposed and then analyzed. The observed difference in mass allows students to accurately determine the percentages of each component of the stain remover. A back-titration experiment and a precipitation reaction are performed to confirm the complete decomposition of the original mixture.
Bracken, Jeffrey D.; Tietz, David. J. Chem. Educ. 2005, 82, 762.
Stoichiometry |
Consumer Chemistry
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems  Paul S. Matsumoto
The traditional method to determine the equilibrium concentration of chemicals in a reaction, given the equilibrium constant and the initial concentration of chemicals in the reaction, involves the determination of the reaction quotient. This article will demonstrate that this step may be eliminated; thereby simplifying the algorithm to solve such problems. Such a reduction in the complexity of the algorithm may result in more students successfully being able to solve such problems.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 406.
Equilibrium |
Learning Theories |
Chemometrics
Evaluating Students' Conceptual Understanding of Balanced Equations and Stoichiometric Ratios Using a Particulate Drawing  Michael J. Sanger
A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between the concepts of subscripts and coefficients and including unreacted chemical species in the equation.
Sanger, Michael J. J. Chem. Educ. 2005, 82, 131.
Stoichiometry |
Kinetic-Molecular Theory
Capillary Electrophoresis Analysis of Cations in Water Samples. An Experiment for the Introductory Laboratory  Christopher J. Pursell, Bert Chandler, and Michelle M. Bushey
This experiment can be done in a lab, as a "dry-lab", or as an in-class exercise. Students explore a number of basic separation topics and work with figures of merit for real and meaningful samples. We have adopted a strategy where students encounter various instruments and methods of analyses multiple times throughout the curriculum. The level of sophistication in the exposures increases with the experience level of the students. Through this repeated exposure students will gain a better and fuller understanding of these methods than they would with a single exposure to the technique in the analytical or instrumental laboratory.
Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M. J. Chem. Educ. 2004, 81, 1783.
Electrophoresis |
Quantitative Analysis |
Separation Science |
Chemometrics |
Water / Water Chemistry
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
Statistical Comparison of Data in the Analytical Laboratory  Michael J. Samide
In this article, an experiment designed to provide students with an experience involving statistical treatment of data is described. This experiment allows students to compare 11 different techniques for measuring specific volumes of water. Replicate measurements are taken for each technique and comparisons are made both within a data set and between different data sets. Through calculation of t-values, students are able to draw conclusions about the precision and accuracy of these various techniques.
Samide, Michael J. J. Chem. Educ. 2004, 81, 1641.
Chemometrics
Using Knowledge Space Theory To Assess Student Understanding of Stoichiometry  Ramesh D. Arasasingham, Mare Taagepera, Frank Potter, and Stacy Lonjers
Using the concept of stoichiometry we examined the ability of beginning college chemistry students to make connections among the molecular, symbolic, and graphical representations of chemical phenomena, as well as to conceptualize, visualize, and solve numerical problems. Students took a test designed to follow conceptual development; we then analyzed student responses and the connectivities of their responses, or the cognitive organization of the material or thinking patterns, applying knowledge space theory (KST). The results reveal that the students' logical frameworks of conceptual understanding were very weak and lacked an integrated understanding of some of the fundamental aspects of chemical reactivity.
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy. J. Chem. Educ. 2004, 81, 1517.
Learning Theories |
Stoichiometry |
Constructivism
Etymology as an Aid to Understanding Chemistry Concepts  Nittala S. Sarma
Recognition of word roots and the pattern of evolution of scientific terms can be helpful in understanding chemistry concepts (gaining knowledge of new concepts represented by related terms). The meaning and significance of various etymological roots, occurring as prefixes and suffixes in technical terms particularly of organic chemistry, are explained in a unified manner in order to show the connection of various concepts vis  vis the terms in currency. The meanings of some special words and many examples are provided.
Sarma, Nittala S. J. Chem. Educ. 2004, 81, 1437.
Nomenclature / Units / Symbols
The Origin of the Mole Concept  William B. Jensen
In response to a reader query, the column traces the origins of the mole concept in chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 1409.
Stoichiometry |
Nomenclature / Units / Symbols
Unified Approximations: A New Approach for Monoprotic Weak Acid–Base Equilibria  Harry L. Pardue, Ihab N. Odeh, and Teweldemedhin M. Tesfai
This article describes a new approach to approximate calculations for monoprotic acidbase equilibria in otherwise pure water. The new approach, identified herein as unified approximations, uses a simple decision criterion to select between situations that should be treated as deprotonation and protonation reactions. The remaining treatment takes account of changes in concentrations of conjugate acidbase pairs for all situations and ignores autoprotolysis only for situations for which the analytical concentration of either the conjugate acid or conjugate base will always be larger than zero.
Pardue, Harry L.; Odeh, Ihab N.; Tesfai, Teweldemedhin M. J. Chem. Educ. 2004, 81, 1367.
Acids / Bases |
Equilibrium |
Chemometrics
Reaction to Why Do We Teach Equilibrium Calculations?  Stephen J. Hawkes
"Rigor" in introductory chemistry is often equated with quantitation. Consequently the understanding of chemical reactions and properties is obscured. This was illustrated by Stumpo who asked students to calculate ?E of a reaction, and then on another question on the same test asked a question aimed at its meaning. 77% of the students calculated correctly, but only 24% showed understanding of its meaning. The ability to calculate a number does not measure understanding of the number.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1265.
Equilibrium |
Chemometrics
Reaction to Why Do We Teach Equilibrium Calculations?   Don L. Lewis
A recently published correspondence by Stephen J. Hawkes on teaching equilibrium calculations troubles me. Hawkes dismisses equilibrium calculations as mere algorithms, best deferred until the student can use computer programs. I find it difficult to believe that a computer program enhances understanding. From a chemists point of view, the equilibrium condition is a limit, a limit that (because of stochastic considerations) does not exist. It might be better to make the reaction quotient statement using < or > but the use of those relations is delayed until quantum mechanics.
Lewis, Don L. J. Chem. Educ. 2004, 81, 1265.
Equilibrium |
Chemometrics
SI for Chemists: A Modification  Robert D. Freeman
To correct my original blunder, I recommend that the name "amount of substance" be replaced by "quant" (rather than posos). The word "quant" is in standard dictionaries and has a single meaning related to boating.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 802.
Nomenclature / Units / Symbols
SI for Chemists: Another Position  Tomislav Cvitas
I must say that I agree neither with what was said in the original commentary by R. D. Freeman, nor with the letter by P. Karol.
Cvitas, Tomislav. J. Chem. Educ. 2004, 81, 801.
Nomenclature / Units / Symbols
SI for Chemists: Persistent Problems, Solid Solutions; SI Basic Units: The Kilogram and the Mole  Robert D. Freeman
Karols letter is a prime example of the type of article about which he complains in his first paragraph. There are four major flaws in Karols suggestions.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
Functional Group Wordsearch  Terry L. Helser
This puzzle contains 24 names and terms from organic chemistry in a 12 ? 12 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 517.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Organic Chemistry Wordsearch  Terry L. Helser
This puzzle contains 27 names and terms from organic chemistry in a 13 ? 13 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 515.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Caveman Chemistry: 28 Projects, from the Creation of Fire to the Production of Plastics (Kevin M. Dunn)  Michael S. Matthews
In Caveman Chemistry, Kevin Dunn presents a historically oriented hands-on introduction to chemistry and chemical technology that is tremendously entertaining.
Matthews, Michael S. J. Chem. Educ. 2004, 81, 490.
Stoichiometry |
Oxidation / Reduction |
Applications of Chemistry |
Nomenclature / Units / Symbols |
Natural Products |
Nonmajor Courses
Using a Graphing Calculator To Determine a First-Order Rate Constant: Author Reply  José E. Cortés-Figueroa
When technology is used to help with mathematical calculations, the emphasis must be on the concepts being learned rather than simply the procedures. In our approach we are attempting to help students learn more about the concept and also to attain data analysis skills they will need in the future.
Cortés-Figueroa, José E. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
Using a Graphing Calculator To Determine a First-Order Rate Constant  Todd P. Silverstein
The authors use the graphing calculator to estimate the infinity reading from linearized kinetics data, and then they use linearized semi-log data to determine the first-order rate constant.
Silverstein, Todd P. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
Effects of an Active Learning Environment: Teaching Innovations at a Research I Institution  Maria T. Oliver-Hoyo, DeeDee Allen, William F. Hunt, Joy Hutson, and Angela Pitts
This paper describes a new approach for teaching general chemistry that combines lecture and laboratory into one seamless session and incorporates instructional methods supported by research-based findings. The results of a study that compared two instructional formats, conventional passive lecture and the student-centered, highly collaborative format known as cAcL2 (concept Advancement through chemistry LabLecture), are also presented.
Oliver-Hoyo, Maria T.; Allen, DeeDee; Hunt, William F.; Hutson, Joy; Pitts, Angela. J. Chem. Educ. 2004, 81, 441.
Chemometrics |
Student-Centered Learning
Well Wishes. A Case on Septic Systems and Well Water Requiring In-Depth Analysis and Including Optional Laboratory Experiments  Mary M. Walczak and Juliette M. Lantz
This paper describes the use of a case study to teach introductory chemistry students the chemical principles of solution concentration (especially ppm) and dilution, aqueous redox reactions, and stoichiometric conversions between different solution species.
Walczak, Mary M.; Lantz, Juliette M. J. Chem. Educ. 2004, 81, 218.
Consumer Chemistry |
Water / Water Chemistry |
Solutions / Solvents |
Oxidation / Reduction |
Stoichiometry
The Decomposition of Zinc Carbonate: Using Stoichiometry To Choose between Chemical Formulas  Stephen DeMeo
To determine which formula corresponds to a bottle labeled "zinc carbonate", students perform qualitative tests on three of zinc carbonate's decomposition products: zinc oxide, carbon dioxide, and water. Next students make quantitative measurements to find molar ratios and compare them with the coefficients of the balanced chemical equations. This allows the correct formula of zinc carbonate to be deduced.
DeMeo, Stephen. J. Chem. Educ. 2004, 81, 119.
Gases |
Stoichiometry |
Quantitative Analysis
Don't Be Tricked by Your Integrated Rate Plot  Edward Urbansky
Reply to comments on original article.
Urbansky, Edward. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Reaction order Ambiguity  Sue Le Vent
Integrated rate equations (for constant reaction volume) may be given in terms of relative reactant concentration, C (= concentration/initial concentration) and relative time, T (= time/half-life); in these forms, the equations are independent of rate constants and initial concentrations.
Le Vent, Sue. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Reactions (→) vs Equations (=)  S. R. Logan
A recent chemical kinetics text uses an equals sign for an overall reaction, whereas an arrow is used in each of the reaction steps that are proposed to constitute the mechanism, and for any elementary process.
Logan, S. R. J. Chem. Educ. 2003, 80, 1258.
Kinetics |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions
The Origin of Stoichiometry Problems  William B. Jensen
In response to a reader query, the column discusses the question of when quantitative stoichiometry problems first began to appear in introductory textbooks, and especially the role of the American chemist, Josiah Parsons Cooke, in this process.
Jensen, William B. J. Chem. Educ. 2003, 80, 1248.
Stoichiometry
Organic Nomenclature  David B. Shaw and Laura R. Yindra
Organic Nomenclature is a drill-and-practice exercise in naming organic compounds (using both common and IUPAC names) and identifying structural formulas. It consists of multiple-choice questions where a name or formula is given and the correct formula or name is chosen from a list of five possible answers.
Shaw, David B.; Yindra, Laura R. J. Chem. Educ. 2003, 80, 1223.
Nomenclature / Units / Symbols
SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals  Constantinos E. Efstathiou
SpecSpan is a utility program for Microsoft Windows that generates numerical data from printed spectra or other plots found as figures in text, chart recordings, or freehand drawings. SpecScan can process bitmap (.BMP) images of such figures and drawings. After a brief interaction with the user, it generates and exports numerical data as Excel (.XLS) or text (.TXT) files.
Efstathiou, Constantinos E. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
From Our Peer-Reviewed Collection  William F. Coleman and Edward W. Fedosky
The JCE WebWare collection continues to evolve and grow. This month we add another program, SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals, to our collection of peer-reviewed WebWare.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals  Constantinos E. Efstathiou
The JCE WebWare collection continues to evolve and grow. This month we add another program, SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals, to our collection of peer-reviewed WebWare.
Efstathiou, Constantinos E. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
Two Linear Correlation Coefficients  Robert de Levie
In fitting data to a straight line, many calculators and computer programs display a linear correlation coefficient. Two types of linear correlation coefficients are discussed, one often useful in chemical calculations, the other usually not.
de Levie, Robert. J. Chem. Educ. 2003, 80, 1030.
Chemometrics
Learning Stoichiometry with Hamburger Sandwiches  Liliana Haim, Eduardo Cortón, Santiago Kocmur, and Lydia Galagovsky
Simple and understandable activities involving the manufacturing of hamburgers can be used as an analogy for stoichiometric concepts and calculations.
Haim, Liliana; Cortón, Eduardo; Kocmur, Santiago; Galagovsky, Lydia. J. Chem. Educ. 2003, 80, 1021.
Stoichiometry |
Enrichment / Review Materials
Chemistry Problem-Solving: Symbol, Macro, Micro, and Process Aspects  William R. Robinson
This article summarizes a paper by Yehudit J. Dori and Mira Hameiri, "Multidimensional Analysis System for Quantitative Chemistry Problems: Symbol, Macro, Micro, and Process Aspects", which describes the Multidimensional Analysis System (MAS), an approach to constructing, classifying, and analyzing introductory stoichiometry problems.
Robinson, William R. J. Chem. Educ. 2003, 80, 978.
Kinetic-Molecular Theory |
Stoichiometry
Inorganic Nomenclature   David Shaw
Drill-and-practice exercises in naming and writing formulas for ionic and covalent inorganic compounds.
Shaw, David. J. Chem. Educ. 2003, 80, 711.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Determination of Avogadro's Number by Improved Electroplating  Carlos A. Seiglie
Electroplating procedure to accurately determine Avogadro's number or Faraday's constant.
Seiglie, Carlos A. J. Chem. Educ. 2003, 80, 668.
Electrochemistry |
Metals |
Quantitative Analysis |
Stoichiometry
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
A Concept-Based Environmental Project for the First-Year Laboratory: Remediation of Barium-Contaminated Soil by In Situ Immobilization  Heather D. Harle, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
Simulating the detection and remediation of lead-contaminated soil using barium.
Harle, Heather D.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2003, 80, 561.
Synthesis |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis |
Quantitative Analysis |
Metals |
Aqueous Solution Chemistry |
Gravimetric Analysis |
Applications of Chemistry
Classification of Vegetable Oils by Principal Component Analysis of FTIR Spectra  David A. Rusak, Leah M. Brown, and Scott D. Martin
Comparing unknown samples of vegetable oils to known samples using FTIR and principal component analysis (PCA) and nearest means classification (NMC).
Rusak, David A.; Brown, Leah M.; Martin, Scott D. J. Chem. Educ. 2003, 80, 541.
IR Spectroscopy |
Instrumental Methods |
Food Science |
Lipids |
Chemometrics |
Qualitative Analysis |
Fourier Transform Techniques |
Consumer Chemistry |
Applications of Chemistry
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
The Name Game: Learning the Connectivity between the Concepts  Marina C. Koether
Game in which students review words (names of elements and compounds, instrumentation, types of reactions) using an ice-breaker-type activity; each student given a word that they can't see but everyone else can; must learn their name by asking as few yes-no questions as possible.
Koether, Marina C. J. Chem. Educ. 2003, 80, 421.
Instrumental Methods |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Terminology: Four Puzzles from One Wordsearch  Terry L. Helser
Tips for constructing multiple wordsearch puzzles; example of a lab safety wordsearch provided.
Helser, Terry L. J. Chem. Educ. 2003, 80, 414.
Nomenclature / Units / Symbols |
Learning Theories |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
The Strange Case of Mole Airlines Flight 1023  Karl F. Jones
Forensic chemistry mystery / puzzle involving determining formulas based on chemical compositions.
Jones, Karl F. J. Chem. Educ. 2003, 80, 407.
Drugs / Pharmaceuticals |
Stoichiometry |
Molecular Properties / Structure |
Enrichment / Review Materials |
Applications of Chemistry |
Forensic Chemistry
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
Teaching Chemistry Using From the Earth to the Moon  James G. Goll and Stacie L. Mundinger
Teaching chemistry using From the Earth to the Moon (an HBO original movie series).
Goll, James G.; Mundinger, Stacie L. J. Chem. Educ. 2003, 80, 292.
Electrochemistry |
Chemometrics |
Reactions |
Mechanisms of Reactions |
Applications of Chemistry
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
Use of Chloroisocyanuarates for Disinfection of Water: Application of Miscellaneous General Chemistry Topics  Gabriel Pinto and Brian Rohrig
Using the chlorination of water (using sodium dichloroisocyanurate and trichloroisocyanuric acid) to develop general chemistry concepts; includes question for students and answers.
Pinto, Gabriel; Rohrig, Brian. J. Chem. Educ. 2003, 80, 41.
Stoichiometry |
Water / Water Chemistry |
Applications of Chemistry |
Photochemistry
What's in a Name?   Robert M. Hanson
Quiz that asks questions that are helpful in determining what is happening in an aqueous solution.
Hanson, Robert M. J. Chem. Educ. 2002, 79, 1380.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry
The Chemical Name Game  Robert M. Hanson
Provides practice in learning about names and properties of chemical species.
Hanson, Robert M. J. Chem. Educ. 2002, 79, 1380.
Nomenclature / Units / Symbols |
Descriptive Chemistry |
Physical Properties
An Interactive Graphical Approach to Temperature Conversions  Jonathan Mitschele
Activity to demonstrate the relationship between the Fahrenheit and Celsius temperature scales by graphing measurements of English- and metric-unit thermometers.
Mitschele, Jonathan. J. Chem. Educ. 2002, 79, 1235.
Nomenclature / Units / Symbols |
Chemometrics |
Calorimetry / Thermochemistry
LIMSport: Optimizing a Windows-Based Computer Data Acquisition and Reduction System for the General Chemistry Laboratory  Ed Vitz and Brenda P. Egolf
Project to develop a Windows/Excel data acquisition system for LIMSport (a mechanism for automatically acquiring data from a variety of sensors into a spreadsheet so that teachers and students only need spreadsheet skills to acquire and analyze data) and evaluate its effectiveness in promoting student learning.
Vitz, Ed; Egolf, Brenda P. J. Chem. Educ. 2002, 79, 1060.
Laboratory Computing / Interfacing |
Learning Theories |
Chemometrics
Determination of the Empirical Formula of a Copper Oxide Salt Using Two Different Methods  Michael J. Sanger and Kimberly Geer
Converting copper oxide into copper metal using two different methods: reduction of copper oxide to copper metal using methane gas, and reduction of copper oxide to copper metal using aluminum in aqueous solution; the results are used to determine the empirical formula of copper oxide.
Sanger, Michael J.; Geer, Kimberly. J. Chem. Educ. 2002, 79, 994.
Oxidation / Reduction |
Stoichiometry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Metals
Precision in Microscale Titration  Mono M. Singh, Cynthia B. McGowan, and Zvi Szafran
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Singh, Mono M.; McGowan, Cynthia B.; Szafran, Zvi. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Precision in Microscale Titration  Julian L. Roberts Jr.
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Roberts, Julian L., Jr. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Precision in Microscale Titration  Julian L. Roberts Jr.
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Roberts, Julian L., Jr. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Chemistry Formatter Add-ins for Microsoft Word and Excel  Christopher King
MS Word and Excel add-ins that automatically convert chemistry symbols and notations.
King, Christopher. J. Chem. Educ. 2002, 79, 896.
Nomenclature / Units / Symbols
Experimental Design and Multiplexed Modeling Using Titrimetry and Spreadsheets  Peter de B. Harrington, Erin Kolbrich, and Jennifer Cline
Determining the acidity of three vinegar samples using multiplexed titrations and an MS Excel spreadsheet.
Harrington, Peter de B.; Kolbrich, Erin; Cline, Jennifer. J. Chem. Educ. 2002, 79, 863.
Acids / Bases |
Chemometrics |
Stoichiometry |
Titration / Volumetric Analysis
Alka-Seltzer Fizzing—Determination of Percent by Mass of NaHCO3 in Alka-Seltzer Tablets. An Undergraduate General Chemistry Experiment  Yueh-Huey Chen and Jing-Fun Yaung
Lab activity that introduces the concept of a limiting reactant by incrementally increasing the amount of vinegar added to an Alka Seltzer tablet.
Chen, Yueh-Huey; Yaung, Jing-Fun. J. Chem. Educ. 2002, 79, 848.
Acids / Bases |
Quantitative Analysis |
Stoichiometry
Using Limiting-Excess Stoichiometry to Introduce Equilibrium Calculations: A Discrepant Event Laboratory Activity Involving Precipitation Reactions  Stephen DeMeo
Students are introduced to the concept of equilibrium as they investigate two precipitation reactions, predict which reactant is present in excess, and find that there are two excess reactants.
DeMeo, Stephen. J. Chem. Educ. 2002, 79, 474.
Equilibrium |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis
Crystal Models Made from Clear Plastic Boxes and Their Use in Determining Avogadro's Number  Thomas H. Bindel
Construction and use of unit cell / crystal lattice models made from clear plastic boxes.
Bindel, Thomas H. J. Chem. Educ. 2002, 79, 468.
Crystals / Crystallography |
X-ray Crystallography |
Stoichiometry |
Molecular Modeling
Nonlinear Fits of Standard Curves: A Simple Route to Uncertainties in Unknowns   Carl Salter and Robert de Levie
The problem of covariance in using calibration curves and a nonlinear least-squares procedure that permits a direct estimation of uncertainty without the need for covariance.
Salter, Carl; de Levie, Robert. J. Chem. Educ. 2002, 79, 268.
Chemometrics
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Alternative units in which to express atomic weight.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  George Gorin
Alternative units in which to express atomic weight.
Gorin, George. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Some Unusual Applications of the "Error-Bar" Feature in Excel Spreadsheets  Kieran F. Lim
Paper demonstrating how the "error-bar" feature in Excel can be sued to produce high-quality graphs for university teaching, learning, and research.
Lim, Kieran F. J. Chem. Educ. 2002, 79, 135.
Chemometrics
Visualizing the Photochemical Steady State with UV-Sensitive Beads (re J. Chem. Educ. 2001, 77, 648A-648B)  Jerry A. Bell
Analysis of the temperature dependence of the color intensity of UV-sensitive beads.
Bell, Jerry A. J. Chem. Educ. 2001, 78, 1594.
Atomic Properties / Structure |
Kinetics |
Photochemistry |
Chemometrics
On Concepts of Partial Volume and Law of Partial Volume (re J. Chem. Educ. 2001, 78, 238-240)  Myung-Hoon Kim
Supplementing the law of partial pressures with a law of partial volumes.
Kim, Myung-Hoon. J. Chem. Educ. 2001, 78, 1594.
Gases |
Chemometrics |
Physical Properties
On Concepts of Partial Volume and Law of Partial Volume (re J. Chem. Educ. 2001, 78, 238-240)  David W. Miller
Supplementing the law of partial pressures with a law of partial volumes.
Miller, David W. J. Chem. Educ. 2001, 78, 1594.
Gases |
Chemometrics |
Physical Properties
Problem Analysis: Lesson Scripts and Their Potential Applications  Maria Oliver-Hoyo
Development and use of lesson scripts to give students more informative feedback when performing calculations in an interactive, computerized tutorial.
Oliver-Hoyo, Maria. J. Chem. Educ. 2001, 78, 1425.
Stoichiometry |
Learning Theories
Learning the Functional Groups: Keys to Success  Shannon Byrd and David P. Hildreth
Classification activity and scheme for learning functional groups.
Byrd, Shannon; Hildreth, David P. J. Chem. Educ. 2001, 78, 1355.
Nomenclature / Units / Symbols
How to Say How Much: Amounts and Stoichiometry  Addison Ault
Pictorial representation of the ways by which chemists describe an amount of material, and a systematic way to create a visual representation or "map" for solving stoichiometry problems.
Ault, Addison. J. Chem. Educ. 2001, 78, 1347.
Stoichiometry
The Mole, the Periodic Table, and Quantum Numbers: An Introductory Trio  Mali Yin and Raymond S. Ochs
Suggestions for presenting and developing three key ideas in chemistry: the mole, the periodic table, and quantum numbers.
Yin, Mali; Ochs, Raymond S. J. Chem. Educ. 2001, 78, 1345.
Nonmajor Courses |
Periodicity / Periodic Table |
Stoichiometry |
Atomic Properties / Structure
Analysis of Success in General Chemistry Based on Diagnostic Testing Using Logistic Regression  Margaret J. Legg, Jason C. Legg, and Thomas J. Greenbowe
Estimating the probability of succeeding in general chemistry based on diagnostic or placement exam scores.
Legg, Margaret J.; Legg, Jason C.; Greenbowe, Thomas J. J. Chem. Educ. 2001, 78, 1117.
Chemometrics |
Learning Theories |
Student / Career Counseling
Making Assumptions Explicit: How the Law of Conservation of Matter Can Explain Empirical Formula Problems  Stephen DeMeo
How the law of conservation of mass provides a theoretical foundation for empirical formula problems that introductory students encounter.
DeMeo, Stephen. J. Chem. Educ. 2001, 78, 1050.
Descriptive Chemistry |
Stoichiometry
Don't Be Tricked by Your Integrated Rate Plot!  Edward T. Urbansky
Using integrated rate plots to determine reaction order.
Urbansky, Edward T. J. Chem. Educ. 2001, 78, 921.
Kinetics |
Mechanisms of Reactions |
Learning Theories |
Chemometrics |
Rate Law
A Known-to-Unknown Approach to Teach about Empirical and Molecular Formulas  P. K. Thamburaj
Analogy for helping students to understand molecular and empirical formula problems.
Thamburaj, P. K. J. Chem. Educ. 2001, 78, 915.
Stoichiometry
A Simple Method for Illustrating Uncertainty Analysis  Paul C. Yates
A fast and simple method for generating data for uncertainty analysis; includes statistical analysis and calculation of maximum probable error for a sample set of data.
Yates, Paul C. J. Chem. Educ. 2001, 78, 770.
Chemometrics |
Quantitative Analysis
Metal Complexes of Trifluoropentanedione. An Experiment for the General Chemistry Laboratory  Robert C. Sadoski, David Shipp, and Bill Durham
Investigation of the transition-metal complexes produced by the reactions of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with 1,1,1-trifluoro-2,4-pentanedione; mass spectroscopy is used to determine the stoichiometry of the reaction products.
Sadoski, Robert C.; Shipp, David; Durham, Bill. J. Chem. Educ. 2001, 78, 665.
Coordination Compounds |
Synthesis |
Mass Spectrometry |
Transition Elements |
Stoichiometry
Analysis of an Oxygen Bleach: A Redox Titration Lab  Christine L. Copper and Edward Koubek
Students balance the reaction of H2O2 and MnO4 in two different ways (one assuming that H2O2 is the oxygen source and a second assuming that MnO4 is the oxygen source), determine which of these balanced equations has the correct stoichiometry by titrating a standard H2O2 solution with KMnO4, and use the correct balanced equation to determine the mass percent of H2O2 in a commercially available bleach solution.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 2001, 78, 652.
Quantitative Analysis |
Oxidation / Reduction |
Stoichiometry |
Titration / Volumetric Analysis |
Consumer Chemistry
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Chemistry Report. MAA-CUPM Curriculum Foundations Workshop in Biology and Chemistry, Macalester College, November 2-5, 2000  Norman C. Craig
Chemists list specific knowledge and skills in mathematics needed by chemistry students and indicate whether mathematicians or chemists should deliver the instruction; the course level of the instruction and the use of technological aids are also designated.
Craig, Norman C. J. Chem. Educ. 2001, 78, 582.
Chemometrics |
Mathematics / Symbolic Mathematics |
Learning Theories
What's Been Happening to Undergraduate Mathematics  David M. Bressoud
An overview of some of the changes that have been occurring in undergraduate mathematics education; based on a workshop held by the Mathematical Association of America to determine what chemists expect their students to learn from undergraduate mathematics courses in terms of understanding, content, and use of technology.
Bressoud, David M. J. Chem. Educ. 2001, 78, 578.
Learning Theories |
Mathematics / Symbolic Mathematics |
Chemometrics
Krebs Cycle Wordsearch  Terry L. Helser
Puzzle with 46 names, terms, prefixes, and acronyms that describe the citric acid (Krebs) cycle.
Helser, Terry L. J. Chem. Educ. 2001, 78, 515.
Metabolism |
Nomenclature / Units / Symbols
Glycolysis Wordsearch  Terry L. Helser
Puzzle with 30 names, terms, prefixes, and acronyms that describe glycolysis and fermentation.
Helser, Terry L. J. Chem. Educ. 2001, 78, 503.
Metabolism |
Nomenclature / Units / Symbols |
Carbohydrates
b-Oxidation Wordsearch  Terry L. Helser
Puzzle with 36 names, terms, prefixes, and acronyms that describe lipid metabolism.
Helser, Terry L. J. Chem. Educ. 2001, 78, 483.
Metabolism |
Nomenclature / Units / Symbols |
Lipids
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Understanding Solubility through Excel Spreadsheets  Pamela Brown
This article describes assignments related to the solubility of inorganic salts that can be given in an introductory general chemistry course. These assignments address the need for math, graphing, and computer skills in the chemical technology program by developing skill in the use of Microsoft Excel to prepare spreadsheets and graphs and to perform linear and nonlinear curve-fitting.
Brown, Pamela. J. Chem. Educ. 2001, 78, 268.
Aqueous Solution Chemistry |
Chemometrics |
Precipitation / Solubility
A Simple Laboratory Experiment for the Determination of Absolute Zero  Myung-Hoon Kim, Michelle Song Kim, and Suw-Young Ly
A novel method that employs a remarkably simple and inexpensive apparatus and is based on the extrapolation of the volume of a given amount of dry air to zero volume after a volume of air trapped inside a 10-mL graduated cylinder is measured at various temperatures.
Kim, Myung-Hoon; Kim, Michelle Song; Ly, Suw-Young. J. Chem. Educ. 2001, 78, 238.
Gases |
Physical Properties |
Chemometrics
The Synthesis and Analysis of Copper(I) Iodide. A First-Year Laboratory Project  Lara A. Margolis, Richard W. Schaeffer, and Claude H. Yoder
This project provides a convenient preparation of a compound whose identity will not be obvious to students. The analytical procedures illustrate the fundamentals of gravimetric analysis and some basic chemical and physical characteristics of the elements. The analytical data allow students to find the identity of the product by determining its empirical formula.
Margolis, Lara A.; Schaeffer, Richard W.; Yoder, Claude H. J. Chem. Educ. 2001, 78, 235.
Synthesis |
Oxidation / Reduction |
Stoichiometry |
Gravimetric Analysis |
Qualitative Analysis |
Stoichiometry
The Science Teacher: Winter Break 2001  Steve Long
Summary or chemistry-related articles in the May through November 2000 issues of The Science Teacher.
Long, Steve. J. Chem. Educ. 2001, 78, 22.
Acids / Bases |
Forensic Chemistry |
Molecular Properties / Structure |
Stoichiometry |
Agricultural Chemistry
Correctly Expressing Atomic Weights   Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Proposal on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2000, 77, 1438.
Nomenclature / Units / Symbols |
Learning Theories
How Can an Instructor Best Introduce the Topic of Significant Figures to Students Unfamiliar with the Concept?  Richard A. Pacer
The focus of this paper is how best to introduce the concept of significant figures so that students find it meaningful before a stage is reached at which they become turned off. The approach described begins with measurements students are already familiar with from their life experiences and involves the students as active learners.
Pacer, Richard A. J. Chem. Educ. 2000, 77, 1435.
Learning Theories |
Nonmajor Courses |
Chemometrics
Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Pixel Conversion: A Simple Way to Extract Coordinates of Points from a Printed Graph  Christian Aymard and Randall B. Shirts
A very simple method is described for extracting the coordinates of points from printed graphs, student reports, or publications. One only needs a flatbed scanner and a desktop computer. This is a convenient and inexpensive alternative to the tedious traditional method using a ruler or to the more costly programs available commercially. A Windows program has been made available to perform the required operations.
Aymard, Christian; Shirts, Randall B. J. Chem. Educ. 2000, 77, 1230.
Chemometrics
When A + B  Is Not Equal To B + A  Erling Antony, Lindsay Mitchell, and Lauren Nettenstrom
Many acid-base chemistry demonstrations and laboratory manuals include the "baking soda volcano". Others use the formation of calcium carbonate from calcium hydroxide and carbon dioxide in human breath. This demonstration uses principles from both as well as stoichiometry to answer the question "Does the order of mixing of reagents make a difference?"
Antony, Erling; Mitchell, Lindsay; Nettenstrom, Lauren. J. Chem. Educ. 2000, 77, 1180.
Acids / Bases |
Stoichiometry |
Reactions
Encouraging Meaningful Quantitative Problem Solving  Jeff Cohen, Meghan Kennedy-Justice, Sunny Pai, Carmen Torres, Rick Toomey, Ed DePierro, and Fred Garafalo
This paper describes the efforts of a group of teachers to help college freshman chemistry students and high school science students to improve their problem-solving skills. The presentation includes several sets of questions intended to elucidate ideas and to involve the reader in the process of reflecting upon his or her own problem-solving strategies.
Cohen, Jeff; Kennedy-Justice, Meghan; Pai, Sunny; Torres, Carmen; Toomey, Rick; DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2000, 77, 1166.
Mathematics / Symbolic Mathematics |
Chemometrics
A Classroom Exercise in Sampling Technique  Michael R. Ross
A classroom hands-on demonstration has been developed that looks at the two important sampling considerations, sample size and non-homogeneous sample materials. This classroom activity makes use of readily available M&M candies for the sample size and NERDS for the non-homogeneous sample exercises.
Ross, Michael R. J. Chem. Educ. 2000, 77, 1015.
Quantitative Analysis |
Chemometrics
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
A Drop in the Ocean  Damon Diemente
Teachers of high-school chemistry customarily use calculations done as in-class exercises or as demonstrations to impress their students with the enormity of Avogadro's number and the concomitant miniscularity of atoms and molecules. This article presents and works out one such calculation.
Diemente, Damon. J. Chem. Educ. 2000, 77, 1010.
Stoichiometry |
Atomic Properties / Structure
News from Online: Learning Communities  Carolyn Sweeney Judd
Summary of a variety of online, chemistry resources.
Judd, Carolyn Sweeney. J. Chem. Educ. 2000, 77, 808.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Spreadsheet Calculation of the Propagation of Experimental Imprecision  Robert de Levie
A spreadsheet is used to compute the propagation of imprecision, and a macro is described that will do this automatically.
de Levie, Robert. J. Chem. Educ. 2000, 77, 534.
Chemometrics |
Quantitative Analysis |
Laboratory Computing / Interfacing
Preparation and Analysis of Multiple Hydrates of Simple Salts  Richard W. Schaeffer, Benny Chan, Shireen R. Marshall, Brian Blasiole, Neetha Khan, Kendra L. Yoder, Melissa E. Trainer, and Claude H. Yoder
A laboratory project in which students prepare a series of hydrates of simple salts and then determine the extent of hydration of the product(s); provides a good introduction to the concepts of solubility, saturation, recrystallization, relative compound stability, and simple gravimetric analysis.
Schaeffer, Richard W.; Chan, Benny; Marshall, Shireen R.; Blasiole, Brian; Khan, Neetha; Yoder, Kendra L.; Trainer, Melissa E.; Yoder, Claude H. J. Chem. Educ. 2000, 77, 509.
Stoichiometry |
Qualitative Analysis |
Crystals / Crystallography |
Precipitation / Solubility |
Gravimetric Analysis |
Quantitative Analysis
Classroom Nomenclature Games--BINGO  Thomas D. Crute
The use of games in the chemistry classroom can provide instruction, feedback, practice, and fun. A modification of a BINGO game to chemical nomenclature and a specific application to alkanes are described. Tips on preparation of materials, and suggested variations including inorganic nomenclature are presented.
Crute, Thomas D. J. Chem. Educ. 2000, 77, 481.
Learning Theories |
Nomenclature / Units / Symbols |
Nonmajor Courses
Sugar Wordsearch  Terry L. Helser
Wordsearch puzzle containing 29 names, terms, prefixes and acronyms that describe sugars and their polymers.
Helser, Terry L. J. Chem. Educ. 2000, 77, 480.
Carbohydrates |
Nomenclature / Units / Symbols
Lipid Wordsearch  Terry L. Helser
Wordsearch puzzle containing 37 names, terms, prefixes and acronyms that describe lipids.
Helser, Terry L. J. Chem. Educ. 2000, 77, 479.
Lipids |
Nomenclature / Units / Symbols
How to Make Learning Chemical Nomenclature Fun, Exciting, and Palatable  Joseph Chimeno
One great challenge that introductory chemistry students have is learning the names of various chemical compounds. To make chemical nomenclature fun, exciting, and palatable, the "Rainbow Wheel" was developed at North Iowa Area Community College.
Chimeno, Joseph. J. Chem. Educ. 2000, 77, 144.
Nomenclature / Units / Symbols
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?  Sam H. Leung
This article provides a brief survey of the origins of the common names of some amino acids, aromatic compounds, and carboxylic acids.
Leung, Sam H. J. Chem. Educ. 2000, 77, 48.
Amino Acids |
Aromatic Compounds |
Nomenclature / Units / Symbols |
Carboxylic Acids
More on Double Replacement  Kauffman, G. B.
Reference to directions for writing double replacement reactions.
Kauffman, G. B. J. Chem. Educ. 1999, 76, 1340.
Reactions |
Stoichiometry
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Predicting Acid-Base Titration Curves without Calculations  Dennis W. Barnum
In this paper a qualitative and systematic method for sketching titration curves is presented. Even the more complex cases such as salts or polyprotic acids and bases are treated just as easily as simple monoprotic acids. Having students predict the shape of titration curves from known equilibrium constants helps to focus attention on the general principles without distraction by the mathematics.
Barnum, Dennis W. J. Chem. Educ. 1999, 76, 938.
Acids / Bases |
Quantitative Analysis |
Water / Water Chemistry |
Equilibrium |
Learning Theories |
Titration / Volumetric Analysis |
Chemometrics
Do pH in Your Head  Addison Ault
Every aqueous solution has a pH. Two factors determine this pH: the acidic or basic strength of the solute, and its concentration. When you use pKa values to express acidic and basic strength you can easily estimate the approximate pH of many aqueous solutions of acids, bases, and their salts and their buffers.
Ault, Addison. J. Chem. Educ. 1999, 76, 936.
Equilibrium |
Acids / Bases |
Aqueous Solution Chemistry |
Learning Theories |
Chemometrics |
Brønsted-Lowry Acids / Bases
Limiting Reactant. An Alternative Analogy  Zoltn Tth
A concrete analogy involving students and the make-up of teams is proposed to better explain the identification of the limiting reactant in stoichiometric calculations.
Tth, Zoltn. J. Chem. Educ. 1999, 76, 934.
Stoichiometry
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art  Julio Pellicer, M. Amparo Gilabert, and Ernesto Lopez-Baeza
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day.
Pellicer, Julio; Gilabert, M. Amparo; Lopez-Baeza, Ernesto. J. Chem. Educ. 1999, 76, 911.
Nomenclature / Units / Symbols |
Thermodynamics |
Learning Theories
Letters  
Extending the rule for rounding significant figures of products and quotients.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 897.
Nomenclature / Units / Symbols
Pressure and Stoichiometry  Charles E. Roser and Catherine L. McCluskey
This experiment determines the stoichiometry of the reaction of a carbonate or hydrogen carbonate and HCl by measuring the pressure of the CO2 produced using a Vernier pressure sensor, TI CBL interface, and a TI-82/83 graphing calculator. Various amounts of the carbonate are reacted with a constant amount of HCl.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 638.
Stoichiometry |
Gases |
Laboratory Computing / Interfacing
Calculating Units with the HP 48G Calculator  Matthew E. Morgan
The HP 48G's units function can make simple calculations, such as converting grams to moles, or more complex unit analysis, such as gas law calculations. Examples and calculator keystrokes for both of these examples are included in this article.
Morgan, Matthew E. J. Chem. Educ. 1999, 76, 631.
Learning Theories |
Nomenclature / Units / Symbols
Periodic Puns for the Classroom  Paul E. Vorndam
Some puns on the names of the elements are presented.
Vorndam, Paul E. J. Chem. Educ. 1999, 76, 492.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Learning Theories
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
Using Games to Teach Chemistry. 1. The Old Prof Card Game  Philip L. Granath and Jeanne V. Russell
A card game has been developed and used to teach nomenclature of the elements and their symbols in the first laboratory session of General Chemistry. The game both helps the students learn or review the symbols of the elements and is a good "icebreaker" where students learn the names of other students.
Granath, Philip L.; Russell, Jeanne V. J. Chem. Educ. 1999, 76, 485.
Learning Theories |
Nomenclature / Units / Symbols
Precision and Accuracy in Measurements (the author replies)  Treptow, Richard S.
Relation between instrument resolution and skill.
Treptow, Richard S. J. Chem. Educ. 1999, 76, 471.
Chemometrics |
Instrumental Methods
Precision and Accuracy in Measurements  Thomsen, Volker
The difference between instrument resolution and precision.
Thomsen, Volker J. Chem. Educ. 1999, 76, 471.
Chemometrics |
Instrumental Methods
An Easy and Effective Classroom Demonstration of Population Distributions  Marjorie A. Jones
Using a simple experimental design and easily obtained materials, a classroom experiment was conducted to demonstrate normal-distribution behavior for a population. We used popcorn and a hot-air popper. Popped kernels were collected with time and data were plotted as popped kernels per time interval versus time. The data clearly showed a normal (Gaussian) distribution.
Jones, Marjorie A. J. Chem. Educ. 1999, 76, 384.
Chemometrics
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
Replace Double Replacement  R. Bruce Martin
Reactions described as double replacements in high school texts are poorly described by this designation. The driving force for such reactions is precipitation of a solid derived from ions in solution or the production of water in acid-base reactions.
Martin, R. Bruce. J. Chem. Educ. 1999, 76, 133.
Stoichiometry |
Reactions |
Precipitation / Solubility
Effect of Sample Size on Sampling Error: An Experiment for Introductory Analytical Chemistry  Joseph E. Vitt and Royce C. Engstrom
Students acquire samples of various size from a binary population, calculate the relative standard deviations for each sample size, and compare these results with those predicted by the binomial distribution. This experiment gives excellent agreement for the pooled student data, and the results show the expected decrease in sampling error as the sample size increases.
Vitt, Joseph E.; Engstrom, Royce C. J. Chem. Educ. 1999, 76, 99.
Quantitative Analysis |
Instrumental Methods |
Chemometrics
Amounts Tables as a Diagnostic Tool for Flawed Stoichiometric Reasoning  John Olmsted III
Amounts tables can be used to organize the data and reasoning involved in limiting-reagent problems. In this context, amounts tables can provide useful diagnostic information about students' abilities to reason stoichiometrically.
Olmsted, John A., III. J. Chem. Educ. 1999, 76, 52.
Learning Theories |
Stoichiometry
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Cut-Out Molecular Models  Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria.
Suggestions for improvement to the original demonstration.
Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria. J. Chem. Educ. 1999, 76, 28.
Molecular Modeling |
Molecular Properties / Structure |
Stoichiometry
Temperature Scale Conversion as a Linear Equation: True Unit Conversion vs Zero-Offset Correction  Reuben Rudman
The equation used for the interconversion between the Fahrenheit and Celsius temperature scales is in reality the general case of the straight-line equation (y = ax + b). This equation is the paradigm for many of the calculations taught in introductory chemistry.
Rudman, Reuben. J. Chem. Educ. 1998, 75, 1646.
Nomenclature / Units / Symbols |
Chemometrics
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
A Cyclist's Guide to Ionic Concentration  Arthur M. Last
A simple analogy to help students understand ionic concentration is presented.
Last, Arthur M. J. Chem. Educ. 1998, 75, 1433.
Solutions / Solvents |
Stoichiometry
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Oxygen vs Dioxygen: Diatomic/Monatomic Usage  Sharon, Jared B.
Using the name dioxygen for O2.
Sharon, Jared B. J. Chem. Educ. 1998, 75, 1089.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
Let's Dot Our I's and Cross Our T's  Leenson, Ilya A.

Leenson, Ilya A. J. Chem. Educ. 1998, 75, 1088.
Stoichiometry |
Oxidation / Reduction
News from Online: Using the Web for Your Courses  Carolyn Sweeney Judd
Useful online resources for chemistry and education.
Judd, Carolyn Sweeney. J. Chem. Educ. 1998, 75, 1073.
Stoichiometry
There Seems To Be Uncertainty about the Use of Significant Figures in Reporting Uncertainties of Results  Julio F. Caballero and Delphia F. Harris
A cursory review of two journals indicates that uncertainties in experimental results are not consistently reported in the literature with the correct number of significant figures. The problem seems more frequent in computer generated results in both chemical education and research articles. Examples of published values with uncertainty inappropriately reported are included along with the appropriate rounding.
Caballero, Julio F.; Harris, Delphia F. J. Chem. Educ. 1998, 75, 996.
Laboratory Equipment / Apparatus |
Learning Theories |
Chemometrics
Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders  Richard S. Treptow
The concepts of precision and accuracy help students understand that uncertainty accompanies even our best scientific measurements. A model experiment can be used to distinguish the two terms. The experiment uses four graduated cylinders which give measurements of different accuracy and precision. Such terms as mean, range, standard deviation, error, and true value are defined through an illustration.
Treptow, Richard S. J. Chem. Educ. 1998, 75, 992.
Quantitative Analysis |
Chemometrics
Precision and Accuracy (the authors reply, 2)  Midden, W. Robert
Rounding-off rules and significant figures.
Midden, W. Robert J. Chem. Educ. 1998, 75, 971.
Chemometrics
Precision and Accuracy (the authors reply, 1)  Guare, Charles J.
Rounding-off rules and significant figures.
Guare, Charles J. J. Chem. Educ. 1998, 75, 971.
Chemometrics
Precision and Accuracy (3)  Rustad, Douglas
Rounding-off rules and significant figures.
Rustad, Douglas J. Chem. Educ. 1998, 75, 970.
Chemometrics
Precision and Accuracy (1)  Sykes, Robert M.
Standard procedures for determining and maintaining significant figures in calculations.
Sykes, Robert M. J. Chem. Educ. 1998, 75, 970.
Chemometrics
Percent Composition and Empirical Formula - A New View  George L. Gilbert
A new method of obtaining the empirical formula for a compound from its percent composition is proposed. The method involves the determination of a minimum molar mass for the compound based on the percentage of each element, obtaining the lowest common molar mass and using this data to calculate the integer values used in writing the empirical formula.
Gilbert, George L. J. Chem. Educ. 1998, 75, 851.
Atomic Properties / Structure |
Stoichiometry |
Chemometrics
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
Production of Numerical Chemical Problems Using a Spreadsheet  Peter G. Hall
The use of spreadsheets for "personalized" assignments. These assignments take the form of printed chemical problems such that every student has different numerical data. The problem sets make a challenging student introduction to word processing and spreadsheet use.
Hall, Peter G. J. Chem. Educ. 1998, 75, 243.
Chemometrics
The Chemistry Maths Book (by Erich Steiner)   C. Michael McCallum
The Chemistry Maths Book contains all the mathematical methods that 99% of chemists would need. Designed as a text for an actual Maths for Chemists course, it is laid out in a logical progression from simple (decimals, algebra, and functions) to the more complicated but no less important (matrix algebra, differential equations, and matrix eigenvalue problems). It seems well suited both for its stated purpose and as a "brush-up" book for undergraduates, graduate students, and others.
McCallum, C. Michael. J. Chem. Educ. 1997, 74, 1400.
Chemometrics |
Mathematics / Symbolic Mathematics
A Challenging Balance  P Glaister
A difficult-to-balance equation and how its solution might be approached.
Glaister, P. J. Chem. Educ. 1997, 74, 1368.
Stoichiometry
Redox Balancing without Puzzling  Marten J. ten Hoor
Once it has been established by experiment that the given reactants can indeed be converted into the given products, chemistry has done its job. Balancing the equation of the reaction is a matter of mathematics only.
ten Hoor, Marten J. J. Chem. Educ. 1997, 74, 1367.
Stoichiometry |
Oxidation / Reduction
A New and General Method for Balancing Chemical Equations by Inspections  Chunshi Guo
Any chemical equation, no matter how complicated, can be balanced by inspection. In fact, inspection is often the quickest and easiest way to balance complex equation. The method described here involves the use of "linked sets". It does not require the use of oxidation numbers of the splitting of equations into "half reactions". It can be used to balance all kinds of chemical equations, including ionic equations.
Guo, Chunshi. J. Chem. Educ. 1997, 74, 1365.
Stoichiometry
Balancing Chemical Equations by Inspection  Zoltán Tóth
The paper shows that the balancing chemical equations by inspection is not a trial-and-error process, because a systematic procedure for the balancing simple and more complicated chemical equations without oxidation numbers or equations with several unknowns can be suggested. The proposed method is suitable for balancing all the chemical equations, including ionic equations, which have single unique solution.
Toth, Zoltan. J. Chem. Educ. 1997, 74, 1363.
Stoichiometry
On Balancing Chemical Equations: Past and Present  William C. Herndon
The main purposes of this paper are to give a listing of selected papers on balancing chemical equations that may be useful to chemistry teachers and potential authors as background material, and to provide some comparisons of methods. The selection criteria for the references were deliberately broad, in order to include a wide variety of topics and seminal historical citations, and the references are annotated to increase their usefulness.
Herndon, William C. J. Chem. Educ. 1997, 74, 1359.
Stoichiometry
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
A Note on Covariance in Propagation of Uncertainty  Edwin F. Meyer
It is pointed out that whenever both the slope and the intercept are used in calculating a physical quantity from a linear regression, propagation of error must include the covariance as well as the variances. The point is illustrated with a calculation of the boiling point of water from the parameters of the lnP vs 1/T fit. If the covariance is omitted from the propagation of error, the estimate of uncertainty is unreasonably large.
Meyer, Edwin F. J. Chem. Educ. 1997, 74, 1339.
Chemometrics
How Big Is the Balloon? Stoichiometry Using Baking Soda and Vinegar  
Students discover the concept of stoichiometry and limiting reactants in two ways: first by adding vinegar to a small quantity of baking soda until bubbles stop, and second by mixing a constant quantity of baking soda with increasing volumes of vinegar and collecting the carbon dioxide produced in balloons.
J. Chem. Educ. 1997, 74, 1328A.
Stoichiometry
Spreadsheet Applications in Chemistry Using Microsoft Excel by Dermot Diamond and Venita C. A. Hanratty  Jeffery A. Greathouse
Provides chemistry instructors with an introduction to Excel and its applications in chemistry.
Greathouse, Jeffery A. J. Chem. Educ. 1997, 74, 1279.
Chemometrics
Letter to the Editor about Letter to the Editor "Redox Challenges" from David M. Hart and Response from Roland Stout (J. Chem. Educ. 1996, 73, A226-7)  Andrzej Sobkowiak
Examples of a variety of redox equations.
Sobkowiak, Andrzej. J. Chem. Educ. 1997, 74, 1256.
Stoichiometry |
Reactions |
Oxidation / Reduction
Letter to the Editor about "Redox Challenges" by Roland Stout (J. Chem. Educ. 1995, 72, 1125)  Rodger S. Nelson
Solution for balancing a difficult equation using the conservation of mass.
Nelson, Rodger S. J. Chem. Educ. 1997, 74, 1256.
Stoichiometry
Celsius to Fahrenheit and Vice Versa - Quick, Exact, and Neat  S. C. Dutta Roy
A quick, exact, and neat method is given for conversion of Celsius to Fahrenheit temperatures and vice versa.
Roy, S. C. Dutta. J. Chem. Educ. 1997, 74, 1199.
Learning Theories |
Nomenclature / Units / Symbols
MathBrowser: Web-Enabled Mathematical Software with Application to the Chemistry Curriculum, v 1.0  Jack G. Goldsmith
MathBrowser, a freeware web-enabled derivative of the MathCad mathematical software (MathSoft Inc., Cambridge, MA), is designed to reconcile the problem of how to distribute mathematically rich information over the WWW and to maintain interactivity for the end user.
Goldsmith, Jack G. J. Chem. Educ. 1997, 74, 1164.
Mathematics / Symbolic Mathematics |
Chemometrics
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
Graham's Law and Perpetuation of Error  Stephen J. Hawkes
Grahams Laws of effusion and diffusion are used in recent articles for traditional experiments to which they do not in fact apply and for which they give the wrong answer.
Hawkes, Stephen J. J. Chem. Educ. 1997, 74, 1069.
Gases |
Chemometrics |
Transport Properties
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
CheMentor Software System by H. A. Peoples  reviewed by Brian P. Reid
CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit.
Reid, Brian P. J. Chem. Educ. 1997, 74, 1047.
Stoichiometry
Ionization or Dissociation?  Emeric Schultz
The use of the terms Dissociation and Ionization in the teaching of chemistry is discussed. It is suggested that the term dissociation, and what it suggests in terms of ordinary language, is inappropriate when used in certain contexts. Since an alternate and more physically correct term, specifically ionization, is available for these contexts, it is argued that this term be used consistently in these contexts.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 868.
Equilibrium |
Nomenclature / Units / Symbols
An Analysis of the Algebraic Method for Balancing Chemical Reactions  John A. Olson
A new aspect of this treatment is the mathematical formulation of a third condition involving a balance between oxidation and reduction. The treatment begins with the three general conditions that a balanced chemical reaction must satisfy. These conditions are then expressed in mathematical form that enables the stoichiometric coefficients to be determined.
Olson, John A. . J. Chem. Educ. 1997, 74, 538.
Oxidation / Reduction |
Stoichiometry
Rounding Numbers: Why the "New System" Doesn't Work  W. Robert Midden
This paper explains a correction to the rounding rule previously published in this Journal. The earlier article reported that the best way to round numbers is to always round up when the first digit dropped is 5. However, this will lead to accumulation of error when errors are averaged.
Midden, W. Robert. J. Chem. Educ. 1997, 74, 405.
Chemometrics
Three Programs for DOS: Abstract of Volume 10B, Number 1 2. Periodic Table Games  John S. Martin
The Periodic Table Games are intended to expose students to the vocabulary of chemistry: formulas, combination rules, and descriptive chemistry. They may be played by an individual against the computer, or by several competing players.
Martin, John S. J. Chem. Educ. 1997, 74, 346.
Descriptive Chemistry |
Periodicity / Periodic Table |
Nomenclature / Units / Symbols
Sensitivity to Experimental Parameters via Spreadsheets  B. R. Sundheim
In spreadsheet computations wherever the functional dependence of calculated results on experimental quantities is obscure, sensitivities may be obtained by testing the effects of variations in relevant inputs. An example is given where Hess' law is explored calorimetrically.
Sundhein, B. R. . J. Chem. Educ. 1997, 74, 328.
Chemometrics
Stoogiometry: A Cognitive Approach to Teaching Stoichiometry  Carla R. Krieger
Moe's Mall is a locational device designed to be used by learners as a simple algorithm for solving mole-based exercises efficiently and accurately. The mall functions as a map for setting up solutions to mole-based exercises using dimensional analysis. It clears the cognitive decks of students' easily overburdened short-term memory space, allowing them to focus on the versatility of the mole, rather than stepwise solutions to meaningless exercises.
Krieger, Carla R. J. Chem. Educ. 1997, 74, 306.
Learning Theories |
Computational Chemistry |
Stoichiometry
Exponential Notation  Gavin D Peckham
Suggestion for streamlined typing of exponential notation.
Peckham, Gavin D. J. Chem. Educ. 1997, 74, 64.
Nomenclature / Units / Symbols
Redox Challenges (the author replies)  Stout, Roland
Algebraic solution to balancing a redox equation.
Stout, Roland J. Chem. Educ. 1996, 73, A227.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (2)  Zaugg, Noel S.
Algebraic solution to balancing a redox equation.
Zaugg, Noel S. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (1)  Hart, David M.
Algebraic solution to balancing a redox equation.
Hart, David M. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Interfacing "8088" Computers in the Chemistry Laboratory  James Goodrich and Bill Durham
The goal of using such puzzles is to provide a bit of variety to beginning chemistry students and reduce the tedium of memorizing chemical names.
Goodrich, James; Durham, Bill. J. Chem. Educ. 1996, 73, A130.
Nomenclature / Units / Symbols
Displaying Chemical Formulas in Microsoft Excel  E. Joseph Billo
An Excel macro which automates the entry of subscripts in Excel spreadsheets is described. The macro is assigned to a custom button on Excel's standard toolbar, so that, after typing a text label containing a chemical formula, clicking the button automatically formats the text as a chemical formula.
Billo, E. Joseph. J. Chem. Educ. 1996, 73, A40.
Nomenclature / Units / Symbols
How Do I Balance Thee? ... Let Me Count the Ways!  Lawrence A. Ferguson
The author suggests that this would be a good equation for students to try to balance by trial and error because it has two different sets of coefficients that are not multiples of each other.
Ferguson, Lawrence A. J. Chem. Educ. 1996, 73, 1129.
Stoichiometry
Inorganic Nomenclature  ten Hoor, Marten J.
Inorganic naming schemes should be brought in line with IUPAC recommendations.
ten Hoor, Marten J. J. Chem. Educ. 1996, 73, 825.
Nomenclature / Units / Symbols
An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
An alternative to the conventional method of calculating enthalpies of reaction is presented, using enthalpies of atomization in place of enthalpies of formation. This allows the student to see directly that the reaction enthalpies are determined by the difference in bond strengths in the reactants and products.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 631.
Calorimetry / Thermochemistry |
Thermodynamics |
Equilibrium |
Reactions |
Atomic Properties / Structure |
Stoichiometry
An Excel 4.0 Add-in Function to Calculate Molecular Mass  Christian Hauck
185. In this paper, a Microsoft Excel 4.0 add-in function is presented, which consists of a parser to interpret molecular formulas and a database containing three values for the atomic masses for every element: the mass number of the most abundant isotope, the mass of the most abundant isotope, and the atomic weight.
Hauck, Christian. J. Chem. Educ. 1996, 73, 433.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The Chemistry behind the Air Bag: High Tech in First-Year Chemistry  Andreas Madlung
The chemical process of air bag deployment provides practical applications of gas laws and stoichiometric equations appropriate for use in first-year chemistry.
Madlung, Andreas. J. Chem. Educ. 1996, 73, 347.
Applications of Chemistry |
Gases |
Stoichiometry
What's a Mole for?  Sheryl Dominic
A classroom competition for guessing the number of jelly beans in a jar of candy is used to help students understand the premise of the mole concept: counting particles by weighing.
Dominic, Sheryl. J. Chem. Educ. 1996, 73, 309.
Stoichiometry
Curve Fitting: An Alternative Approach to Analyzing Kinetic Data in Introductory Chemistry  Coleman, William F.
183. The availability of high quality software for performing nonlinear curve fitting on microcomputers allows students to take an alternative approach to data analysis, one that concentrates on functional forms that may be more natural than some of the algebraic machinations necessary to render relationships into linear forms. An example of the application of such an approach to the analysis of kinetic data is presented in this paper.
Coleman, William F. J. Chem. Educ. 1996, 73, 243.
Chemometrics |
Kinetics
Significant Figures in Graph Interpretation  Donald M. Graham
A means is derived for calculating the number of significant figures in the slope and intercept of an experimental linear graph. The method is based on the actual scatter in the points rather than on the nominal precision in the original data, and it can be used even by students who are mathematically fairly unsophisticated.
Graham, Donald M. J. Chem. Educ. 1996, 73, 211.
Chemometrics
Reinforcing Net Ionic Equation Writing: Second Semester  Betty J. Wruck
It is important to actively illustrate that total and net ionic equation writing is a way of learning and expressing an enormous amount of chemistry. There is a major problem with students retaining their ability to write net ionic equations in the second semester. We start this semester with a review and a special, long range assignment.
Wruck, Betty J. J. Chem. Educ. 1996, 73, 149.
Stoichiometry
Management of First-Year Chemistry Laboratories Using Spreadsheets  Collins, Frank E.; Williams, Charles W.
Use of spreadsheets to record, analyze, and assess experimental data.
Collins, Frank E.; Williams, Charles W. J. Chem. Educ. 1995, 72, A182.
Chemometrics
Small-Scale Experiments Involving Gas Evolution  Brouwer, H.
Apparatus for measuring very small volume changes of gases and several experimental procedures involving the evolution of gases.
Brouwer, H. J. Chem. Educ. 1995, 72, A100.
Gases |
Laboratory Equipment / Apparatus |
Stoichiometry |
Acids / Bases |
Reactions |
Mechanisms of Reactions |
Microscale Lab
Experimental Methods: An Introduction to the Analysis of Data (Kirkup, Les)  
Title of interest.
J. Chem. Educ. 1995, 72, A72.
Chemometrics
Redox Challenges: Good Times for Puzzle Fanatics  Roland Stout
Three difficult to balance redox equations.
Stout, Roland. J. Chem. Educ. 1995, 72, 1125.
Reactions |
Stoichiometry |
Oxidation / Reduction |
Enrichment / Review Materials
Dimensional Analysis: An Analogy to Help Students Relate the Concept to Problem Solving  James R. McClure
Using dominoes to help students understand the conversion factor method of dimensional analysis.
McClure, James R. J. Chem. Educ. 1995, 72, 1093.
Nomenclature / Units / Symbols |
Chemometrics
A Simple, Discovery-Based Laboratory Exercise: The Molecular Mass Determination of Polystyrene  Greg A. Slough
Identification of an unknown polymer using silica gel TLC sheets and IR spectroscopy.
Slough, Greg A. J. Chem. Educ. 1995, 72, 1031.
Stoichiometry |
IR Spectroscopy |
Molecular Properties / Structure |
Thin Layer Chromatography
The Stoichiometry of the Neutralization of Citric Acid: An Introductory Laboratory  Susan E. Hayes
Experiment to introduce stoichiometry to pre-college students; includes sample data and analysis.
Hayes, Susan E. J. Chem. Educ. 1995, 72, 1029.
Acids / Bases |
Stoichiometry
Celsius to Fahrenheit--Quick and Dirty  Colin Hester
Simple algorithm for converting Celsius temperature to Fahrenheit temperature.
Hester, Colin. J. Chem. Educ. 1995, 72, 1026.
Calorimetry / Thermochemistry |
Nomenclature / Units / Symbols |
Chemometrics
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
How to Determine the Best Straight Line  S. R. Logan
Consideration of situations in which the use of a least-squares regression is inappropriate.
Logan, S. R. J. Chem. Educ. 1995, 72, 896.
Chemometrics
The Relationship between the Number of Elements and the Number of Independent Equations of Elemental Balance in Inorganic Chemical Equations  R. Subramanian, N.K. Goh, and L. S. Chia
The criterion for determining whether a chemical equation can be balanced fully by the algebraic technique and its application.
Subramaniam, R.; Goh, N. K.; Chia, L. S. J. Chem. Educ. 1995, 72, 894.
Stoichiometry |
Chemometrics
Conservation of Matter  Meyer, Edwin F.
Letter pointing out that the demonstration referred to allows a quantitative measurement of the molecular weight of carbon dioxide.
Meyer, Edwin F. J. Chem. Educ. 1995, 72, 764.
Physical Properties |
Stoichiometry
From Titration Data to Buffer Capacities: A Computer Experiment for the Chemistry Lab or Lecture  Roy W. Clark, Gary D. White, Judith M. Bonicamp, and Exum D. Watts
Provides titration curve data that students can plot and analyze using spreadsheets to develop student understanding of pH, derivatives, buffer capacity, and the behavior of dilute buffers; includes sample graphs and analysis.
Clark, Roy W.; White, Gary D.; Bonicamp, Judith M.; Watts, Exum D. J. Chem. Educ. 1995, 72, 746.
Acids / Bases |
pH |
Titration / Volumetric Analysis |
Chemometrics
Double Disproportionations   M.E. Cardinali, C. Giomini, Ciancarlo Marrosu
Method for balancing a difficult redox reaction.
Cardinali, Mario E.; Giomini, Claudio; Marrosu, Giancarlo. J. Chem. Educ. 1995, 72, 716.
Stoichiometry |
Oxidation / Reduction
Stoichiometry and Chemical Reactions (the author replies)  Filgueiras, Carlos A.
The mere writing of balanced equations may be unrelated to the actual reaction that takes place.
Filgueiras, Carlos A. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
Stoichiometry and Chemical Reactions  Radhakrishnamurty, P.
Can there exist different ways of balancing a chemical reaction?
Radhakrishnamurty, P. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
Statistical Analysis Experiment for the Freshman Chemistry Lab   John C. Salzsieder
Procedure that provides sufficient data for statistical analysis by a freshman chemistry class.
Salzsieder, John C. J. Chem. Educ. 1995, 72, 623.
Chemometrics
Small Scale One-Pot Reactions of Copper, Iron, and Silver  Epp, Dianne N.
Investigation of a series of reactions involving copper, iron, and silver, all conducted with very small quantities in a single well.
Epp, Dianne N. J. Chem. Educ. 1995, 72, 545.
Nomenclature / Units / Symbols |
Reactions |
Acids / Bases |
Precipitation / Solubility
Buoyancy Programs; Viscosity of Polymer Solutions; Precision of Calculated Values  Bertrand, Gary L.
Software to simulate the determination of the density of solids; the preparation of polymer solutions and their time to flow through a viscometer; and a program to calculate the uncertainties of results given the input values.
Bertrand, Gary L. J. Chem. Educ. 1995, 72, 492.
Physical Properties |
Chemometrics
Rapid Calculation for Preparing Solutions  Calero, Diego Lozano
Streamlined method for dilution calculations.
Calero, Diego Lozano J. Chem. Educ. 1995, 72, 424.
Aqueous Solution Chemistry |
Solutions / Solvents |
Chemometrics
The MATCH Program: A Combined Mathematics and Chemistry Curriculum  Wink, Donald J.
A curriculum that integrates introductory chemistry with intermediate algebra.
Wink, Donald J. J. Chem. Educ. 1995, 72, 411.
Chemometrics
Spreadsheet-Controlled Potentiometric Analyses  Mullin, Jerome; Marquardt, Michael
173. Bits and pieces, 53. Discussion of collecting experimental data on spreadsheets directly from laboratory instruments.
Mullin, Jerome; Marquardt, Michael J. Chem. Educ. 1995, 72, 400.
Laboratory Computing / Interfacing |
Chemometrics |
Potentiometry
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
A Concrete Analogy for Combustion Analysis Problems  Reingold, I. David
Exercise for helping students understand stoichiometry by considering a Sherlock Holmes case.
Reingold, I. David J. Chem. Educ. 1995, 72, 222.
Reactions |
Stoichiometry
Measuring with a Purpose: Involving Students in the Learning Process  Metz, Patricia A.; Pribyl, Jeffrey R.
Constructivist learning activities for helping students to understand measurement, significant figures, uncertainty, scientific notation, and unit conversions.
Metz, Patricia A.; Pribyl, Jeffrey R. J. Chem. Educ. 1995, 72, 130.
Nomenclature / Units / Symbols |
Chemometrics |
Constructivism
Analysis of Cryoscopy Data  Wloch, Peter; Cherniak, E. A.
Method for analyzing cryoscopic data with applications to freezing point depression; includes data and analysis.
Wloch, Peter; Cherniak, E. A. J. Chem. Educ. 1995, 72, 59.
Physical Properties |
Physical Properties |
Stoichiometry
Introducing Spreadsheet Data Analysis in the First-Semester Laboratory  Bushey, Michelle M.
Massing a collection of pennies in order to introduce statistical concepts about small and large data sets as well as introduce students to the use of spreadsheets.
Bushey, Michelle M. J. Chem. Educ. 1994, 71, A90.
Chemometrics
Spreadsheet Statistics  Simpson, John M.
Using computer spreadsheets to do statistical analysis on data.
Simpson, John M. J. Chem. Educ. 1994, 71, A88.
Chemometrics
Metric for Me! A Layperson's Guide to the Metric System for Everyday Use with Exercises, Problems, and Estimations (Schoemaker, Robert W.)  
Title of interest.
J. Chem. Educ. 1994, 71, A23.
Nomenclature / Units / Symbols
A Graphical Representation of Limiting Reactant  Phillips, J. C.
The concept of limiting reactant may be conveniently illustrated by a graphical representation method that is based on a "minimum slope".
Phillips, J. C. J. Chem. Educ. 1994, 71, 1048.
Stoichiometry
Candy Sprinkles To Illustrate One Part Per Million  Meloan, Clifton E.; Meloan, Mindy L.; Meloan, John M.
1,000,000 colored candy sprinkles (5,246 g) with a single black one placed in a clear, spherical fish tank.
Meloan, Clifton E.; Meloan, Mindy L.; Meloan, John M. J. Chem. Educ. 1994, 71, 658.
Nomenclature / Units / Symbols
The Mole Concept: Developing an Instrument To Assess Conceptual Understanding  Krishnan, Shanthi R.; Howe, Ann C.
The development of a diagnostic test to assess conceptual understanding of the mole.
Krishnan, Shanthi R.; Howe, Ann C. J. Chem. Educ. 1994, 71, 653.
Stoichiometry |
Constructivism
Pictorial Analogies XII: Stoichiometric Calculations  Fortman, John J.
Pictorial analogies for comparing different amounts in terms of number, volume, and mass; excess reagents; and stoichiometric approximations.
Fortman, John J. J. Chem. Educ. 1994, 71, 571.
Stoichiometry
Symbolic Algebra and Stoichiometry  DeToma, Robert P.
Applying symbolic algebra (instead of the factor-label method) to stoichiometry calculations.
DeToma, Robert P. J. Chem. Educ. 1994, 71, 568.
Chemometrics |
Nomenclature / Units / Symbols
A Simple Laboratory Experiment Using Popcorn To Illustrate Measurement Errors  Kimbrough, Doris R.; Meglen, Robert R.
This experiment focuses on the difference between accuracy and precision and demonstrates the necessity for multiple measurements of an experimental variable.
Kimbrough, Doris R.; Meglen, Robert R. J. Chem. Educ. 1994, 71, 519.
Chemometrics
Basic Principles of Scale Reading  Peckham, Gavin D.
Steps and basic principles of reading the scales of laboratory instruments.
Peckham, Gavin D. J. Chem. Educ. 1994, 71, 423.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
A Joke Based on Significant Figures  Ruekberg, Ben
Joke to introduce significant figures.
Ruekberg, Ben J. Chem. Educ. 1994, 71, 306.
Chemometrics
Ambiguities in Balancing Chemical Equations  Toby, Sidney
Why some equations may be balanced in more than one way.
Toby, Sidney J. Chem. Educ. 1994, 71, 270.
Stoichiometry
Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry  Gorin, George
Demonstrates that the mole is little different from other units of measurement.
Gorin, George J. Chem. Educ. 1994, 71, 114.
Nomenclature / Units / Symbols
Solving equilibria problems with a graphing calculator: A robust method, free of algebra and calculus   Ruch, David K.; Chasteen, T. G.
The method of successive approximations is frequently introduced in freshman chemistry as a means for solving equilibrium equations. However, this often requires an understanding of calculus that is problematic for introductory chemistry students. An alternative method to solving such equations is to use graphic calculators to solve problems graphically.
Ruch, David K.; Chasteen, T. G. J. Chem. Educ. 1993, 70, A184.
Equilibrium |
Chemometrics
Shell thickness of the copper-clad cent   Vanselow, Clarence H.; Forrester, Sherri R.
An exercise in determining the thickness of the copper layer of modern pennies presents the opportunities to combine good chemistry, instrumentation, simple curve fitting, and geometry to solve a simply stated problem.
Vanselow, Clarence H.; Forrester, Sherri R. J. Chem. Educ. 1993, 70, 1023.
Metals |
Quantitative Analysis |
Chemometrics
How thick/thin is your mirror?  McCullough, Thomas; Bell, Lisa
When a student reported that his/her water film was 6 cm thick, these authors felt a review of significant figures and dimensional analysis may be in order.
McCullough, Thomas; Bell, Lisa J. Chem. Educ. 1993, 70, 851.
Chemometrics
Measurement scales: Changing Celsius to Kelvin is not just a unit conversion   Nordstrom, Brian H.
The key to understanding the difference between Celsius and Kelvin lies in the different types of measurement scales. Students may have an easier time manipulating equations (such as gas laws) if they knew the difference between these scales.
Nordstrom, Brian H. J. Chem. Educ. 1993, 70, 827.
Chemometrics |
Kinetic-Molecular Theory |
Gases
Statistical analysis of errors: A practical approach for an undergraduate chemistry lab: Part 1. The concepts  Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J.
A concise and practice-oriented introduction to the analysis and interpretation of measurement and errors.
Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J. J. Chem. Educ. 1993, 70, 776.
Chemometrics
Demonstrating the magnitude of Avogadro's number   Johns, Philip T.
A demonstration using the evaporation of acetone.
Johns, Philip T. J. Chem. Educ. 1993, 70, 774.
Stoichiometry
Pictorial analogies VIII: Types of formulas and structural isomers   Fortman, John J.
Visual ways of understanding empirical, structural, and molecular formulas as well as structural isomers.
Fortman, John J. J. Chem. Educ. 1993, 70, 755.
Stoichiometry |
Diastereomers
Introducing probabilistic concepts in chemistry: The preparation of 10-24 M solution as a limiting case  de Vicente, M. Sastre
A straightforward dilution experiment that can be used as the starting point for establishing a link between chemistry and concepts of probability theory.
de Vicente, M. Sastre J. Chem. Educ. 1993, 70, 674.
Solutions / Solvents |
Chemometrics
Experiments for modern introductory chemistry: Limiting reagent, stoichiometry, and the mole  Kildahl, Nicholas; Berka, Ladislav H.
Description of an experiment based on electronic absorption spectroscopy for general chemistry students that gives accurate results, conveys the excitement of discovery in experimental science, and illustrates key concepts.
Kildahl, Nicholas; Berka, Ladislav H. J. Chem. Educ. 1993, 70, 671.
Stoichiometry |
Spectroscopy
Unknown identification by simple stoichiometry  McCullough, Thomas
A simple experiment in which the student can determine the identity of a soluble carbonate salt using one straightforward reaction and gravimetric analysis.
McCullough, Thomas J. Chem. Educ. 1993, 70, 592.
Gravimetric Analysis |
Stoichiometry
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-based program that has modules on significant figures, VSEPR structures, stoichiometry, and unit conversions.
Cornelius, Richard J. Chem. Educ. 1993, 70, 460.
VSEPR Theory |
Stoichiometry |
Chemometrics
A mole of M&M's   Merlo, Carmela; Turner, Kathleen E.
Engaging students by asking the question: How thick would the layer of M&M candies be if we covered the continental United States with a mole of these candies? Compare this to a mole of water.
Merlo, Carmela; Turner, Kathleen E. J. Chem. Educ. 1993, 70, 453.
Stoichiometry |
Chemometrics
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-like program that includes modules on significant figures, conversions, stoichiometry, and VSEPR structures.
Cornelius, Richard J. Chem. Educ. 1993, 70, 387.
VSEPR Theory |
Stoichiometry |
Chemometrics
Combustion of hydrocarbons: A stoichiometry demonstration   Alexander, M. Dale
A simple demonstration that makes the introduction of stoichiometry more interesting and relevant to students.
Alexander, M. Dale J. Chem. Educ. 1993, 70, 327.
Stoichiometry
Empirical formulas from atom ratios: A simple method to obtain the integer factors of a rational number  Weltin, E.
Most textbooks advise students to use a method tantamount to trial and error when they encounter a ratio in empirical formula calculations where it is not immediately apparent what the coefficients should be. The author describes a simple procedure that is an effective way to find the integer factors.
Weltin, E. J. Chem. Educ. 1993, 70, 280.
Stoichiometry |
Chemometrics
Measuring Avogadro's number on the overhead projector   Solomon, Sally; Hur, Chinhyu
A Petri dish filled with water and stearic acid dissolved in petroleum ether upon an overhead projector can be used to introduce the topic of Avogadro's number.
Solomon, Sally; Hur, Chinhyu J. Chem. Educ. 1993, 70, 252.
Chemometrics |
Stoichiometry
Using monetary analogies to teach average atomic mass   Last, Arthur M.; Webb, Michael J.
Some strategies to overcome the frequent problem novice students have with calculating average atomic mass.
Last, Arthur M.; Webb, Michael J. J. Chem. Educ. 1993, 70, 234.
Chemometrics |
Stoichiometry
Relative atomic mass and the mole: A concrete analogy to help students understand these abstract concepts   de Sanabia, Josefina Arce
Suggestions on how to improve student understandings of the mathematical idea of "ratio" to enhance conceptual understanding of this fundamental chemistry concept.
de Sanabia, Josefina Arce J. Chem. Educ. 1993, 70, 233.
Chemometrics |
Stoichiometry
Concept learning versus problem solving: There is a difference   Nakhleh, Mary B.; Mitchell, Richard C.
Previous studies indicate that there is little connection between algorithmic problem solving skills and conceptual understanding. The authors provide some ways to evaluate students along a continuum of low-high algorithmic and conceptual problem solving skills. The study shows that current lecture method teaches students to solve algorithms rather than teaching chemistry concepts.
Nakhleh, Mary B.; Mitchell, Richard C. J. Chem. Educ. 1993, 70, 190.
Chemometrics |
Learning Theories |
Student-Centered Learning
An Investigative Density Experiment   Samsa, Richard A.
A laboratory exercise about density that is engaging and allows students to use higher-level thinking skills and develop a plan to solve a problem.
Samsa, Richard A. J. Chem. Educ. 1993, 70, 149.
Laboratory Computing / Interfacing |
Chemometrics |
Physical Properties
More on the Question of Significant Figures  Clase, Howard J.
Because so many students have a hard time understanding what significant figures are all about, this author developed a method using "?" to substitute for insignificant zeros. This helps many students finally grasp this convention.
Clase, Howard J. J. Chem. Educ. 1993, 70, 133.
Chemometrics
Equilibrium Calculator  Allendoerfer, Robert
The equilibrium calculator can calculate the equilibrium concentrations of all reagents in an arbitrary chemical reaction with as many as five reactants and products.
Allendoerfer, Robert J. Chem. Educ. 1993, 70, 126.
Equilibrium |
Chemometrics
Ideas of Equality and Ratio: Mathematical Basics for Chemistry and the Fallacy of Unitary Conversion   Ochiai, El-Ichiro.
The author argues against dimensional analysis (referred to as the "unitary conversion method" in this article) and champions the more elegant "ratio" or "equality" paradigms as a way to help students make sense of chemical equations and "de-algorithmize" chemical calculations at the introductory level.
Ochiai, El-Ichiro. J. Chem. Educ. 1993, 70, 44.
Chemometrics
Is Dimensional Analysis the Best We Have to Offer?  Canagaratna, Sebastian G.
Dimensional analysis is a unit based approach while the alternative, "method of equations" is a relations-based approach to solving mathematical problems. The author argues that quantitative chemistry involves relationships between quantities and not units, making the later method more pedagogically sound.
Canagaratna, Sebastian G. J. Chem. Educ. 1993, 70, 40.
Chemometrics
Applying a simple linear least-squares algorithm to data with uncertainties in both variables  Ogren, Paul J.; Norton, J. Russell
There are cases in which it is desirable to find an optimum linear least-squares fit to data with significant uncertainties in both the x and y variables.
Ogren, Paul J.; Norton, J. Russell J. Chem. Educ. 1992, 69, A130.
Chemometrics
An hydrogen sulfide free analytical technique for cation analysis: The statistical approach  Gaggero, Fernando Labandera; Luaces, Victor Martinez
In this analysis the study of each cation was carried out independently without taking into account the other cations present in the solutions.
Gaggero, Fernando Labandera; Luaces, Victor Martinez J. Chem. Educ. 1992, 69, 934.
Chemometrics |
Qualitative Analysis |
Precipitation / Solubility
Demonstrating the conservation of matter: A trilogy of experiments   Martin, David; Russell, Randy D.; Thomas, Nicholas C.
Three related demonstrations involving calcium carbonate and hydrochloric acid explore the conservation of matter.
Martin, David; Russell, Randy D.; Thomas, Nicholas C. J. Chem. Educ. 1992, 69, 925.
Physical Properties |
Acids / Bases |
Stoichiometry |
Gases
Classroom experience: Using estimated answers in solving chemistry problems  Green, Michael E.; Garland, Denise A.
A textbook is described in which students solve all problems by estimation.
Green, Michael E.; Garland, Denise A. J. Chem. Educ. 1992, 69, 898.
Chemometrics |
Learning Theories
On the chemically impossible "other" roots in equilibrium calculations, II  Ludwig, Oliver G.
In a previous paper the author described, using mathematics accessible to students, how an equilibrium calculation leading to a quadratic equation may be shown to have but one "chemical" root. The present work extends this demonstration to some reactions leading to cubic equations.
Ludwig, Oliver G. J. Chem. Educ. 1992, 69, 884.
Chemometrics |
Equilibrium
The metric system  Mason, Lynn M.
Metric conversions commonly encountered in chemistry and biology, with tests over each lesson.
Mason, Lynn M. J. Chem. Educ. 1992, 69, 818.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Chemometrics
Misusing "molecular"  Goldberg, David E.
In discussing net ionic equations, the authors of many general chemistry textbooks call the overall equation a "molecular equation", which is misleading at best and incorrect at worst.
Goldberg, David E. J. Chem. Educ. 1992, 69, 776.
Nomenclature / Units / Symbols
A demonstration of the molar volume of nitrogen gas  Hughes, Elvin, Jr.
A graphic illustration and a calculation of the approximate molar volume of nitrogen gas.
Hughes, Elvin, Jr. J. Chem. Educ. 1992, 69, 763.
Gases |
Chemometrics
Storing solar energy in calcium chloride  Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F.
Using common chemistry concepts to determine the feasibility of storing solar energy in calcium chloride hexahydrate.
Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 753.
Calorimetry / Thermochemistry |
Stoichiometry |
Chemometrics
A graphing activity to freshen up the laboratory  Pribyl, Jeffrey R.
A laboratory activity designed to address students' difficulties in interpreting data from graphs and tables.
Pribyl, Jeffrey R. J. Chem. Educ. 1992, 69, 752.
Chemometrics
Imprecise numbers and incautious safety procedure mar experiment.  Nelson, Robert N.
Problems with significant figures and safety concerns regarding two published experiments.
Nelson, Robert N. J. Chem. Educ. 1992, 69, 688.
Reactions |
Nomenclature / Units / Symbols
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
First-year chemistry laboratory calculations on a spreadsheet  Edwards, Paul A.; McKay, J. Brian; Sink, Charles W.
140. A laboratory exercise to introduce students to the use of computers and spreadsheets.
Edwards, Paul A.; McKay, J. Brian; Sink, Charles W. J. Chem. Educ. 1992, 69, 648.
Chemometrics
Teaching inorganic nomenclature: A systematic approach.  Lind, Gerhard.
Convenient flow charts for naming inorganic compounds.
Lind, Gerhard. J. Chem. Educ. 1992, 69, 613.
Nomenclature / Units / Symbols
Gravimetric-gasometric determination of zinc on galvanized nails.  Burgstahler, Albert W.
A simple acid-dissolution method for a combined gravimetric-gasometric determination of the amount of zinc coating galvanized nails through reaction with HCl.
Burgstahler, Albert W. J. Chem. Educ. 1992, 69, 575.
Gravimetric Analysis |
Qualitative Analysis |
Stoichiometry |
Electrochemistry
Significant figures: A classroom demonstration  Kirksey, H. Graden.
Demonstration to show students the function and importance of significant figures in a measurement.
Kirksey, H. Graden. J. Chem. Educ. 1992, 69, 497.
Nomenclature / Units / Symbols
A mole of salt crystals-Or how big is the Avogadro number?  Hoyt, William.
Calculations designed to help students put the size of Avogadro's number into perspective.
Hoyt, William. J. Chem. Educ. 1992, 69, 496.
Nomenclature / Units / Symbols |
Chemometrics
Views of nursing professionals on chemistry course content for nursing education  Walhout, Justine S.; Heinschel, Judie.
Analysis of survey conducted of deans of schools of nursing, chairs of nursing departments, and registered nurses regarding courses required of nursing students and the importance of different units of measure and 39 chemistry topics to the nursing profession.
Walhout, Justine S.; Heinschel, Judie. J. Chem. Educ. 1992, 69, 483.
Medicinal Chemistry |
Nomenclature / Units / Symbols
Gas chamber stoichiometry   Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F.
Most students know that HCN is used in gas chambers, they may not know however that HCN is produced in the burning of carpets, draperies, clothing and other textiles made of polyacrylonitrile.
Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 389.
Stoichiometry |
Gases |
Applications of Chemistry
Solutions, anyone?  McCullough, Bro. Thomas
A simple, quick, and economical experiment which gives the student intimate hands-on contact with most quantitative measurements of solutions is described.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 293.
Solutions / Solvents |
Quantitative Analysis |
Stoichiometry
A simple but effective demonstration for illustrating significant figure rules when making measurements and doing calculations  Zipp, Arden P.
Students can be surprised and confused when different arithmetical operations are performed on experimental data, because the rules change when changing from addition to subtraction to multiplication or division. The following is a simple way to illustrate several aspects of these rules.
Zipp, Arden P. J. Chem. Educ. 1992, 69, 291.
Chemometrics
Balancing a chemical equation: What does it mean?  Filgueiras, Carlos A
Students were puzzled by the idea that one chemical equation could be balanced in several different ways. This led to a fruitful discussion on how exact a science chemistry really is.
Filgueiras, Carlos A J. Chem. Educ. 1992, 69, 276.
Stoichiometry |
Oxidation / Reduction
The old Nassau demonstration: Educational and entertaining variations  Fortman, John J.
The Old Nassau reaction can be used to illustrate the effects of concentration and temperature on rates in a fun way.
Fortman, John J. J. Chem. Educ. 1992, 69, 236.
Kinetics |
Stoichiometry |
Rate Law
Are moles really necessary?  McCullough, Bro. Thomas
Moles should not be allowed to divert ones attention from the equally valid and equally important balanced equation.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 121.
Stoichiometry
Spreadsheet titration of diprotic acids and bases  Breneman, G. L.; Parker, O. J.
133. Bits and pieces, 47. A spreadsheet and chart, set up using Excel, for showing titration curves of any diprotic acid or base is described.
Breneman, G. L.; Parker, O. J. J. Chem. Educ. 1992, 69, 46.
Acids / Bases |
Chemometrics |
Titration / Volumetric Analysis
Micro-Kipp gas generators   Wilson, Byron J.
An attention-getting microexperiment to illustrate chemical stoichiometry involving several rockets made from plastic Beral pipets.
Wilson, Byron J. J. Chem. Educ. 1991, 68, A297.
Microscale Lab |
Stoichiometry |
Laboratory Equipment / Apparatus
Chem 1 concept builder (Lower, Steve with Instructional Software)  Hair, Sally R.
A review of a software package designed for tutorial and drill.
Hair, Sally R. J. Chem. Educ. 1991, 68, A19.
Acids / Bases |
Oxidation / Reduction |
Stoichiometry |
Atomic Properties / Structure
Having fun with the metric system  Campbell, Mark L.
A puzzle adds some fun to the mundane treatment of the metric system.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 1043.
Chemometrics
A mole mnemonic  Brown, Bernard S.
This article features a chart that provides a fun mnemonic offered to help students struggling with the concept of the mole by making ideas more concrete.
Brown, Bernard S. J. Chem. Educ. 1991, 68, 1039.
Stoichiometry
Some conundrums of chemical nomenclature  Quigley, Michael N.
When talking about chemistry, we use some awfully confusing terms that warrant scrutiny.
Quigley, Michael N. J. Chem. Educ. 1991, 68, 1009.
Chemometrics
The development of statistical concepts in a design-oriented laboratory course in scientific measuring  Goedhart, Martin J.; Verdonk, Adri H.
This article offers a contribution to the development of curriculum that includes design and evaluation of measurements.
Goedhart, Martin J.; Verdonk, Adri H. J. Chem. Educ. 1991, 68, 1005.
Chemometrics
Chemical equations are actually matrix equations  Alberty, Robert A.
Chemists tend to think that chemical equations are unique to chemistry and they are not used to thinking of chemical equations as the mathematical equations they in fact are. The objective of this paper is to illustrate the mathematical significance of chemical equations.
Alberty, Robert A. J. Chem. Educ. 1991, 68, 984.
Stoichiometry |
Chemometrics
KC? Discoverer: Exploring the properties of the chemical elements  Liebel, Michael
This software program allows users to explore a large number of properties of the elements. The program can find all elements associated with a certain property, graph numeric properties against other numeric properties, list elements, sort elements, and use the periodic table to select elements.
Liebel, Michael J. Chem. Educ. 1991, 68, 956.
Periodicity / Periodic Table |
Physical Properties |
Chemometrics |
Descriptive Chemistry
A carbonate project introducing students to the chemistry lab  Dudek, Emily
A description of a first semester general chemistry laboratory that helps acquaint students with a large variety of chemistry laboratory procedures.
Dudek, Emily J. Chem. Educ. 1991, 68, 948.
Chemometrics |
Gravimetric Analysis |
Titration / Volumetric Analysis |
Separation Science
The use of "marathon" problems as effective vehicles for the presentation of general chemistry lectures  Burness, James H.
A marathon problem is a long, comprehensive, and difficult problem that ties together many of the topics in a chapter and that is solved together by the instructor and students. Sample problems are included and advantages and disadvantages of this approach are discussed.
Burness, James H. J. Chem. Educ. 1991, 68, 919.
Chemometrics
An SI mnemonic  Quigley, M. N.
A mnemonic to help remember the physical quantities associated with the nine base SI units.
Quigley, M. N. J. Chem. Educ. 1991, 68, 815.
Chemometrics
A BASIC program for computing reactant combinations from approximate elemental analysis data  Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu
129. A computer program has been developed for determining the number of moles of reactants participating in a reaction in addition to calculating the molecular formula for the analytical data.
Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu J. Chem. Educ. 1991, 68, 773.
Laboratory Computing / Interfacing |
Stoichiometry |
Quantitative Analysis
Developmental instruction: Part II. Application of the Perry model to general chemistry  Finster, David C.
The Perry scheme offers a framework in which teachers can understand how students make meaning of their world, and specific examples on how instructors need to teach these students so that the students can advance as learners.
Finster, David C. J. Chem. Educ. 1991, 68, 752.
Learning Theories |
Atomic Properties / Structure |
Chemometrics |
Descriptive Chemistry
Grafit  Lisensky, George C.
A data manipulation tool and plotting program useful at all levels of chemistry.
Lisensky, George C. J. Chem. Educ. 1991, 68, 587.
Laboratory Computing / Interfacing |
Chemometrics
A poster exhibit on stoichiometry for National Chemistry Week  Pacer, Richard A.
An idea for a visually intriguing poster that will invite attention.
Pacer, Richard A. J. Chem. Educ. 1991, 68, 549.
Stoichiometry |
UV-Vis Spectroscopy
Space-filling P-V-T models  Hilton, Don B.
Space-filling models help beginning students visualize the numerical aspects of the empirical gas laws.
Hilton, Don B. J. Chem. Educ. 1991, 68, 496.
Gases |
Noncovalent Interactions |
Kinetic-Molecular Theory |
Chemometrics
When figures signify nothing  Ahmad, Jamil
Significant figures in the "real world" set poor standards and confusing examples for chemistry students.
Ahmad, Jamil J. Chem. Educ. 1991, 68, 469.
Chemometrics
Solving quadratic equations to the correct number of significant figures  Thomas, Rudolf
Presenting an application of the successive approximations method for solving quadratic or higher order expressions.
Thomas, Rudolf J. Chem. Educ. 1991, 68, 409.
Equilibrium |
Chemometrics
Is 8C equal to 50F?  Thompson, H. Bradford
A play, commentary, modest proposal, and a "less modest" proposal regarding calculations and significant figures.
Thompson, H. Bradford J. Chem. Educ. 1991, 68, 400.
Chemometrics
The effect of context on the translation of sentences into algebraic equations  Niaz, Mansoor; Herron, J. Dudley; Phelps, Amy J.
Assessing students in a one-semester preparatory chemistry course to see how well students understand proportional relationships.
Niaz, Mansoor; Herron, J. Dudley; Phelps, Amy J. J. Chem. Educ. 1991, 68, 306.
Chemometrics
Chemical equilibrium: III. A few math tricks   Gordus, Adon A.
The third article in a series on chemical equilibrium that considers a few math "tricks" useful in equilibrium calculations and approximations.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 291.
Acids / Bases |
Equilibrium |
Chemometrics |
Titration / Volumetric Analysis
Chemical equilibrium: II. Deriving an exact equilibrium equation   Gordus, Adon A.
In this article appearing in a series on chemical equilibrium, authors consider how to derive a completely general equation for any chemical mixture.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 215.
Equilibrium |
Chemometrics
A simple first-order consecutive rate reaction: A different method for its solution   Hughes, Elvin, Jr.
Power series methods should be used whenever possible in chemistry courses.
Hughes, Elvin, Jr. J. Chem. Educ. 1991, 68, 180.
Chemometrics |
Equilibrium
A simple first-order consecutive rate reaction: A different method for its solution   Castillo S., Carlos; Micolta S., Germania
A different way to present an equilibrium equation that appeared previously in this Journal.
Castillo S., Carlos; Micolta S., Germania J. Chem. Educ. 1991, 68, 179.
Chemometrics |
Equilibrium
Finding largest common factors and simplest integer ratios   Macomber, Roger S.
General chemistry students can ease some of their math-phobia with an exam question that deals with a familiar topic prior to putting these same mathematical principles into the context of chemistry.
Macomber, Roger S. J. Chem. Educ. 1991, 68, 42.
Chemometrics
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
SEQS 3.0 Student Version Simultaneous Equation Solver (Tucker, Edwin E.)  Dierenfeldt, K.E.
SEQS 3.0 is a program of considerable versatility for solving sets of nonlinear simultaneous equations.
Dierenfeldt, K.E. J. Chem. Educ. 1990, 67, A149.
Chemometrics
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (1)  Freeman, Robert D.
There is no convincing evidence of confusion regarding electrochemical conventions and the author's proposed solutions are unacceptable.
Freeman, Robert D. J. Chem. Educ. 1990, 67, 990.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
A classroom experiment using the Pythagorean theorem in a discussion of the scientific method  Sauls, Frederic, C.
Experiment to verify the Pythagorean theorem as a means of introducing the importance of accurate measurements, accuracy and error.
Sauls, Frederic, C. J. Chem. Educ. 1990, 67, 958.
Nonmajor Courses |
Chemometrics
Accuracy of measurements and the U.S. Census  Gorin, George
Some aspects of taking the Census can help students to understand the problem of measurement error and the use of significant figures.
Gorin, George J. Chem. Educ. 1990, 67, 936.
Chemometrics
Lessons learned from Lord Rayleigh on the importance of data analysis  Larsen, Russell D.
Analysis of the data collected by Lord Rayleigh in association with his discovery of argon presented as a model for scientific inquiry.
Larsen, Russell D. J. Chem. Educ. 1990, 67, 925.
Chemometrics |
Atmospheric Chemistry
Avogadro's number, moles, and molecules  McCullough, Thomas, CSC
A simple diagram that relates Avogadro's number, moles, and number of atoms / molecules.
McCullough, Thomas, CSC J. Chem. Educ. 1990, 67, 783.
Nomenclature / Units / Symbols |
Stoichiometry
ChemCalc: A scientific calculator  Allendoerfer, Robert D.
A scientific calculator program that can be used as a stand-alone or incorporated into other software written in BASIC.
Allendoerfer, Robert D. J. Chem. Educ. 1990, 67, 770.
Chemometrics
Pop-up units converter  Filby, Gordon; Klusmann, Martin
Program that provides conversion factors and calculations among a variety of units.
Filby, Gordon; Klusmann, Martin J. Chem. Educ. 1990, 67, 770.
Nomenclature / Units / Symbols
A straightforward derivation of stoichiometric mass relationships  Gorin, George
An alternative to the factor label method for solving stoichiometric mass relationship problems.
Gorin, George J. Chem. Educ. 1990, 67, 762.
Stoichiometry |
Chemometrics
Name for the basic physical quantity n, symbol for relative mass  Nelson, P. G.
Recommendations for naming the basic physical quantity n, symbol for relative mass.
Nelson, P. G. J. Chem. Educ. 1990, 67, 628.
Nomenclature / Units / Symbols |
Stoichiometry
A significant example: How many days in a century?  Lisensky, George
Calculating the number of days in a century can help clarify the subject of significant figures.
Lisensky, George J. Chem. Educ. 1990, 67, 562.
Nomenclature / Units / Symbols |
Chemometrics
Analysis of organic acids: A freshman laboratory experiment  Griswold, John R.; Rauner, Richard A.
In this experiment students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol.
Griswold, John R.; Rauner, Richard A. J. Chem. Educ. 1990, 67, 516.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry |
Precipitation / Solubility
Dynamic data storage in FORTRAN  Chung-Phillips, Alice
115. Bits and pieces, 44. The purpose of this article is to promote the use of dynamic storage allocation in FORTRAN to chemistry instructors and students in the present computing environment.
Chung-Phillips, Alice J. Chem. Educ. 1990, 67, 500.
Chemometrics
Nitric oxide leftovers  Hornack, Fred M.
This example shows that a stoichiometric problem can be solved in a number of different but equally valid ways.
Hornack, Fred M. J. Chem. Educ. 1990, 67, 496.
Stoichiometry |
Applications of Chemistry
How large is a mole?  Tannenbaum, Irving R.
This problem is designed to demonstrate to students the size of a mole.
Tannenbaum, Irving R. J. Chem. Educ. 1990, 67, 481.
Stoichiometry
Solving quadratic equations  Brown, R. J. C.
A better technique than the quadratic equation for chemical equilibria is offered here.
Brown, R. J. C. J. Chem. Educ. 1990, 67, 409.
Chemometrics |
Equilibrium
Please, no angstrometer!  Gorin, George
Instead of urging the adoption of more prefixes, there is good reason to propose that some of them be eliminated.
Gorin, George J. Chem. Educ. 1990, 67, 277.
Nomenclature / Units / Symbols
Further studies on concept learning versus problem solving  Pickering, Miles
Are there two kinds of students, some who possess an ability to do conceptual problems and some who can do mathematical problems without molecular understanding?
Pickering, Miles J. Chem. Educ. 1990, 67, 254.
Learning Theories |
Stoichiometry |
Gases
Concept learning versus problem solving: Revisited  Sawrey, Barbara A.
A student's ability to solve a numerical problem does not guarantee conceptual understanding of the molecular basis of the problem.
Sawrey, Barbara A. J. Chem. Educ. 1990, 67, 253.
Learning Theories |
Stoichiometry |
Gases
Problem solving and requisite knowledge of chemistry  Lythcott, Jean
It is possible for students to produce right answers to chemistry problems without really understanding much of the chemistry involved.
Lythcott, Jean J. Chem. Educ. 1990, 67, 248.
Stoichiometry |
Learning Theories
Copper dissolution in nitric acid   Stairs, Robert A.
Previous correspondence on the stoichiometry of the dissolution of copper in nitric acid is confused as a result of the attempt to write a single equation.
Stairs, Robert A. J. Chem. Educ. 1990, 67, 184.
Stoichiometry
Stoichiometry for copper dissolution in nitric acid: A comment   Carr, James D.
An explanation for the reason that several sets of coefficients will balance the reaction equation between copper and nitric acid.
Carr, James D. J. Chem. Educ. 1990, 67, 183.
Stoichiometry
In praise of thiosulfate  Tykodi, R. J.
The reactions of thiosulfate make impressive lecture demonstrations and worthwhile laboratory experiments.
Tykodi, R. J. J. Chem. Educ. 1990, 67, 146.
Acids / Bases |
Precipitation / Solubility |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry
A proposition about the quantity of which mole is the SI unit  Rocha-Filho, Romeu C.
In this note, after a brief review of the evolution of the meaning of the term mole and a discussion of intrinsic properties of matter, it is proposed that the quantity measured using the SI base unit mole is numerousness, an intrinsic property of samples of matter.
Rocha-Filho, Romeu C. J. Chem. Educ. 1990, 67, 139.
Stoichiometry
Hot stellar moles  Martin, John S.
To reinforce elemental concepts of chemistry, it helps to see how they work under unusual conditions.
Martin, John S. J. Chem. Educ. 1990, 67, 138.
Stoichiometry
Introduction to experiment design for chemists  Strange, Ronald S.
One purpose of this paper is to review basic concepts and terminology of experimental design, analysis of data, and optimization.
Strange, Ronald S. J. Chem. Educ. 1990, 67, 113.
Chemometrics
Quantities, Units, and Symbols in Physical Chemistry (Mills, Ian; Cvitas, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo)  Freeman, Robert D.
Everything you ever wanted to know about physical quantities, symbols, and units.
Freeman, Robert D. J. Chem. Educ. 1989, 66, A188.
Nomenclature / Units / Symbols
Principles of Stoichiometry (Gold, Marvin)  Montagnino, Frank
The program is primarily a tutorial supported by nonrandom generated problems which require user input.
Montagnino, Frank J. Chem. Educ. 1989, 66, A42.
Stoichiometry
Chemical Nomenclature and Balancing Equations (Bergwall Educational Software)  Kling, Timothy A.
These computer programs deal exclusively with the subjects of inorganic nomenclature and balancing simple equations.
Kling, Timothy A. J. Chem. Educ. 1989, 66, A41.
Nomenclature / Units / Symbols
Exception to solving chem problems without the factor-label approach (the author replies)  Cardulla, Frank
There are other ways to teach problem solving, and they can produce competent, successful, and enthusiastic students.
Cardulla, Frank J. Chem. Educ. 1989, 66, 1066.
Chemometrics |
Nomenclature / Units / Symbols
Exception to solving chem problems without the factor-label approach  Gillette, Marcia L.
The classroom analogy Cardulla uses could be made much more meaningful if it were used to demonstrate the relation between what is obvious and what is not.
Gillette, Marcia L. J. Chem. Educ. 1989, 66, 1065.
Chemometrics |
Nomenclature / Units / Symbols
Amending the IUPAC Green Book  Tykodi, R. J.
Suggested amendments to the IUPAC Green Book regarding standardized chemical terminology and units of measure.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1064.
Nomenclature / Units / Symbols
Elementary my dear Watson  Helser, Terry L.
A puzzle using the names and symbols of the elements.
Helser, Terry L. J. Chem. Educ. 1989, 66, 980.
Nomenclature / Units / Symbols
Fundamental concepts in the teaching of chemistry: Part 1. The two worlds of the chemist make nomenclature manageable  Loeffler, Paul A.
A proposal to precisely define and consistently employ the terms chemical substance and chemical species; the article uses the classification of matter and nomenclature as examples of the scheme's application.
Loeffler, Paul A. J. Chem. Educ. 1989, 66, 928.
Nomenclature / Units / Symbols |
Learning Theories
The acid-base package: A collection of useful programs for proton-transfer systems  Hawkes, Stephen J.
Four programs that deal with the types of acid-base calculations normally encountered in introductory and analytical chemistry courses.
Hawkes, Stephen J. J. Chem. Educ. 1989, 66, 830.
Acids / Bases |
Chemometrics
Atlantic-Pacific sig figs  Stone, Helen M.
Examples of applications of significant figures in calculations.
Stone, Helen M. J. Chem. Educ. 1989, 66, 829.
Nomenclature / Units / Symbols |
Chemometrics
How to visualize Avogadro's number  van Lubeck, Henk
Three examples to help students visualize the size of a mole.
van Lubeck, Henk J. Chem. Educ. 1989, 66, 762.
Nomenclature / Units / Symbols |
Chemometrics
Substitution of volumetric for gravimetric methods and other improvements in a new molar volume-molar mass experiment  Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S.
Improvements on an earlier procedure for the quantitative decomposition of 3% hydrogen peroxide to oxygen and water.
Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S. J. Chem. Educ. 1989, 66, 679.
Gravimetric Analysis |
Enzymes |
Stoichiometry |
Titration / Volumetric Analysis
Significant figure rules for general arithmetic functions  Graham, D. M.
Rules for determining what happens to the number of significant figures as various types of mathematical operations are performed upon certain quantities.
Graham, D. M. J. Chem. Educ. 1989, 66, 573.
Chemometrics
A stoichiometric journey  Molle, Brian
A story to help students overcome some of the difficulties they encounter in stoichiometry calculations.
Molle, Brian J. Chem. Educ. 1989, 66, 561.
Stoichiometry |
Chemometrics
Being a participant in the future  Parker, O. Jerry
Integrating computer technology into undergraduate chemistry courses.
Parker, O. Jerry J. Chem. Educ. 1989, 66, 500.
Administrative Issues |
Chemometrics
The relationship between M-demand, algorithms, and problem solving: A neo-Piagetian analysis  Niaz, Mansoor
One of the most important implements developed by the neo-Piagetian theory is task analysis, that is, the evaluation of the M-demand of a problem. M-demand can be defined as: maximum number of steps that the subject must mobilize simultaneously in in the course of executing a task.
Niaz, Mansoor J. Chem. Educ. 1989, 66, 422.
Learning Theories |
Chemometrics
Overall chemical equations  Gil, Victor M. S.
An equation sum can be used safely by itself in stoichiometric and equilibrium calculations only if the intermediates produced in separate reactions are at low steady-state concentrations and if there are no other equilibria involving those species.
Gil, Victor M. S. J. Chem. Educ. 1989, 66, 324.
Stoichiometry |
Equilibrium
Significant Figures and Error Propagation  West, Allen C.
Schwartz is wrong to say that 125 mL +/- 5% means a systematic error of +/-5%.
West, Allen C. J. Chem. Educ. 1989, 66, 272.
Chemometrics
Different Choices (author response)  Kemp, H.R.
Ronald Rich discusses the use of descriptive units in the problem of calculating the concentration of a 96% sulfuric acid solution of a known density.
Kemp, H.R. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Different Choices  Rich, Ronald L.
Kemp wisely advocates that the values of physical quantities be treated as independent of the units used.
Rich, Ronald L. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Concerning Units (author response)  Wadlinger, Robert
Strobel's additional comments are most welcome, especially his electron-volt argument.
Wadlinger, Robert J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols
Concerning Units  Strobel, Pierre
Wadlinger rightly pointed out a number of traps and misunderstandings resulting from an omission of such descriptive units as atom or wave. Here are some more examples, which any chemist dealing with some physics is likely to encounter.
Strobel, Pierre J. Chem. Educ. 1989, 66, 270.
Nomenclature / Units / Symbols
Moles, pennies, and nickels  Myers. Thomas R.
Students frequently have difficulty with the mole concept initially because atoms and molecules are involved and these are invisible.
Myers. Thomas R. J. Chem. Educ. 1989, 66, 249.
Stoichiometry
Accurate equations of state in computational chemistry projects  Allbee, David; Jones, Edward
101. This article presents one method that allows students to become familiar with the use of modern equations of state and also enhances their understanding of how computers can be used in the study and application of chemistry. [Includes "Editor's note: Changes in the computer series", by Lagowski, J. J., p. 226]
Allbee, David; Jones, Edward J. Chem. Educ. 1989, 66, 226.
Applications of Chemistry |
Chemometrics
A question of basic chemical literacy?   Missen, Ronald W.; Smith, William R.
The ability to read and write clearly in chemical-equation terms is not as well developed as it should be. The purpose of this "Provocative Opinion" is to draw attention to this problem, and to suggest specific remedies for its solution.
Missen, Ronald W.; Smith, William R. J. Chem. Educ. 1989, 66, 217.
Stoichiometry
Visible spectrophotometric determination of the partition coefficient of methyl violet: A microscale extraction experiment  Sonnenberger, David C.; Ferroni, Edward L.
This experiment is designed to demonstrate the principles of separation by solvent extraction, partition coefficient, and the construction and use of a Beer-Lambert standard curve.
Sonnenberger, David C.; Ferroni, Edward L. J. Chem. Educ. 1989, 66, 91.
Separation Science |
Chemometrics
Teaching stoichiometry: A two cycle approach   Poole, Richard L.
It is the intent of this article to describe and illustrate a tandem approach for the teaching of stoichiometry that the author developed.
Poole, Richard L. J. Chem. Educ. 1989, 66, 57.
Stoichiometry
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Graphical analysis III (Vernier, David L.)  Carpenter, Jeanette; Bowers, Caroline H.
Two reviews of a complete graphing tool suitable for high school and college applications with a wide range of operations varying in complexity.
Carpenter, Jeanette; Bowers, Caroline H. J. Chem. Educ. 1988, 65, A269.
Chemometrics
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Teaching stoichiometry   Figueira, Alvaro Rocha
Students have a hard time with stoichiometry because it is often presented in a manner that is divorced from content and application.
Figueira, Alvaro Rocha J. Chem. Educ. 1988, 65, 1060.
Applications of Chemistry |
Stoichiometry
Teaching students to use algorithms for solving generic and harder problems in general chemistry  Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L.
This paper describes teaching strategies that help students improve their problem-solving skills.
Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L. J. Chem. Educ. 1988, 65, 987.
Stoichiometry |
Chemometrics
Determination of the universal gas constant  Lebman, Thomas A.; Harms, Gwen
An experiment for the calculation of R using R-PV/nT.
Lebman, Thomas A.; Harms, Gwen J. Chem. Educ. 1988, 65, 811.
Gases |
Stoichiometry
Stoichiometry to the rescue (a calculation challenge)   Ramette, Richard W.
Presentation of a question that would be suitable for a take-home exam or a problem set in a general or analytical chemistry course.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 800.
Amines / Ammonium Compounds |
Gases |
Stoichiometry
A simple quantitative synthesis: Sodium chloride from sodium carbonate  Gold, Marvin
A stoichiometry experiment that fulfills the following: satisfactory precision, no need for a fume hood, is interesting and instructive, and the products can be discarded in the sink.
Gold, Marvin J. Chem. Educ. 1988, 65, 731.
Stoichiometry
A simple rhyme for a simple formula  Thompson, Joel S.
A poem that helps students remember how to solve empirical formulas.
Thompson, Joel S. J. Chem. Educ. 1988, 65, 704.
Stoichiometry
Oxalate blockage of calcium and iron: A student learning activity  Walker, Noojin
The topics of iron deficiency anemia and osteoporosis entice student attention and can be used to construct meaningful learning activities about percent composition, mole concept, selective precipitation, and limiting factors.
Walker, Noojin J. Chem. Educ. 1988, 65, 533.
Medicinal Chemistry |
Stoichiometry |
Plant Chemistry |
Bioanalytical Chemistry |
Bioinorganic Chemistry
Let's separate theories from calculations   Freilich, Mark B.
This author writes in a 'provocative opinion' article challenging the readers to think about heavily emphasizing 'thought problems' in chemistry and allowing students to master those before throwing calculations into the mix.
Freilich, Mark B. J. Chem. Educ. 1988, 65, 442.
Chemometrics
An alternative to using the PV = nRT equation   Desmarais, George
This author shares his application of the factor-label method to solving gas problems which involves using the ideal gas constant as the starting point in the relationship.
Desmarais, George J. Chem. Educ. 1988, 65, 392.
Gases |
Stoichiometry |
Chemometrics
The mole concept is useful   Ramette, Richard W.
This is letter adds to the debate regarding the usefulness of the mole concept in introductory chemistry courses.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 376.
Stoichiometry
Avogadro's number: A perverse view  Lehman, Thomas A.
A way to think of Avogadro's number: take anything and double it 79 times.
Lehman, Thomas A. J. Chem. Educ. 1988, 65, 282.
Chemometrics |
Stoichiometry
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
A multi-topic problem for general chemistry   Burness, James H.
A 'marathon' problem which requires specific knowledge in several areas while requiring that the student recognize how these areas are related.
Burness, James H. J. Chem. Educ. 1988, 65, 145.
Stoichiometry |
Transport Properties |
Electrolytic / Galvanic Cells / Potentials |
Crystals / Crystallography
Mnemonic for Z and E nomenclature  Thomas, C. W.
A visual reminder that makes it unnecessary to memorize the German terms.
Thomas, C. W. J. Chem. Educ. 1988, 65, 44.
Diastereomers |
Alkenes |
Nomenclature / Units / Symbols
Remember E = hv is correct only half of the time  Leo, Howard, R.
Reminder that the title equation (Planck) is not algebraically correct.
Leo, Howard, R. J. Chem. Educ. 1988, 65, 11.
Chemometrics |
Photochemistry
Writing Chemical Formulas, Review I (Ross, Don)  Sweeney-Hammond, Kathleen
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Sweeney-Hammond, Kathleen J. Chem. Educ. 1987, 64, A90.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Writing Chemical Formulas, Review I (Ross, Don)  Pavlovich, Joseph M.
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Pavlovich, Joseph M. J. Chem. Educ. 1987, 64, A88.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Good numerical technique in chemistry: The quadratic equation  Thompson, H. Bradford
Texts commonly avoid examples with bad round-off problems or handle them by approximation; none of this is necessary, for simple techniques are available to handle quadratic equations easily and precisely.
Thompson, H. Bradford J. Chem. Educ. 1987, 64, 1009.
Chemometrics
Reaction stoichiometry and suitable "coordinate systems"  Tykodi, R. J.
Methods for dealing with problems involving reactions stoichiometry: unitize and scale up, factor-label procedure, de Donder ratios, and titration relations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 958.
Stoichiometry |
Titration / Volumetric Analysis |
Chemometrics
Dozen, gross, nerds, moles, and sons  Banks, Alton J.
Technique for demonstrating the mole concept using candies.
Banks, Alton J. J. Chem. Educ. 1987, 64, 956.
Stoichiometry
A convenient demonstration of combustion and explosion  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
Demonstrating the correct molar ratio between propane and oxygen.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1987, 64, 894.
Stoichiometry |
Alkanes / Cycloalkanes |
Oxidation / Reduction
The 55 limit: A useful rule of thumb  Ruekberg, Benjamin P.
There are about 55 moles in a liter of water.
Ruekberg, Benjamin P. J. Chem. Educ. 1987, 64, 892.
Stoichiometry
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
Hard ways and easy ways  Schwartz, Lowell M.
Two examples of common general chemistry calculations and different approaches ("hard" and "easy") to solving them.
Schwartz, Lowell M. J. Chem. Educ. 1987, 64, 698.
Stoichiometry |
Chemometrics
The many chemical names for H2O  Treptow, Richard S.
"Inventing" names for water to illustrate the limitations of any naming system.
Treptow, Richard S. J. Chem. Educ. 1987, 64, 697.
Nomenclature / Units / Symbols
An aqueous problem with an interesting solution  Thomas, Nicholas C.
Flow diagram outlining the steps to calculating the number of water molecules in one drop of water and the length of all these molecules stretched end to end.
Thomas, Nicholas C. J. Chem. Educ. 1987, 64, 611.
Water / Water Chemistry |
Stoichiometry
Concept learning versus problem solving: Is there a difference?  Nurrenbern, Susan C.; Pickering, Miles
Chemistry teachers have assumed implicitly that being able to solve problems is equivalent to understanding molecular concepts; this study examines whether this widespread assumption is justified.
Nurrenbern, Susan C.; Pickering, Miles J. Chem. Educ. 1987, 64, 508.
Stoichiometry
Solving limiting reagent problems (the author replies)  Kalantar, A. H.
Thanks for clarification and suggestion.
Kalantar, A. H. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
Solving limiting reagent problems  Skovlin, Dean O.
Uncertainty in the meaning of the term X.
Skovlin, Dean O. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
A simple, safe, and inexpensive laboratory exercise in the guided inquiry format  de Moura, John M.; Marcello, Joseph A.
Introductory laboratory exercise that illustrates stoichiometry, limiting reagents, and proportionality by reacting calcium chloride and sodium hydroxide.
de Moura, John M.; Marcello, Joseph A. J. Chem. Educ. 1987, 64, 452.
Stoichiometry |
Gravimetric Analysis |
Reactions
Making sense of the nomenclature of the oxyacids and their salts  Rodgers, Glen E.; State, Harold M.; Bivens, L.
An overall scheme or "roadmap" for naming oxyacids and their salts.
Rodgers, Glen E.; State, Harold M.; Bivens, L. J. Chem. Educ. 1987, 64, 409.
Nomenclature / Units / Symbols |
Acids / Bases
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
Statistical evaluation of class data for two buret readings  Gordus, Adon A.
Data that serve to illustrate both random and systematic errors in measurements characteristic of titrations.
Gordus, Adon A. J. Chem. Educ. 1987, 64, 376.
Chemometrics |
Titration / Volumetric Analysis
Mole fraction revisited  Mancott, A.
This problem requires the use of algebraic reasoning to derive and solve a fraction linear equation based on the concept of moles and conservation of moles.
Mancott, A. J. Chem. Educ. 1987, 64, 320.
Stoichiometry |
Chemometrics
Election results and reactions yields  Rocha-Filho, Romeu C.
Reactions do not always proceed to products as expected from the stoichiometry; sometimes only a fraction of the reagents undergo reaction, while at other times, side products are formed due to competing reactions.
Rocha-Filho, Romeu C. J. Chem. Educ. 1987, 64, 248.
Stoichiometry
A new method to balance chemical equations  Garcia, Arcesio
A simple method, applicable to any kind of reaction, that does not require the knowledge of oxidation numbers.
Garcia, Arcesio J. Chem. Educ. 1987, 64, 247.
Stoichiometry |
Oxidation State |
Reactions
Molar and equivalent amounts and concentrations  Kohman, Truman P.
What are the quantities of which molar and normal are units?
Kohman, Truman P. J. Chem. Educ. 1987, 64, 246.
Stoichiometry |
Nomenclature / Units / Symbols
Hands-on versus computer simulation methods in chemistry  Bourque, Donald R.; Carlson, Gaylen R.
Procedure, results, conclusions, and implications of a study that compares the effectiveness of a hands-on approach versus computer simulations in the same chemistry topics.
Bourque, Donald R.; Carlson, Gaylen R. J. Chem. Educ. 1987, 64, 232.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry
A nuts and bolts approach to explain limiting reagents  Blankenship, Craig
Using nuts and bolts to simulate the stoichiometry of a chemical reaction and the concept of limiting and excess reactants.
Blankenship, Craig J. Chem. Educ. 1987, 64, 134.
Stoichiometry |
Reactions
Slopes of straight lines when neither axis is error free  Kalantar, A. H.
The iterative effective variance method is not reliable and its use is pedagogically unwise.
Kalantar, A. H. J. Chem. Educ. 1987, 64, 28.
Chemometrics
The chemistry tutor (Rinehart, F.P.)  Watkins, Stanley R.; Krugh, William D.
Two reviews of a two-disk package that is designed to help students master the essential skills of equation balancing, stoichiometric,and limiting reagents calculations.
Watkins, Stanley R.; Krugh, William D. J. Chem. Educ. 1986, 63, A206.
Stoichiometry
Chemistry: Stoichiometry and Chemistry: Acids and Bases ( Frazin, J. and partners)  Bendall, Victor I.; Roe, Robert, Jr.
Two reviews of a software package that contains drill and practice programs that are suitable for beginning students of chemistry.
Bendall, Victor I.; Roe, Robert, Jr. J. Chem. Educ. 1986, 63, A204.
Stoichiometry |
Acids / Bases
S'mores: A demonstration of stoichiometric relationships   Cain, Linda
S'mores are a good analogy for students struggling to learn stoichiometry.
Cain, Linda J. Chem. Educ. 1986, 63, 1048.
Stoichiometry
Teaching stoichiometry   Steiner, Richard P.
This author targets some of the reasons behind why it is so difficult for beginning chemistry students to understand stoichiometry. He reveals that if taught correctly and effectively, a 7-year old can grasp the concepts of stoichiometry.
Steiner, Richard P. J. Chem. Educ. 1986, 63, 1048.
Stoichiometry
A simpler method of chemical reaction balancing  Harjadi, W.
The author adds to some other approaches that appeared in this Journal that dealt with balancing a rather large chemical equation.
Harjadi, W. J. Chem. Educ. 1986, 63, 978.
Stoichiometry
The length of a pestle: A class exercise in measurement and statistical analysis  O'Reilly, James E.
Too many students get through chemistry without acquiring a basic understanding and appreciation of the concepts of measurement science. The purpose of this report is to outline an extremely simple class exercise as a concrete paradigm of the entire process of making chemical measurements and treating data.
O'Reilly, James E. J. Chem. Educ. 1986, 63, 894.
Chemometrics
Calculation of Madelung constants in the first year chemistry course  Elert, Mark; Koubek, Edward
76. Bits and pieces, 31. A computer program aids in understanding the nature of the Madelung constants.
Elert, Mark; Koubek, Edward J. Chem. Educ. 1986, 63, 840.
Crystals / Crystallography |
Chemometrics
Teaching significant figures using a learning cycle  Guymon, E. Park; James, Helen J.; Saeger, Spencer L.
Can we teach significant figures in a way that will be better retained by our students? These authors propose a solution.
Guymon, E. Park; James, Helen J.; Saeger, Spencer L. J. Chem. Educ. 1986, 63, 786.
Learning Theories |
Chemometrics
SI and non-SI units of concentration: A truce?  Rich, Ronald L.
These authors examine whether a truce could be promoted by filling a chemical gap in the System Internationale with special attention on concentration.
Rich, Ronald L. J. Chem. Educ. 1986, 63, 784.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Find-the-pairs  Ryan, Jack
73. Bits and pieces, 29. A computer game that can help students avoid the drudgery of memorizing such essential items as elemental names and symbols or conversion factors.
Ryan, Jack J. Chem. Educ. 1986, 63, 626.
Nomenclature / Units / Symbols
Gas cans and gas cubes: Visualizing Avogadro's Law   Bouma, J.
The author shares a strategy for making gas laws "visible" for students.
Bouma, J. J. Chem. Educ. 1986, 63, 586.
Gases |
Stoichiometry
What can we do about Sue: A case study of competence  Herron, J. Dudley; Greenbowe, Thomas J.
A case study of a "successful" student who is representative of other successful students that are not prepared to solve novel problems.
Herron, J. Dudley; Greenbowe, Thomas J. J. Chem. Educ. 1986, 63, 528.
Stoichiometry |
Learning Theories
A flowchart for dimensional analysis  Graham, D. M.
A flowchart to help students organize their thoughts when solving conversion problems.
Graham, D. M. J. Chem. Educ. 1986, 63, 527.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Where did that number come from?   DeLorenzo, Ronald
With more careful labeling and handling of numbers, instructors can reduce the confusion students sometimes feel when watching problems being solved by the instructor on the board.
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 514.
Chemometrics |
Nomenclature / Units / Symbols
Name that compound   Mancott, A.
These two problems require the use of algebraic reasoning and the application of the concepts of moles, atomic weights, and formulas-these are important facets of the general chemistry course.
Mancott, A. J. Chem. Educ. 1986, 63, 413.
Stoichiometry
Factor-label: Another view   Maloy, Joseph T.
It is of interest to our students' academic development that we teach them the mathematical theory behind factor label approaches to problems solving.
Maloy, Joseph T. J. Chem. Educ. 1986, 63, 186.
Chemometrics
Unit basis a neglected problem-solving technique   Beichl, George J.
A technique that will prevent students from using ineffective problem-solving techniques such as dimensional analysis.
Beichl, George J. J. Chem. Educ. 1986, 63, 146.
Chemometrics |
Stoichiometry
Analogies for Avogadro's number  Poskozim, Paul S.; Wazorick, James W.; Tiempetpaisal, Permsook; Poskozim, Joyce Albin
To understand the enormity of Avogadro's number, the authors provide analogies to: small objects, counting, people, water, and money.
Poskozim, Paul S.; Wazorick, James W.; Tiempetpaisal, Permsook; Poskozim, Joyce Albin J. Chem. Educ. 1986, 63, 125.
Stoichiometry
Balancing chemical equations with a Commodore 64  Loercher, William
67. Bits and pieces, 27. Too many students seem never fully develop the skill of balancing equations. This program helps facilitate development.
Loercher, William J. Chem. Educ. 1986, 63, 74.
Stoichiometry
On writing equations  Campbell, J.A.
The author presents a very direct approach to writing complicated equations without using a matrix approach.
Campbell, J.A. J. Chem. Educ. 1986, 63, 63.
Stoichiometry |
Chemometrics
An interactive, screen-oriented, general linear regression program  Joshi, Bhairav D.
65. Bits and pieces, 26. Description of GSLINE, a program runs linear regressions.
Joshi, Bhairav D. J. Chem. Educ. 1985, 62, 1027.
Chemometrics
Mathematics in the chemistry classroom. Part 2. Elementary entities play their part  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
One of the problems that learners have to overcome when doing stoichiometry calculations is to learn how statements about elementary entities given by formulas and equations are related to statements about portions of substances as measured in the macroscopic world.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 1021.
Chemometrics |
Stoichiometry
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
Mathematics in the chemistry classroom. Part 1. The special nature of quantity equations  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
Differences between operation on quantities and operation on numbers and how chemical quantities should be described mathematically.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 839.
Chemometrics |
Stoichiometry |
Nomenclature / Units / Symbols
Determination of molecular dimensions using monolayers: Another approach  McNaught, Ian J.; Peckham, Gavin D.
A preliminary activity to help students understand the concept and calculations of the determination of molecular dimensions using monolayers.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1985, 62, 795.
Molecular Properties / Structure |
Chemometrics
Elemental etymology: What's in a name?  Ball, David W.
Summarizes patterns to be found among the origins of the names of the elements.
Ball, David W. J. Chem. Educ. 1985, 62, 787.
Nomenclature / Units / Symbols
New stoichiometry for copper dissolution in nitric acid  El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A.
NO2 does not appear to be a primary product in the oxidation of copper metal by nitric acid.
El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A. J. Chem. Educ. 1985, 62, 761.
Reactions |
Stoichiometry |
Oxidation / Reduction
The definition and symbols for the quantity called "molarity" or "concentration" and for the SI units of this quantity  Gorin, George
An alternative formulation for concentration and the SI units for this quantity.
Gorin, George J. Chem. Educ. 1985, 62, 741.
Nomenclature / Units / Symbols |
Solutions / Solvents
Propagation of significant figures  Schwartz, Lowell M.
The rules of thumb for propagating significant figures through arithmetic calculations frequently yield misleading results.
Schwartz, Lowell M. J. Chem. Educ. 1985, 62, 693.
Chemometrics
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
A different look at the solubility-product principle  Hugus, Z Z., Jr.; Hentz, F. C., Jr.
The progressive addition of Cl- to Ag+ yields an ion-product equal to Ksp at two different points.
Hugus, Z Z., Jr.; Hentz, F. C., Jr. J. Chem. Educ. 1985, 62, 645.
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents |
Chemometrics
An addendum to: A simultaneous analysis problem for advanced general chemistry laboratories  Gallaher, T. N.; Moody, F. P.; Burkholder, T. R.; Leary, J. J.
A modification made to the determination of the empirical formula of MgO by burning magnesium metal in air.
Gallaher, T. N.; Moody, F. P.; Burkholder, T. R.; Leary, J. J. J. Chem. Educ. 1985, 62, 626.
Stoichiometry
A pictorial framework to aid conceptualization of reaction stoichiometry  Cameron, David L.
Approach to teaching stoichiometry that promotes students' understanding of a reaction as a coherent process.
Cameron, David L. J. Chem. Educ. 1985, 62, 510.
Stoichiometry |
Reactions
How should equation balancing be taught?  Porter, Spencer K.
Suggestions for balancing chemical equations.
Porter, Spencer K. J. Chem. Educ. 1985, 62, 507.
Stoichiometry
Why teach the gas laws?  Davenport, Derek A.
Justification for teaching the gas laws.
Davenport, Derek A. J. Chem. Educ. 1985, 62, 505.
Gases |
Stoichiometry
Working backwards is a forward step in the solution of problems by dimensional analysis  Drake, Robert F.
Solving chemistry calculations by determining the units of the desired answer and then working backwards using dimensional analysis.
Drake, Robert F. J. Chem. Educ. 1985, 62, 414.
Chemometrics |
Nomenclature / Units / Symbols
"Chemistry" problems without chemical terminology  Ciereszko, Leon S.
Three questions analogous to percentage composition and Charles' law calculations.
Ciereszko, Leon S. J. Chem. Educ. 1985, 62, 402.
Chemometrics
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Using a conversion matrix to simplify stoichiometric calculations from balanced equations  Berger, Selman A.
Two examples of using a conversion matrix to simplify stoichiometric calculations from balanced equations.
Berger, Selman A. J. Chem. Educ. 1985, 62, 396.
Chemometrics |
Stoichiometry
Problem-solving skills in chemistry made easier  Fast, Kenneth V.
Step-by-step format for performing common calculations in chemistry.
Fast, Kenneth V. J. Chem. Educ. 1985, 62, 396.
Stoichiometry |
Chemometrics
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
A convenient device to demonstrate statistically based sampling error in a particulate mixture  Reid, R. S.
Apparatus to demonstrate statistically based sampling error using a mixture of colored beads.
Reid, R. S. J. Chem. Educ. 1985, 62, 252.
Chemometrics
The origin and adoption of the Stock system  Kauffman, George B.; Jrgensen, Christian Klixbll
The history and development of the Stock system of inorganic nomenclature.
Kauffman, George B.; Jrgensen, Christian Klixbll J. Chem. Educ. 1985, 62, 243.
Nomenclature / Units / Symbols
Toward a more rational terminology  Tykodi, R. J.
Recommended changes in the terms atomic weight, molecular weight, gram atomic / molecular / formula weights, gram equivalent weight, specific heat / volume / density, and chemical equation.
Tykodi, R. J. J. Chem. Educ. 1985, 62, 241.
Nomenclature / Units / Symbols
Why isn't my rain as acidic as yours?  Zajicek, O. T.
Calculating of pH values of acid rain and comparisons to uncontaminated samples.
Zajicek, O. T. J. Chem. Educ. 1985, 62, 158.
Acids / Bases |
Atmospheric Chemistry |
pH |
Chemometrics
Aqueous hydrogen peroxide: Its household uses and concentration units  Webb, Michael J.
Includes some simple weight / volume calculations and their answers.
Webb, Michael J. J. Chem. Educ. 1985, 62, 152.
Aqueous Solution Chemistry |
Consumer Chemistry |
Nomenclature / Units / Symbols |
Solutions / Solvents
Limiting reagent problems made simple for students  Kalantar, A. H.
Method for determining the limiting reagent among three or more reactants.
Kalantar, A. H. J. Chem. Educ. 1985, 62, 106.
Stoichiometry |
Chemometrics
Five Avogadro's number problems  Todd, David
Five problems involving Avogadro's number.
Todd, David J. Chem. Educ. 1985, 62, 76.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
Limiting and excess reagents, theoretical yield  Silversmith, Ernest F.
Comparing the construction of bicycles with limiting and excess reactants.
Silversmith, Ernest F. J. Chem. Educ. 1985, 62, 61.
Stoichiometry
Gram formula weights and fruit salad  Felty, Wayne L.
Effective analogy and explanation of gram formula weights.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 61.
Stoichiometry |
Atomic Properties / Structure |
Molecular Properties / Structure
The mole: Questioning format can make a difference  Lazonby, John N.; Morris, Jane E.; Waddington, David J.
Study of 2,695 high school students that found that it is the piecing together of the individual steps involved in mole calculations that presents the main difficulty for students.
Lazonby, John N.; Morris, Jane E.; Waddington, David J. J. Chem. Educ. 1985, 62, 60.
Nomenclature / Units / Symbols |
Stoichiometry
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
Graphical Analysis, Review II (Dice, David R.)  Sievers, Dennis
A computerized program that generates graphs of empirical data.
Sievers, Dennis J. Chem. Educ. 1984, 61, A324.
Chemometrics
Graphical Analysis, Review I (Dice, David R.)  Palmer, Glenn E.
A computerized program that generates graphs of empirical data.
Palmer, Glenn E. J. Chem. Educ. 1984, 61, A323.
Chemometrics
The Elements of Style in Chemistry, A Computer-assisted Instruction Supported Text (Beatty, James W.; Beatty, James J.)  Crawford, Victor A.
Intended to support students who have trouble solving important types of problems in chemistry.
Crawford, Victor A. J. Chem. Educ. 1984, 61, A27.
Enrichment / Review Materials |
Chemometrics
A new meaning of the terms acid and base hydrolysis  Milic, Nikola B.
Suggestions for distinguishing between solvation, hydration, and solvolysis, and hydrolysis reactions that produce hydroxo and protonated complexes.
Milic, Nikola B. J. Chem. Educ. 1984, 61, 1066.
Acids / Bases |
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
The unit gram/mole and its use in the description of molar mass  Gorin, G.
How is molar mass related to the quantity called "molecular (or atomic) weight"?
Gorin, G. J. Chem. Educ. 1984, 61, 1045.
Nomenclature / Units / Symbols |
Stoichiometry
A recipe for teaching stoichiometry  Umland, Jean B.
Comparing stoichiometry calculations to the methods required for fractioning or multiplying a baking recipe.
Umland, Jean B. J. Chem. Educ. 1984, 61, 1036.
Stoichiometry
The emergence of stochastic theories: What are they and why are they special?  Freeman, Gordon R.
Examines the word stochastic and its opposite, deterministic, and points out why stochastic models are receiving new emphasis of late.
Freeman, Gordon R. J. Chem. Educ. 1984, 61, 944.
Kinetics |
Nomenclature / Units / Symbols
Uncertainty analysis by the "worst case" method  Gordon, Roy; Pickering, Miles; Bisson, Denise
A new method of uncertainty propagation that is in many ways superior to the traditional manipulation of absolute and relative uncertainty.
Gordon, Roy; Pickering, Miles; Bisson, Denise J. Chem. Educ. 1984, 61, 780.
Chemometrics
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
Analogies that indicate the size of atoms and molecules and the magnitude of Avogardo's number  Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T.
Three analogies to help students imagine the sizes of atoms, molecules, and Avogadro's number.
Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T. J. Chem. Educ. 1984, 61, 591.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry
Coffee, coins, and limiting reagents  McMinn, Dennis
Analogy regarding stoichiometry and limiting reagents.
McMinn, Dennis J. Chem. Educ. 1984, 61, 591.
Stoichiometry
Simplest formula for copper iodide  Suchow, Lawrence
We should no longer try to "prove" the Law of Definite Proportions with non-molecular inorganic solids, especially those that contain elements which exhibit multiple oxidation states.
Suchow, Lawrence J. Chem. Educ. 1984, 61, 566.
Oxidation State |
Metals |
Stoichiometry
The factor-label method: Is it all that great?  Navidi, Marjorie H.; Baker, A. David
The development of reasoning skills in chemistry is better achieved by postponing the introduction of the factor-label method.
Navidi, Marjorie H.; Baker, A. David J. Chem. Educ. 1984, 61, 522.
Chemometrics
Note to: method for balancing redox reactions containing hydroxyl ions  Stark, Franz M.
A much simpler way of balancing the equations presented.
Stark, Franz M. J. Chem. Educ. 1984, 61, 476.
Stoichiometry |
Oxidation / Reduction
What a smell!  Perkins, Robert
How many molecules of vanillin are necessary in order to smell it anywhere within the Goodyear Airship hangar?
Perkins, Robert J. Chem. Educ. 1984, 61, 384.
Gases |
Stoichiometry
The density of solids  Burgess, Dale
Using density measurements as an opportunity to discuss experimental procedures, error, and significant figures.
Burgess, Dale J. Chem. Educ. 1984, 61, 242.
Chemometrics |
Physical Properties
Teaching factor-label method without sleight of hand  Garrett, James M.
As an aid in teaching the factor-label method, the author has developed a rather simple card game involving the matching of symbols and colors.
Garrett, James M. J. Chem. Educ. 1983, 60, 962.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Determination of ammonia in household cleaners: an instrumental analysis experiment  Graham, Richard C.; DePew, Steven
This popular experiment describes a procedure that is easily modified to determine quantitatively such analytes as ammonia in solution.
Graham, Richard C.; DePew, Steven J. Chem. Educ. 1983, 60, 765.
Quantitative Analysis |
Titration / Volumetric Analysis |
Acids / Bases |
pH |
Consumer Chemistry |
Stoichiometry |
Solutions / Solvents
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
A simultaneous analysis problem for advanced general chemistry laboratories  Leary, James J.; Gallaher, T. N.
The goal of this experiment is to determine the percentage Mg3N2 and the percentage Mg formed when magnesium metal is ignited in a crucible using a Bunsen burner.
Leary, James J.; Gallaher, T. N. J. Chem. Educ. 1983, 60, 673.
Quantitative Analysis |
Stoichiometry
Reflections upon mathematics in the introductory chemistry course  Goodstein, Madeline P.
It is the purpose of this paper to call attention to the lack of mathematical competence by chemistry students and to invite consideration of one conceptual scheme which may be used to unify the mathematical approach.
Goodstein, Madeline P. J. Chem. Educ. 1983, 60, 665.
Chemometrics |
Gases
A visual analogy for metallic deposition  Hartwig, Dcio R.; Filho, Romeu C. Rocha
Metallic deposition stoichiometry problems are difficult for students to visualize. A clever visual tool is explained in this article.
Hartwig, Dcio R.; Filho, Romeu C. Rocha J. Chem. Educ. 1983, 60, 591.
Metals |
Electrochemistry |
Stoichiometry
On the chemically impossible "other" roots in equilibrium problems  Ludwig, Oliver G.
Students often have a hard time knowing when to disregard equilibrium roots that are too large or are negative. The author suggests a convincing proof that helps students understand how the relationship between the conceptual and mathematical.
Ludwig, Oliver G. J. Chem. Educ. 1983, 60, 547.
Equilibrium |
Chemometrics
Empirical pKb and pKa for nonmetal hydrides from periodic table position  Bayless, Philip L.
The equation in this article was developed by the author. It estimates the aqueous pKa for certain acids to an average deviation of 0.1pK unit for those with experimentally determined values and agrees with experimentally determined values, and as well as with estimates for those too weak or too strong to be measured.
Bayless, Philip L. J. Chem. Educ. 1983, 60, 546.
Acids / Bases |
pH |
Chemometrics
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
The use of the Warnier-Orr program design method in the preparation of general chemistry tutorials   Hach, Edwin E., Jr.
39. In this article, a modified Warnier-Orr approach is illustrated for a computer tutorial involving ideal gas calculations.
Hach, Edwin E., Jr. J. Chem. Educ. 1983, 60, 348.
Gases |
Chemometrics
The spilled can of paint   Perkins, Robert
The writer describes a problem for students to work out in order to better understand units of conversion.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Nomenclature / Units / Symbols |
Chemometrics
The liquid silver parade   Perkins, Robert
The activity described in this note is useful in illustrating how small atoms are to students.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Stoichiometry |
Chemometrics
Titration calculations- a problem-solving approach  Waddling, Robin E. L.
This author shares a strategy for helping students who might be struggling with understanding how to calculate and understand titration data.
Waddling, Robin E. L. J. Chem. Educ. 1983, 60, 230.
Acids / Bases |
Titration / Volumetric Analysis |
Chemometrics
A novel classification of concentration units  MacCarthy, Patrick
Concentration units can be a source of confusion for students. This article presents a treatment on this topic that may help students understand the differences between these units.
MacCarthy, Patrick J. Chem. Educ. 1983, 60, 187.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Simplest formula of copper iodide: a stoichiometry experiment  MacDonald, D. J.
It is difficult to find a chemistry experiment that convincingly demonstrates stoichiometric relationships. The experiment in this article is elegant and pedagogically effective.
MacDonald, D. J. J. Chem. Educ. 1983, 60, 147.
Stoichiometry
Mass spectral analysis of halogen compounds   Holdsworth, David K.
37. Bits and pieces, 14. A pocket calculator can be programmed to decide and display the halogen combination in a molecular-ion cluster by examination of the (M+2)/M or (X+2)/X percentage values.
Holdsworth, David K. J. Chem. Educ. 1983, 60, 103.
Chemometrics |
Mass Spectrometry
Balancing complex chemical equations using a hand-held calculator   Alberty, Robert A.
37. Bits and pieces, 14. This article is primarily concerned the question: If certain specified chemical species are involved in a reaction, what are the stoichiometric coefficients?
Alberty, Robert A. J. Chem. Educ. 1983, 60, 102.
Stoichiometry
A pocket calculator program for the solution of pH problems via the method of successive approximations   Guida, Wayne C.
37. Bits and pieces, 14. A description of a pocket calculator program for the solution of pH problems via the method of successive approximations .
Guida, Wayne C. J. Chem. Educ. 1983, 60, 101.
pH |
Acids / Bases |
Chemometrics
A practical application of molality  Penrose, John F.
The stoichiometry problem related in this note captures student interest.
Penrose, John F. J. Chem. Educ. 1983, 60, 63.
Solutions / Solvents |
Stoichiometry
Data generation in the classroom  Blanco, Luis H.
A pendulum device for generating data for statistical analysis.
Blanco, Luis H. J. Chem. Educ. 1982, 59, 1028.
Chemometrics |
Laboratory Equipment / Apparatus
Numbers in chemical names  Fernelius, W. Conard
Discusses the various ways that numbers are used in the formulas and names of chemical compounds.
Fernelius, W. Conard J. Chem. Educ. 1982, 59, 964.
Nomenclature / Units / Symbols |
Oxidation State
Investigation of secondary school students' understanding of the mole concept in Italy  Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori
Results of a small-scale investigation to ascertain the knowledge of chemistry among students entering first-year university courses in science.
Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori J. Chem. Educ. 1982, 59, 852.
Stoichiometry
The estimation of Avogadro's number using cetyl alcohol as the monolayer  Feinstein, H. I.; Sisson, Robert F., III
Results and calculations using cetyl alcohol as the monolayer in estimating Avogadro's number.
Feinstein, H. I.; Sisson, Robert F., III J. Chem. Educ. 1982, 59, 751.
Stoichiometry |
Molecular Properties / Structure |
Chemometrics
Chemical equation balancing: A general method which is quick, simple, and has unexpected applications  Blakley, G. R.
Using matrices to solve mathematical equations and balance chemical equations. From "The Goals of General Chemistry - A Symposium."
Blakley, G. R. J. Chem. Educ. 1982, 59, 728.
Stoichiometry |
Chemometrics
Some tungsten oxidation-reduction chemistry: A paint pot titration  Pickering, Miles; Monts, David L.
Mild reducing agents reduce WO3 to a nonstoichiometric blue oxide, "mineral blue," whose approximate formula is WO2.2-3.0.
Pickering, Miles; Monts, David L. J. Chem. Educ. 1982, 59, 693.
Titration / Volumetric Analysis |
Oxidation / Reduction |
Stoichiometry
Mathematics in data analysis: An introduction  Wang, Taitzer
The meaning of simple mathematical equations are described in a perspective that, for some reasons, many beginning students do not seem to be able to obtain from reading textbooks on the subject.
Wang, Taitzer J. Chem. Educ. 1982, 59, 592.
Chemometrics
The underprepared student, scientific literacy and Piaget: Reflections on the role of measurement in scientific discussion  Kurland, Daniel J.
The need for an explicit instructional component that stresses the notion of measurement as a means of physical description.
Kurland, Daniel J. J. Chem. Educ. 1982, 59, 574.
Learning Theories |
Nomenclature / Units / Symbols
Balancing chemical equations with a calculator  Kennedy, John H.
A straightforward mechanical approach that leads quickly to a properly balanced equation.
Kennedy, John H. J. Chem. Educ. 1982, 59, 523.
Stoichiometry
Recurrent difficulties: Solving quantitative problems  Kramers-Pals, H.; Lambrechts, J.; Wolff, P. J.
Investigating the process students use to solve quantitative problems using a think aloud strategy.
Kramers-Pals, H.; Lambrechts, J.; Wolff, P. J. J. Chem. Educ. 1982, 59, 509.
Chemometrics
Remedial mathematics for the introductory chemistry course: The "CHEM. 99" concept  Bohning, James J.
An approach that is aimed specifically at mathematical deficiencies and based on the premise that the deductive reasoning process that accompanies basic mathematical technique is crucial for a meaningful comprehension of general chemistry principles.
Bohning, James J. J. Chem. Educ. 1982, 59, 207.
Chemometrics
Powers of ten  Herman Miller, Inc.
New version of the 1968 original.
Herman Miller, Inc. J. Chem. Educ. 1982, 59, 166.
Nomenclature / Units / Symbols
Buffers  Gold, Marvin
A demonstration based on buffer calculations.
Gold, Marvin J. Chem. Educ. 1982, 59, 155.
Acids / Bases |
Chemometrics
An alternative introduction to the mole fraction  White, Alvan D.
Comparing fractions of males and females in a population to mole fractions.
White, Alvan D. J. Chem. Educ. 1982, 59, 153.
Stoichiometry
How much cholesterol is in your body?  Chamizo G., Jose Antonio
Calculations involving the size and proportion of the body consisting of cholesterol.
Chamizo G., Jose Antonio J. Chem. Educ. 1982, 59, 151.
Nomenclature / Units / Symbols |
Lipids
The copper(I) iodide law of definite proportions revisited  Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D.
Improvement to the cited experiment.
Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D. J. Chem. Educ. 1982, 59, 148.
Stoichiometry
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
CAI Programs in BASIC and an associated MATH subroutine  Anderson, Robert Hunt
25. Bits and pieces, 9. Four BASIC programs involving basic calculations and mathematical problems in chemistry.
Anderson, Robert Hunt J. Chem. Educ. 1982, 59, 129.
Chemometrics |
Enrichment / Review Materials
The extinction coefficient: S.I. and the dilemma of its units-six options  Wigfield, Donald C.
Six options for dealing with units in regards to the extinction coefficient.
Wigfield, Donald C. J. Chem. Educ. 1982, 59, 27.
Nomenclature / Units / Symbols
Basic mathematics for beginning chemistry (Goldish, Dorthoy M.)  Ellison, Herbert R.

Ellison, Herbert R. J. Chem. Educ. 1981, 58, A65.
Chemometrics |
Mathematics / Symbolic Mathematics |
Enrichment / Review Materials
Think   Wheeler, S. J., James D.
Students have an easy enough time crunching numbers, but it is alarming how little they understand the concepts behind the numbers. Students should not be making remarks such as, "If they keep changing how they write the problems, how am I supposed to know how to solve them?"
Wheeler, S. J., James D. J. Chem. Educ. 1981, 58, 1004.
Learning Theories |
Chemometrics
Chemical wastes and the law of conservation of matter   Hill, John W.
This note discusses the conservation of matter as a starting point for understanding the problems of chemical waste.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Stoichiometry |
Toxicology
Small things and large numbers   Rosenberg, Milton H.
Some challenging solubility problems are featured in this note.
Rosenberg, Milton H. J. Chem. Educ. 1981, 58, 962.
Solutions / Solvents |
Equilibrium |
Chemometrics
Superlative problems  Akers, Hugh A.; Akers, Gwyn E.
The data in the Guinness Book of World Records holds great potential for fun, interesting chemistry exercises.
Akers, Hugh A.; Akers, Gwyn E. J. Chem. Educ. 1981, 58, 795.
Chemometrics
Balancing complex redox equations by inspection   Kolb, Doris
A step-by-step walk through of the inspection process for balancing equations.
Kolb, Doris J. Chem. Educ. 1981, 58, 642.
Stoichiometry |
Chemometrics
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
A statistical note on the time lag method for second-order kinetic rate constants  Schwartz, Lowell M.
A clever method for finding second-order kinetic rate constants by using a time lag method that avoids direct measurement of the end point reading P(infinity) can easily be programmed.
Schwartz, Lowell M. J. Chem. Educ. 1981, 58, 588.
Chemometrics |
Kinetics |
Rate Law
Setting high standards   Feinstein, H. I.
A question is contributed that will scaffold student learning of quantitative analysis skills.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 567.
Quantitative Analysis |
Stoichiometry
A mathematics readiness test for prospective chemistry students  Weisman, Rence L.
A mathematics readiness test is prepared to determine whether students have the minimum competency necessary to succeed in chemistry.
Weisman, Rence L. J. Chem. Educ. 1981, 58, 564.
Chemometrics |
Mathematics / Symbolic Mathematics
How big is Avogadro's number (or how small are atoms, molecules and ions)  Fulkrod, John E.
Calculating the volume occupied by Avogadro's number of drops of water helps students understand the magnitude of this quantity while giving them practice at using scientific notation and the metric system.
Fulkrod, John E. J. Chem. Educ. 1981, 58, 508.
Nomenclature / Units / Symbols |
Chemometrics |
Stoichiometry
Bad booze   O'Connor, Rod
One of the brain tinglers: What is the maximum volume of 95% ethanol that a 120lb student could consume to reach a potentially lethal dosage of alcohol? This tingler also helps students understand why it is important to have denatured alcohol in the lab.
O'Connor, Rod J. Chem. Educ. 1981, 58, 502.
Alcohols |
Toxicology |
Stoichiometry |
Applications of Chemistry
Notation for order of addition  Niewahner, J. H.
The notation described here will enable a student to include in the chemical equation an implied statement regarding the order of addition.
Niewahner, J. H. J. Chem. Educ. 1981, 58, 461.
Reactions |
Nomenclature / Units / Symbols
Introduction to chemical nomenclature  Friedstein, Harriet

Friedstein, Harriet J. Chem. Educ. 1981, 58, 414.
Nomenclature / Units / Symbols
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
An experimental introduction to stoichiometry   Webb, Michael J.
A procedure for an experiment with the purpose: To show via experiment that the quantities of materials used in chemical reactions are related to balanced chemical equations.
Webb, Michael J. J. Chem. Educ. 1981, 58, 192.
Stoichiometry |
Reactions
A specific heat analogy  McCullough, Brother Thomas, CSC
An analogy for helping students to understand the concepts of specific heat and heat transfer problems.
McCullough, Brother Thomas, CSC J. Chem. Educ. 1980, 57, 896.
Calorimetry / Thermochemistry |
Chemometrics
Sweet heat  O'Connor, Rod
What would be the net enthalpy change for the complete combustion of 5.00 g of glucose at body temperature?
O'Connor, Rod J. Chem. Educ. 1980, 57, 889.
Carbohydrates |
Calorimetry / Thermochemistry |
Chemometrics
Teaching and learning problem solving in science. Part I: A general strategy  Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H.
A systematic approach to solving problems and on designing instruction where students learn this approach.
Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H. J. Chem. Educ. 1980, 57, 882.
Chemometrics
Empirical formulas - A ratio problem  Knox, Kerro
A problem involving an analogy between ratios of boys to girls given their average weights and percentage composition of the class by weight.
Knox, Kerro J. Chem. Educ. 1980, 57, 879.
Chemometrics |
Molecular Properties / Structure
Groups and subgroups in the periodic table of the elements: A proposal of modification in the nomenclature  Araneo, Antonio
A proposal to eliminate the "A" and "B" designations of subgroups and replace them with letters referring directly to the electronic structures of atoms.
Araneo, Antonio J. Chem. Educ. 1980, 57, 784.
Periodicity / Periodic Table |
Nomenclature / Units / Symbols |
Atomic Properties / Structure
An approximate determination of Avogadro's constant  Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel
An experiment to determine a value for Avogadro's number by determining the relationship between the number of electrons flowing through an acidified solution of water and the number of moles of electrons which reduce hydrogen ions to produce hydrogen gas.
Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel J. Chem. Educ. 1980, 57, 735.
Stoichiometry |
Electrochemistry |
Aqueous Solution Chemistry
Mole fraction analogies  DeLorenzo, Ron
An analogy to help students solve concentration problems.
DeLorenzo, Ron J. Chem. Educ. 1980, 57, 733.
Stoichiometry |
Chemometrics |
Solutions / Solvents
Stoichiometry of redox reactions  Parker, Gordon A.
A question involving an amplification reaction sequence and the balancing of oxidation-reduction reactions.
Parker, Gordon A. J. Chem. Educ. 1980, 57, 721.
Stoichiometry |
Oxidation / Reduction
An applied exam in coordination chemistry  Pantaleo, Daniel C.
Students draw from a pool of stock chemicals and answer questions based on its formula and observed properties.
Pantaleo, Daniel C. J. Chem. Educ. 1980, 57, 669.
Coordination Compounds |
Nomenclature / Units / Symbols
Dissociation of a weak acid  Ladd, M. F. C.
An earlier treatment of the equilibrium of a weak acid in water gives, for certain ranges of concentration, significantly incorrect results.
Ladd, M. F. C. J. Chem. Educ. 1980, 57, 669.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Chemometrics
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Significant figures: Removing the zero mystique  Treptow, Richard S.
Zeros are significant if they appear before a number takes on size or as stand-ins for unknown digits.
Treptow, Richard S. J. Chem. Educ. 1980, 57, 646.
Chemometrics
Whatever became of significant figures? The trend toward numerical illiteracy  Anderlik, Barbara
How does one persuade students, when working with physical measurements, to part with excess digits and become numerically literate.
Anderlik, Barbara J. Chem. Educ. 1980, 57, 591.
Chemometrics
Bicarbonate in Alka-Seltzer: A general chemistry experiment  Peck, Larry; Irgolic, Kurt; O'Connor, Rod
Determining the percentage bicarbonate ion by mass in Alka-Seltzer.
Peck, Larry; Irgolic, Kurt; O'Connor, Rod J. Chem. Educ. 1980, 57, 517.
Quantitative Analysis |
Gases |
Stoichiometry |
Acids / Bases
Compact comments  Rhodes, Gale; Goodmanson, David
A clear derivation of a temperature scale interconversion equation can be carried out by plotting temperatures of one scale against corresponding temperatures of the other.
Rhodes, Gale; Goodmanson, David J. Chem. Educ. 1980, 57, 506.
Nomenclature / Units / Symbols
An illustration to demonstrate the smallness of molecules  Kingston, David W.
An exercise in dimensional analysis.
Kingston, David W. J. Chem. Educ. 1980, 57, 506.
Chemometrics
Chem-deck: How to learn to write the formulas of chemical compounds (or lose your shirt)  Sherman, Alan; Sherman, Sharon J.
A game that helps students learn to name compounds and write chemical formulas.
Sherman, Alan; Sherman, Sharon J. J. Chem. Educ. 1980, 57, 503.
Nomenclature / Units / Symbols
Correlating Celsius and Fahrenheit temperatures by the "unit calculus"  Gorin, George
Deriving the mathematical relationship between Celsius and Fahrenheit temperatures.
Gorin, George J. Chem. Educ. 1980, 57, 350.
Nomenclature / Units / Symbols |
Chemometrics
Adopting SI units in introductory chemistry  Davies, William G.; Moore, John W.
Conventions associated with SI units, conversion relationships commonly used in chemistry, and a roadmap method for solving stoichiometry problems.
Davies, William G.; Moore, John W. J. Chem. Educ. 1980, 57, 303.
Nomenclature / Units / Symbols |
Chemometrics
Adding another dimension to dimensional analysis  DeLorenzo, Ronald
Adding words to typical dimensional analysis work to improve understanding and communication.
DeLorenzo, Ronald J. Chem. Educ. 1980, 57, 302.
Chemometrics
A chemistry lesson at Three Mile Island  Mammano, Nicholas J.
Teaching principles of general chemistry through references made to the nuclear incident at Three Mile Island.
Mammano, Nicholas J. J. Chem. Educ. 1980, 57, 286.
Equilibrium |
Gases |
Stoichiometry |
Nonmajor Courses |
Nuclear / Radiochemistry |
Applications of Chemistry
Significant digits: Numbers and their logarithms  Clever, H. Lawrence
The number of digits to report in a base 10 logarithm is an unresolved problem for many students.
Clever, H. Lawrence J. Chem. Educ. 1979, 56, 824.
Chemometrics |
pH
An application of Gagne's principles of instructional design: Teaching the limiting-reactant problem  Ozsogomonyan, Ardas
The results of a study of the development and validation of effective individualized instructional materials to teach some major concepts of stoichiometry to underprepared students.
Ozsogomonyan, Ardas J. Chem. Educ. 1979, 56, 799.
Stoichiometry
Response to Comments on "SI Units? A Camel is a Camel"  Adamson, Arthur W.
Comments on an earlier article regarding SI units.
Adamson, Arthur W. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Dingledy, David
Comments on an earlier article regarding SI units.
Dingledy, David J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Heslop, R. B.
Comments on an earlier article regarding SI units.
Heslop, R. B. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
An apologia for accepting at least an approximation to SI  Wright, P. G.
Comments on earlier articles regarding SI units.
Wright, P. G. J. Chem. Educ. 1979, 56, 663.
Nomenclature / Units / Symbols
On finding a middle ground for SI  Nelson, Robert A.
Comments on an earlier article regarding SI units.
Nelson, Robert A. J. Chem. Educ. 1979, 56, 661.
Nomenclature / Units / Symbols
Empirical formulas  Ryan, Dennis P.
This question forces one to duplicate the line of reasoning used by Dalton in his initial formulation of atomic weights; it tests for the ability to deduce atomic sizes and to calculate empirical formulas.
Ryan, Dennis P. J. Chem. Educ. 1979, 56, 528.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Periodicity / Periodic Table
The physically meaningful solution of the quadratic equation  Levy, Mel; Byers, Larry D.
Shows that the potential ambiguity of two unequal but physically meaningful roots never arises.
Levy, Mel; Byers, Larry D. J. Chem. Educ. 1979, 56, 526.
Chemometrics
Calculators in freshman chemistry - An alternative view  Gold, Marvin
There is a serious negative aspect to allowing freshmen use of calculators in chemistry.
Gold, Marvin J. Chem. Educ. 1979, 56, 526.
Chemometrics
The barium hydroxide ammonium thiocyanate reaction: A titrimetric continuous variations experiment  Harris, Arlo D.
Experiment that uses acid-base titrimetry to study the stoichiometry of a novel solid state reaction.
Harris, Arlo D. J. Chem. Educ. 1979, 56, 477.
Titration / Volumetric Analysis |
Acids / Bases |
Solid State Chemistry |
Stoichiometry
Hey, watch your language!  Herron, J. Dudley
If we do not use our words with care, we introduce and reinforce confusion.
Herron, J. Dudley J. Chem. Educ. 1979, 56, 330.
Nomenclature / Units / Symbols
The ambit of chemistry  Vitz, Edward W.
Proposal to revise the standard definition of chemistry to one that focusses on atoms and molecules rather than simply matter.
Vitz, Edward W. J. Chem. Educ. 1979, 56, 327.
Nomenclature / Units / Symbols
Measurement errors: A lecture demonstration  Munn, Robert J.
A lecture demonstration to realistically discuss precision, accuracy, averaging, data rejection, and significant digits.
Munn, Robert J. J. Chem. Educ. 1979, 56, 267.
Chemometrics
How many significant digits in 0.05C?  Power, James D.
Textbooks abound with erroneous examples, such as 33F = 0.56C.
Power, James D. J. Chem. Educ. 1979, 56, 239.
Chemometrics |
Nomenclature / Units / Symbols
Calculators, slide rules, and significant figures  McCullough, Thomas, CSC
Using a slide rule to help students understand the concept of significant figures before using a calculator.
McCullough, Thomas, CSC J. Chem. Educ. 1979, 56, 238.
Chemometrics
More on balancing redox equations  Kolb, Doris
Balancing atypical redox equations.
Kolb, Doris J. Chem. Educ. 1979, 56, 181.
Stoichiometry |
Oxidation / Reduction
Evolution of an experiment (from moles/I2 to gaseous CaCl2)  Dauphinee, G. A.
An experiment originally designed to illustrate a simple problem in solution stoichiometry has produced a stimulus to student recognition of some applications of descriptive chemistry.
Dauphinee, G. A. J. Chem. Educ. 1979, 56, 116.
Stoichiometry |
Descriptive Chemistry
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Intuitive and general approach to acid-base equilibrium calculations  Felty, Wayne L.
The purpose of this paper is to show that the usual intuitive approach used in general chemistry can be readily extended without introduction of additional, sophisticated concepts to give the general, exact expression and to point out the pedagogical advantage of its use.
Felty, Wayne L. J. Chem. Educ. 1978, 55, 576.
Acids / Bases |
Equilibrium |
Chemometrics
Pressure calculations   Schultz, Charles W.
This question requires students to be able to distinguish two kinds of pressure: Boyles law pressure of gas (that depends on volume) from the equilibrium vapor pressure above a liquid (that does not).
Schultz, Charles W. J. Chem. Educ. 1978, 55, 515.
Gases |
Chemometrics
Balancing an atypical redox equation  Carrano, S. A.
The author presents a particularly tricky redox problem and walks readers through a solution.
Carrano, S. A. J. Chem. Educ. 1978, 55, 382.
Chemometrics |
Oxidation / Reduction |
Stoichiometry
Chemical predictions from pKa values  Hassanali, A.
The problem presented here develops student understanding of both pKa calculations and organic acids.
Hassanali, A. J. Chem. Educ. 1978, 55, 378.
Acids / Bases |
pH |
Chemometrics
Teaching the method of successive approximations  Nassiff, Peter J.; Boyko, E. R.
The purpose of this papers is to help the teacher show the student why basic methods of successive approximations work, how they may be applied, and under what conditions it will be successful.
Nassiff, Peter J.; Boyko, E. R. J. Chem. Educ. 1978, 55, 376.
Chemometrics |
Acids / Bases |
Gases
Collision theory  Myers, Richard S.
The question presented here can be employed in general or physical chemistry courses.
Myers, Richard S. J. Chem. Educ. 1978, 55, 243.
Chemometrics |
Thermodynamics |
Kinetics
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
The chemical formula. Part I: Development  Kolb, Doris
The origin of the chemical formula, the problem of isomers, nucleus theory, radical theories, residue theory, type theory, extension of the type theory, valence theory, graphic formulas, and contribution of Cannizzaro.
Kolb, Doris J. Chem. Educ. 1978, 55, 44.
Stoichiometry
A pre-general chemistry course for the underprepared student  Krannich, Larry K.; Patick, David; Pevear, Jesse
Outline and evaluation of a course in chemical problem solving.
Krannich, Larry K.; Patick, David; Pevear, Jesse J. Chem. Educ. 1977, 54, 730.
Enrichment / Review Materials |
Chemometrics
A computer program designed to balance inorganic chemical equations  Rosen, Allen I.
A BASIC program designed to check the correct balancing of chemical equations.
Rosen, Allen I. J. Chem. Educ. 1977, 54, 704.
Stoichiometry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Chemical equilibrium: Analogies that separate the mathematics from the chemistry  DeLorenzo, Ronald A.
Demonstrates that the mathematics of chemical equilibria are not difficult, particularly when put in a non-chemical context.
DeLorenzo, Ronald A. J. Chem. Educ. 1977, 54, 676.
Equilibrium |
Chemometrics
Different experiment on chemical composition  Wells, Norman; Boschmann, Erwin
The synthesis of antimony iodide.
Wells, Norman; Boschmann, Erwin J. Chem. Educ. 1977, 54, 586.
Stoichiometry
On significant figures  MacCarthy, Patrick
Illustrating the decrease in uncertainty that accompanies an increase in significant figures.
MacCarthy, Patrick J. Chem. Educ. 1977, 54, 578.
Chemometrics
Equations of electromagnetism from CGS to SI  Cvitas, T.; Kallay, N.
A general procedure for changing any CGS formula into SI.
Cvitas, T.; Kallay, N. J. Chem. Educ. 1977, 54, 530.
Nomenclature / Units / Symbols
Simple classroom experiment on uncertainty of measurement  Sen, B.
This activity demonstrates several aspects regarding the statistical treatment of data.
Sen, B. J. Chem. Educ. 1977, 54, 468.
Chemometrics
The relationship of lead and sulfur in a chemical reaction  Chapman, V. L.
Investigating the stoichiometric synthesis of lead and sulfur to form lead sulfide.
Chapman, V. L. J. Chem. Educ. 1977, 54, 436.
Reactions |
Stoichiometry
A balancing act  Schug, Kenneth
A method for teaching introductory students how to balance chemical equations.
Schug, Kenneth J. Chem. Educ. 1977, 54, 370.
Stoichiometry
A demonstration in solid state chemistry: The nonstoichiometry of nickel oxide, NiO  Perrino, Charles T.; Johnson, Robert
A simple experiment to demonstrate the nonstoichiometric synthesis of nickel oxide.
Perrino, Charles T.; Johnson, Robert J. Chem. Educ. 1977, 54, 367.
Stoichiometry |
Oxidation State |
Oxidation / Reduction |
Solid State Chemistry |
Metals
A convenient notation for powers of ten and logarithms  Oesterreicher, H.
A convenient notation for powers of ten and logarithms that does not require superscripts.
Oesterreicher, H. J. Chem. Educ. 1977, 54, 367.
Nomenclature / Units / Symbols
Introductory quantitative laboratory exercise  Crossfield, A. J.
Two laboratory exercises that give good experiences with balance use, titration techniques, aliquot use, and mole calculations.
Crossfield, A. J. J. Chem. Educ. 1977, 54, 190.
Quantitative Analysis |
Gravimetric Analysis |
Titration / Volumetric Analysis |
Stoichiometry
Calculators and significant figures  Satek, Larry C.
A demonstration on the topic of significant figures and random errors.
Satek, Larry C. J. Chem. Educ. 1977, 54, 177.
Chemometrics
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
3 [Three] basketballs = 1 [one] mole of ideal gas at STP  Jardine, Fred H.
The volume of three basketballs = one mole of ideal gas at STP.
Jardine, Fred H. J. Chem. Educ. 1977, 54, 112.
Stoichiometry |
Gases
Lower valent oxo acids of phosphorus and sulfur  Fernelius, W. C.; Loening, Kurt; Adams, Roy
Reviews current practice and some of the problems with partial solutions.
Fernelius, W. C.; Loening, Kurt; Adams, Roy J. Chem. Educ. 1977, 54, 30.
Nomenclature / Units / Symbols
Cookbook dimensional analysis  DeLorenzo, Ronald
Frequently, teachers will hear, "...it looks easy when you do it..." when teaching dimensional analysis. This teacher advises others on a way to help students gain self-efficacy with this problem solving-strategy.
DeLorenzo, Ronald J. Chem. Educ. 1976, 53, 633.
Stoichiometry |
Chemometrics
A criterion for the simple approximation in dissociation equilibria  Leffler, Amos J.
The author demonstrates quantitative criterion for the assumption that permits the neglect of the amount of dissociated species in the denominator of the dissociation equation.
Leffler, Amos J. J. Chem. Educ. 1976, 53, 460.
Acids / Bases |
Equilibrium |
Chemometrics
The identity of chemical substances: A first laboratory experiment for elementary chemistry students  Fernandez, Jack E.
Students are given two pure substances and asked to determine whether they are the same or different.
Fernandez, Jack E. J. Chem. Educ. 1975, 52, 726.
Stoichiometry
Names for elements  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
System for naming new, heavy elements.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1975, 52, 583.
Nomenclature / Units / Symbols
A logic diagram for teaching stoichiometry  Tyndall, John R.
Presents a diagram that the author found helpful in teaching the fundamentals of stoichiometry.
Tyndall, John R. J. Chem. Educ. 1975, 52, 492.
Stoichiometry |
Chemometrics
Maximizing profits in equilibrium processes  Rish, Ronald J.
Provides the student with an example in which both chemical principles and calculus are applied to a realistic industrial situation where profits are a must.
Rish, Ronald J. J. Chem. Educ. 1975, 52, 441.
Equilibrium |
Industrial Chemistry |
Chemometrics
The reactions of ferroin complexes. A color-to-colorless freshman kinetic experiment  Edwards, John O.; Edwards, Kathleen; Palma, Jorge
A group of related reactions that can be easily followed with a colorimeter which show that the mechanism by which a reaction takes place may not be at all obvious from the stoichiometry.
Edwards, John O.; Edwards, Kathleen; Palma, Jorge J. Chem. Educ. 1975, 52, 408.
Kinetic-Molecular Theory |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Stoichiometry |
Mechanisms of Reactions
An experiment for introductory college chemistry. How to establish a chemistry equation  Masaguer, J. R.; Coto, M. Victoria; Casas, J. S.
The stoichiometry of the reaction between potassium chromate and barium chloride in an aqueous state is determined by using the height of of the precipitate formed when different amounts of both solutions are mixed in a graduated cylinder.
Masaguer, J. R.; Coto, M. Victoria; Casas, J. S. J. Chem. Educ. 1975, 52, 387.
Stoichiometry |
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
The paper clip mole - An undergraduate experiment  Cassen, T.
Paper clips are used to represent atoms and demonstrate the concept of atomic weight.
Cassen, T. J. Chem. Educ. 1975, 52, 386.
Stoichiometry
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
Molar solubility calculations and the control equilibrium  Chaston, S. H. H.
The Control-Equilibrium method uses as its starting point a precise procedure for obtaining the equilibrium that accounts for the bulk of the decomposition of starting materials.
Chaston, S. H. H. J. Chem. Educ. 1975, 52, 206.
Solutions / Solvents |
Chemometrics |
Equilibrium
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Illustrating large and small numbers. A problem for the birds  Sattler, Louis
A calculation designed to illustrate the relative size of Avogadro's number. The solution from p. 181 is reproduced in this PDF.
Sattler, Louis J. Chem. Educ. 1975, 52, 180.
Chemometrics |
Stoichiometry
Writing chemical equations. An introductory experiment  LeMay, H. Eugene, Jr.; Kemp, Kenneth C.
An introductory experiment in which students deduce the products by comparing their observations to descriptions of possible substances and write balanced chemical equations to represent the reactions.
LeMay, H. Eugene, Jr.; Kemp, Kenneth C. J. Chem. Educ. 1975, 52, 121.
Stoichiometry |
Descriptive Chemistry
FeSCN2+ - A computer aid to the CHEM Study experiment  McCall, Arthur J., Jr.
A Fortran program assists in making the calculations that accompany investigation of the iron(III)thiocyanate equilibrium system.
McCall, Arthur J., Jr. J. Chem. Educ. 1975, 52, 118.
Equilibrium |
Aqueous Solution Chemistry |
Chemometrics
Discussion: Mathematics in the first-year chemistry course  Richter, G. P.
Report of the Third Biennial Conference on Chemical Education and the Second Centennial of Chemistry Celebration.
Richter, G. P. J. Chem. Educ. 1975, 52, 19.
Conferences |
Professional Development |
Chemometrics
The extent of reaction as a unifying basis for stoichiometry in elementary chemistry  Garst, John F.
The author uses a more approachable symbol for "moles rxn per liter". The author outlines this approach with some examples.
Garst, John F. J. Chem. Educ. 1974, 51, 194.
Stoichiometry |
Gases
The reduction of CuO with burner gas and without a fume hood. A high school chemistry experiment  Zidick, Clem; Weismann, Thomas
This experiment is a modification of the classic reduction of CuO with hydrogen gas, except natural gas is used as the reducing agent, eliminating the danger of working with hydrogen.
Zidick, Clem; Weismann, Thomas J. Chem. Educ. 1973, 50, 717.
Oxidation / Reduction |
Reactions |
Stoichiometry
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
A computer program for heat of combustion calculations  Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol
A computer program is available for converting raw combustion data to the standard state energy of combustion.
Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol J. Chem. Educ. 1973, 50, 486.
Calorimetry / Thermochemistry |
Chemometrics
Capsules for molar volume experiments  Van Doren, Janet B.
Weighing metal turnings and placing them in a water soluble capsule for molar volume experiments.
Van Doren, Janet B. J. Chem. Educ. 1973, 50, 462.
Stoichiometry |
Laboratory Management
The law of definite proportions. An experiment for introductory chemistry  Wilhelm, Dale L.
Using the synthesis of copper iodide to demonstrate the law of definite proportions has advantages over other compounds.
Wilhelm, Dale L. J. Chem. Educ. 1973, 50, 436.
Stoichiometry |
Synthesis
A quick scored item analysis for objective tests  Stokes, Jimmy C.; Strickland, James F., Jr.
Analyzing test data with students in the classroom.
Stokes, Jimmy C.; Strickland, James F., Jr. J. Chem. Educ. 1973, 50, 354.
Chemometrics
Derivatives of oxo acids. IUPAC Publications on Nomenclature. Other International Reports. SI Units  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes the nomenclature of oxo acid derivatives.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 341.
Nomenclature / Units / Symbols |
Acids / Bases
The mole and Avogadro's number. A forced fusion of ideas for teaching purposes  Hawthorne, Robert M., Jr.
History of Avogadro's number and the mole and their increasing association with one another.
Hawthorne, Robert M., Jr. J. Chem. Educ. 1973, 50, 282.
Stoichiometry
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
A socially relevant problem in unit and dimension conversions  Bernstein, Stanley
An activity in which students determine the cheapest source of nutritional iron by considering a variety of food products.
Bernstein, Stanley J. Chem. Educ. 1973, 50, 65.
Nomenclature / Units / Symbols |
Nutrition |
Food Science |
Consumer Chemistry
Two lecture experiments demonstrating limiting quantities  Dillard, Clyde R.
Uses reactions between HCl and magnesium and HCl and calcium to demonstrate the concept of limiting reactants.
Dillard, Clyde R. J. Chem. Educ. 1972, 49, A694.
Stoichiometry |
Reactions
Problem solving for chemistry (Peters, Edward I.)  Fiekers, Bernard A., S. J.

Fiekers, Bernard A., S. J. J. Chem. Educ. 1972, 49, A491.
Chemometrics
Chemical calculations (Benson, Sidney W.)  Melgaard, Kennett G.

Melgaard, Kennett G. J. Chem. Educ. 1972, 49, A98.
Chemometrics
Positive ions and binary compounds  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Guidelines for the names of positive ions and binary compounds; also errata from past articles in this series.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 844.
Nomenclature / Units / Symbols
A computer program for balancing chemical equations  Brown, John P.; Brown, L. Pearl; Redd, Robert M.
Availability of a Fortran IV program that uses the matrix method for balancing chemical equations.
Brown, John P.; Brown, L. Pearl; Redd, Robert M. J. Chem. Educ. 1972, 49, 754.
Stoichiometry |
Reactions
Significant digits in logarithm-antilogarithm interconversions  Jones, Donald E.
Most textbooks are in error in the proper use of significant digits when interconverting logarithms and antilogarithms.
Jones, Donald E. J. Chem. Educ. 1972, 49, 753.
Nomenclature / Units / Symbols |
Chemometrics
A "relevant" first experiment for freshman chemistry laboratory  Macomber, Roger S.
This activity involves popping corn and introduces students to the processes of observation and inference as well as the use of the analytical balance and gravimetric procedure.
Macomber, Roger S. J. Chem. Educ. 1972, 49, 714.
Chemometrics
The stoichiometry of hydrated copper sulfate. A general chemistry laboratory experiment  Silber, Herbert B.
Students are provided with CuSO4.XH2O and asked to determine the % Cu, % SO4, and the number of water molecules in the hydrated salt using a cation-exchange resin coupled with gravimetric analysis.
Silber, Herbert B. J. Chem. Educ. 1972, 49, 586.
Stoichiometry |
Gravimetric Analysis |
Ion Exchange
An interactive program for teaching pH and logarithms  Eskinazi, Jak; Macero, Daniel J.
A computer program written in APL for teaching students logarithms and pH calculations.
Eskinazi, Jak; Macero, Daniel J. J. Chem. Educ. 1972, 49, 571.
pH |
Acids / Bases |
Chemometrics
Questions [and] Answers  Campbell, J. A.
Six questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 538.
Enrichment / Review Materials |
Applications of Chemistry |
Electrochemistry |
Astrochemistry |
Stoichiometry |
Metals
Gimmicks for mid-year motivation  Adams, Richard C.
Suggestions include directions for making peanut brittle, examining common, antiquated names for chemical compounds, and periodic puns.
Adams, Richard C. J. Chem. Educ. 1972, 49, 536.
Periodicity / Periodic Table |
Consumer Chemistry |
Nomenclature / Units / Symbols
The two-place logarithm table. An aid to understanding and use of logarithms  Freiser, Henry
Presents a two-place logarithm table that serves to aid the understanding and use of logarithms.
Freiser, Henry J. Chem. Educ. 1972, 49, 325.
Chemometrics
Density of a binary mixture. A classroom or laboratory exercise  Feinstein, H. I.
Provides a hypothetical problem in the density of a binary mixture.
Feinstein, H. I. J. Chem. Educ. 1972, 49, 111.
Physical Properties |
Chemometrics
Using alligation alternate to solve composition problems  Mancott, Anatol
Problems involving the composition of mixtures may be solved by using the relatively obscure method of "alligation alternate" in lieu of the standard algebraic procedure with no loss in accuracy; includes five examples.
Mancott, Anatol J. Chem. Educ. 1972, 49, 57.
Chemometrics |
Solutions / Solvents |
Isotopes
Numbers in nomenclature  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Examines how multiplying affixes are used, particularly in inorganic nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 49.
Nomenclature / Units / Symbols
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
Audio taped explanations of freshman experimental calculations  Harrison, Aline M.
The authors have found audio tapes to be effective replacements for live, in-lab explanations of experimental calculations.
Harrison, Aline M. J. Chem. Educ. 1971, 48, 826.
Chemometrics |
Laboratory Management
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
Mole concept and limiting reagent in the laboratory  Maio, Frances A.
The author provides a stepwise approach to problems in limiting reagents and the mole concepts.
Maio, Frances A. J. Chem. Educ. 1971, 48, 155.
Stoichiometry
Acid-base reaction parameters  Freiser, Henry
The author demonstrates how the combined algebraic graphical approach can be extended to acid-base titration curve calculations as well as to buffer and sharpness index formulation.
Freiser, Henry J. Chem. Educ. 1970, 47, 809.
Acids / Bases |
pH |
Titration / Volumetric Analysis |
Chemometrics
Grading the copper sulfide experiment  Novick, Seymour
The author recommends a more liberal analysis in grading the copper sulfide experiment.
Novick, Seymour J. Chem. Educ. 1970, 47, 785.
Stoichiometry |
Chemometrics
Balancing equations (the author responds)  Young, Jay A.
Recognizes the referenced letter.
Young, Jay A. J. Chem. Educ. 1970, 47, 785.
Stoichiometry
Balancing equations  Missen, R. W.
The author provides an alternative answer to the question in the referenced article.
Missen, R. W. J. Chem. Educ. 1970, 47, 785.
Stoichiometry
Chemical exponentialism for beginners  Larson, G. Olof
Presents a method for introducing and reviewing exponential mathematical operations.
Larson, G. Olof J. Chem. Educ. 1970, 47, 693.
Chemometrics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
A demonstration experiment on partial molar volumes  Coch, Juan A.; Lopez, Valentin
The partial molar volume of trichloroacetic acid can be determined by measuring the increase in volume when TCA is dissolved in water at constant temperature and pressure.
Coch, Juan A.; Lopez, Valentin J. Chem. Educ. 1970, 47, 270.
Solutions / Solvents |
Molecular Properties / Structure |
Stoichiometry
Intensive and extensive properties  Redlich, Otto
Defines and discusses the differences between intensive and extensive properties.
Redlich, Otto J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
Physical versus chemical change  Gensler, Walter J.
Defines and discusses the differences between physical and chemical changes.
Gensler, Walter J. J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
Intensive and extensive properties  Redlich, Otto
Defines and discusses the differences between intensive and extensive properties.
Redlich, Otto J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
Programs for correcting student balanced equations and for generating numerical problem parameters  Ratney, Ronald S.
Availability of two computer programs to correct student balanced equations and generate randomized parameters for use in numerical problems.
Ratney, Ronald S. J. Chem. Educ. 1970, 47, 136.
Stoichiometry
Hydrolysis of sodium carbonate  Nakayama, F. S.
Presents a procedure for obtaining the ion concentrations of the various component species produced by the hydrolysis of sodium carbonate.
Nakayama, F. S. J. Chem. Educ. 1970, 47, 67.
Aqueous Solution Chemistry |
Chemometrics |
pH
Component concentrations in solutions of weak acids  Goldish, Dorothy M.
presents a new approach to teaching the subject of weak acid equilibria and its associated calculations.
Goldish, Dorothy M. J. Chem. Educ. 1970, 47, 65.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Chemometrics |
pH
Essential Math for the Sciences: Algebra, Trigonometry, and Vectors (Beiser, Arthur)  Reuland, Donald J.

Reuland, Donald J. J. Chem. Educ. 1969, 46, A899.
Chemometrics
The oxidation of hydrazine by basic iodine solutions: A stoichiometric study  Cooper, J. N.; Ramette, R. W.
This experiment relies on an oxidation-reduction reaction for which a variety of products is energetically possible.
Cooper, J. N.; Ramette, R. W. J. Chem. Educ. 1969, 46, 872.
Stoichiometry |
Oxidation / Reduction |
Reactions
Avogadro's number from the volume of a monolayer  Moynihan, Cornelius T.; Goldwhite, Harold
This article comments on and makes suggestions regarding the conduct of and treatment of data in the popular experiment in which Avogadro's number is estimated from the volume of a monolayer on a water surface.
Moynihan, Cornelius T.; Goldwhite, Harold J. Chem. Educ. 1969, 46, 779.
Stoichiometry |
Molecular Properties / Structure
The stoichiometry of silver chromate and basic copper chromate: Investigations for the freshman laboratory  Kalbus, L. H.; Petrucci, R. H.
This project begins with a continuous variation study of the formation of silver chromate and then turns to copper chromate and with this substance the results are unexpected, from beginning to end.
Kalbus, L. H.; Petrucci, R. H. J. Chem. Educ. 1969, 46, 776.
Stoichiometry |
Quantitative Analysis
Volkswagen versus the hummingbird  Nebbia, Giorgio
Questions the cited (046-07-0455) thermodynamic calculations.
Nebbia, Giorgio J. Chem. Educ. 1969, 46, 701.
Thermodynamics |
Calorimetry / Thermochemistry |
Chemometrics
LTE.  Crocker, Roger
The author points out that the objections raised to his earlier work are academic.
Crocker, Roger J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
LTE. Algebra and chemical equations  Copley, George Novello
The author questions the mathematic validity of the cited work.
Copley, George Novello J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
An improved equivalent weight apparatus  Brown, Oliver L.
Presents an improved apparatus for the reaction of weighed samples of metals with hydrochloric acid and the measurement of the volume of hydrogen evolved.
Brown, Oliver L. J. Chem. Educ. 1969, 46, 617.
Laboratory Equipment / Apparatus |
Metals |
Laboratory Management |
Reactions |
Gases |
Stoichiometry
Fuel conversion in transport phenomena  Gerlach, E. R.
Calculations comparing the fuel efficiency of a hummingbird with that of a Volkswagen.
Gerlach, E. R. J. Chem. Educ. 1969, 46, 455.
Calorimetry / Thermochemistry |
Chemometrics |
Nomenclature / Units / Symbols
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Avogadro's number by four methods  Slabaugh, W. H.
Describes a project by two general chemistry students to compare four methods for finding Avogadro's number; this article focusses on the electroplating method.
Slabaugh, W. H. J. Chem. Educ. 1969, 46, 40.
Stoichiometry |
Electrochemistry
Circular slide rule conversion of pH to [H+]  Grimm, Larry C.
This short note discusses the use of a circular slide rule to convert pH to [H+].
Grimm, Larry C. J. Chem. Educ. 1969, 46, 22.
Chemometrics |
Acids / Bases |
pH |
Aqueous Solution Chemistry
The languages of chemistry. Reading, writing, and understanding equations (Walker, Ruth A.; Johnston, Helen)  Fiekers, Bernard A.

Fiekers, Bernard A. J. Chem. Educ. 1968, 45, A620.
Nomenclature / Units / Symbols
Hazardous chemicals data  National Fire Protection Association
Explains aspects of chemical hazard data and presents hazards associated with acetaldehyde.
National Fire Protection Association J. Chem. Educ. 1968, 45, A115.
Chemometrics |
Aldehydes / Ketones |
Laboratory Management
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Application of diophantine equations to problems in chemistry  Crocker, Roger
The mathematical method of diophantine equations is shown to apply to two problems in chemistry: the balancing of chemical equations, and determining the molecular formula of a compound.
Crocker, Roger J. Chem. Educ. 1968, 45, 731.
Mathematics / Symbolic Mathematics |
Stoichiometry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Bolte, John
(1) Is the mole a number or a weight? (2) Is there an easy way to locate a compound by volume and page in Beilstein? (3) What are the stages evident in a gas discharge tube as the pressure of the gas and the voltage are changed? - answer by Bolte
Young, J. A.; Malik, J. G.; Bolte, John J. Chem. Educ. 1968, 45, 718.
Stoichiometry |
Nomenclature / Units / Symbols |
Gases
Mole fraction versus molality  Creak, G. Alan
Mole fractions are not always unambiguous when used in the context of ionic solutions.
Creak, G. Alan J. Chem. Educ. 1968, 45, 622.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
Silver tree  Smith, Donald Z.
A suggestion for improving the silver:copper ratio in the silver tree experiment.
Smith, Donald Z. J. Chem. Educ. 1968, 45, 275.
Stoichiometry |
Reactions
Normality and molality: The expendables  Sacks, L. J.
Discusses objections against normality and molality.
Sacks, L. J. J. Chem. Educ. 1968, 45, 183.
Nomenclature / Units / Symbols
Chlorine trifluoride.  Steere, Norman V.
Summarizes the hazards associated with chlorine trifluoride.
Steere, Norman V. J. Chem. Educ. 1967, 44, A1057.
Chemometrics |
Laboratory Management
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
Significant figures and correlation of parameters  DeTar, DeLos F.
Examines the two quite different meanings for the term significant figures as applied to the parameters of an equation.
DeTar, DeLos F. J. Chem. Educ. 1967, 44, 759.
Nomenclature / Units / Symbols
The stoichiometry of sulfides: Experiments for the introductory laboratory  Dingledy, David
Uses the preparation of lead sulfide and nickel sulfide to illustrate the law of constant proportions.
Dingledy, David J. Chem. Educ. 1967, 44, 693.
Stoichiometry |
Synthesis
Letter to the editor  Bacon, E. K.
Examines values collected when using the production of copper sulfide to demonstrate the law of constant proportions.
Bacon, E. K. J. Chem. Educ. 1967, 44, 620.
Stoichiometry |
Synthesis
The stoichiometry of an oxidation-reduction reaction  Latimer, George W., Jr.
A short note on the titration of hydrazine sulfate with standard bromate in the presence of sodium molybdate that requires students to identify the products through the use of some elementary qualitative analysis.
Latimer, George W., Jr. J. Chem. Educ. 1967, 44, 537.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Titration / Volumetric Analysis |
Qualitative Analysis
Stoichiometry: Atomic weights, molecular formulas, microcosmic magnitudes (Nash, Leornard K.)  Maybury, P. Calvin

Maybury, P. Calvin J. Chem. Educ. 1967, 44, 429.
Stoichiometry |
Enrichment / Review Materials |
Molecular Recognition
Determination of the combining weight of tin: A new look at an old experiment  Carmody, Walter R.
Describes efforts to improve the determination of the combining weight of tin
Carmody, Walter R. J. Chem. Educ. 1967, 44, 416.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Synthesis
The stoichiometry of copper sulfide formed in an introductory laboratory exercise  Dingledy, David; Barnard, Walther M.
The preparation of copper sulfide is used as an introductory chemistry laboratory exercise to demonstrate the law of constant proportions.
Dingledy, David; Barnard, Walther M. J. Chem. Educ. 1967, 44, 242.
Stoichiometry |
Synthesis
The significance of significant figures  Pinkerton, Richard C.; Gleit, Chester E.
This paper is an attempt to clarify some of our ideas about numerical data, measurements, mathematical operations, and significant figures.
Pinkerton, Richard C.; Gleit, Chester E. J. Chem. Educ. 1967, 44, 232.
Nomenclature / Units / Symbols |
Chemometrics
The stoichiometry of an oxidation-reduction reaction: An elementary chemistry experiment  Child, W. C., Jr.; Ramette, R. W.
Students are asked to decide which of a number of nitrogen containing species is a reasonable product of the reaction between the hydroxylammonium ion and iron (III) on the basis of the experimentally determined stoichiometry of the reaction.
Child, W. C., Jr.; Ramette, R. W. J. Chem. Educ. 1967, 44, 109.
Stoichiometry |
Oxidation / Reduction |
Reactions
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
The MKS temperature scale  Georgian, John C.
A temperature scale to fit into the MKS system of units is proposed.
Georgian, John C. J. Chem. Educ. 1966, 43, 414.
Nomenclature / Units / Symbols
The relationship between Avogadro's Principle and the Law of Gay-Lussac  Feifer, Nathan
Teaching Avogadro's Principle as an explanation of the phenomena described by Gay-Lussac's Law gives the instructor an opportunity to stress some of the basic assumptions in chemistry and to highlight the logic implicit in Avogadro's reasoning.
Feifer, Nathan J. Chem. Educ. 1966, 43, 411.
Stoichiometry |
Gases
Letter to the editor  Onwood, D. P.
Discusses variations in the usage of the terms "acid" and "base," including Lowry-Bronsted and Lewis systems.
Onwood, D. P. J. Chem. Educ. 1966, 43, 335.
Acids / Bases |
Lewis Acids / Bases |
Nomenclature / Units / Symbols
Evaluation of Avogadro's number: A general chemistry experiment  Henry, Paul S.
The method of J. Perin for evaluating Avogadro's number can be simplified by making use of suspensions of latex spherules by Dow.
Henry, Paul S. J. Chem. Educ. 1966, 43, 251.
Stoichiometry
Molecules versus moles  Guggenheim, E. A.
Now that the mass of molecules is known with great accuracy, there is nothing to be gained in continuing to use moles.
Guggenheim, E. A. J. Chem. Educ. 1966, 43, 250.
Stoichiometry |
Nomenclature / Units / Symbols
Amedeo, Michael, and Charles and large numbers  Scholes, S. R.
A poem on Avogadro's number.
Scholes, S. R. J. Chem. Educ. 1965, 42, 650.
Stoichiometry
Statistical analysis of data in the general chemistry laboratory  Chapin, Earl C.; Burns, Richard F.
Students are asked to analyze data collected with respect to determinations of Dumas molecular weight, equivalent weight of a metal, equivalent weight of an acid, and molecular weight by freezing point depression.
Chapin, Earl C.; Burns, Richard F. J. Chem. Educ. 1965, 42, 564.
Chemometrics
Notes on experiments for introductory college chemistry  
A brief set of notes regarding the complex salt [Co(NH3)5Cl]Cl2, the Guoy balance, Avogadro's number, and the stoichiometry of a mixture.
J. Chem. Educ. 1965, 42, 495.
Coordination Compounds |
Magnetic Properties |
Stoichiometry |
Solutions / Solvents
Stoichiometry of the reaction of bromine with phenols  Lockwood, Karl L.
The purpose of this investigation is to establish the stoichiometry for the reaction of a number of phenols with bromine, and to demonstrate the rapid and quantitative nature of the reaction of bromine with enols.
Lockwood, Karl L. J. Chem. Educ. 1965, 42, 482.
Stoichiometry |
Phenols
Units of measurement: An early application of Avogadro's number  Brasted, Robert C.
A comparison is made between the measured volume of a regular metallic solid and its theoretical volume as calculated using Avogadro's number.
Brasted, Robert C. J. Chem. Educ. 1965, 42, 472.
Stoichiometry |
Nomenclature / Units / Symbols |
Metals |
Physical Properties
Determination of Avogadro's number by Perrin's law  Slabaugh, W. H.
The experimental procedure for determining Avogadro's number by the Perrin method includes preparing a monodisperse colloid, ascertaining the mass of the particles, and making an accurate count of the number of particles at two points in the equilibrated colloid.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 471.
Stoichiometry |
Kinetic-Molecular Theory |
Gases |
Colloids
Experimental approach to stoichiometry. In first-year chemistry at Northwestern  King, L. Carroll; Cooper, Milton
Presents five experiments in which students are given a minimal set of directions and a simply stated objective.
King, L. Carroll; Cooper, Milton J. Chem. Educ. 1965, 42, 464.
Stoichiometry |
Coordination Compounds |
Undergraduate Research |
Aqueous Solution Chemistry |
Solutions / Solvents |
Precipitation / Solubility |
Titration / Volumetric Analysis
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Simplified temperature conversion  Midgley, Calvin P.
This simple method for temperature conversion can be done without pencil and paper.
Midgley, Calvin P. J. Chem. Educ. 1965, 42, 322.
Nomenclature / Units / Symbols
Derivation of equations for the interconversion of concentration units  Mills, Alfred P.
Presents the derivation of equations for the interconversion of concentration units.
Mills, Alfred P. J. Chem. Educ. 1965, 42, 314.
Nomenclature / Units / Symbols
Minimum molecular weight approach for determining empirical formulas  Harwood, H. James
Describes the determination of empirical formulas from "minimum molecular weight," the molecular weight divided by the number of atoms of an element present in a molecule.
Harwood, H. James J. Chem. Educ. 1965, 42, 222.
Molecular Properties / Structure |
Stoichiometry
Modified exponential number notation  Frigerio, Norman A.
Suggests the notation 1P3 and 1N3 to represent 1000 and 0.001, respectively.
Frigerio, Norman A. J. Chem. Educ. 1965, 42, 213.
Nomenclature / Units / Symbols
Computer program for the calculation of acid-base titration curves  Emery, Allan R.
Describes the development of a computer program for the calculation of acid-base titration curves.
Emery, Allan R. J. Chem. Educ. 1965, 42, 131.
Titration / Volumetric Analysis |
Acids / Bases |
Aqueous Solution Chemistry |
Chemometrics
On Avogadro's number  Scholes, S. R.
A poem on the subject of Avogadro's number.
Scholes, S. R. J. Chem. Educ. 1965, 42, 126.
Stoichiometry
Teaching ionic equilibrium: Use of log chart transparencies  Freiser, Henry; Fernando, Quintus
The use of graphical methods brings the problem of significance of various terms in complicated expressions into proper focus. Furthermore, a pictorial representation permits the student to see at a glance how the concentrations of various species in a system at equilibrium change with conditions.
Freiser, Henry; Fernando, Quintus J. Chem. Educ. 1965, 42, 35.
Aqueous Solution Chemistry |
Equilibrium |
Acids / Bases |
pH |
Chemometrics |
Brønsted-Lowry Acids / Bases
Solubility and pH Calculations (Butler, James N.)  Ramette, R. W.

Ramette, R. W. J. Chem. Educ. 1964, 41, A970.
Aqueous Solution Chemistry |
Precipitation / Solubility |
pH |
Acids / Bases |
Chemometrics |
Enrichment / Review Materials
Problem solving in chemistry (Tilbury, Glen)  Whitney, Richard M.

Whitney, Richard M. J. Chem. Educ. 1964, 41, A532.
Chemometrics |
Enrichment / Review Materials
Operator formalism in dimensional analysis  Musulin, Boris
Describes another approach to dimensional analysis.
Musulin, Boris J. Chem. Educ. 1964, 41, 622.
Chemometrics
An MKS system of units for chemists  Strong, Frederick C.
It would be worth investigating whether the MKS system would be useful in chemistry.
Strong, Frederick C. J. Chem. Educ. 1964, 41, 621.
Nomenclature / Units / Symbols
Systematic names for the tartaric acids  Baxter, J. N.
Examines the use of the small capital letters D and L in naming tartaric acids.
Baxter, J. N. J. Chem. Educ. 1964, 41, 619.
Nomenclature / Units / Symbols |
Acids / Bases |
Carbohydrates |
Chirality / Optical Activity |
Enantiomers
Lexicon of international and national units (Clason, W. E.)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1964, 41, 519.
Nomenclature / Units / Symbols
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Beer's law without calculus  Pinkerton, Richard C.
There is no good reason for using calculus in the presentation of Beer's law.
Pinkerton, Richard C. J. Chem. Educ. 1964, 41, 366.
Chemometrics
A method of visual representation of three dimensional functions  Lemlich, Arthur; Zinsser, Hans H.
Lego blocks are used to visually represent three-dimensional functions.
Lemlich, Arthur; Zinsser, Hans H. J. Chem. Educ. 1964, 41, 165.
Chemometrics |
Mathematics / Symbolic Mathematics
An amperometric-kinetic experiment emphasizing the importance of error treatment  Young, J. A.
Provides suggestions for student research based on an earlier article published in the Journal.
Young, J. A. J. Chem. Educ. 1963, 40, A139.
Undergraduate Research |
Kinetics |
Chemometrics
Crystals, minerals and chemistry  McConnell, Duncan; Verhoek, Frank H.
Considers stoichiometry and isomorphism, isomorphic substitutions, coupled substitution, the substitution of anions, and oxygen atoms per unit cell.
McConnell, Duncan; Verhoek, Frank H. J. Chem. Educ. 1963, 40, 512.
Crystals / Crystallography |
Geochemistry |
Stoichiometry
Chemical calculations (Benson, Sidney W.)  Masterton, William L.

Masterton, William L. J. Chem. Educ. 1963, 40, 499.
Chemometrics |
Enrichment / Review Materials
Some experiments on the stoichiometry of reactions  Tietzie, H. R.
Students establish the stoichiometry of several reactions through volumetric analysis.
Tietzie, H. R. J. Chem. Educ. 1963, 40, 344.
Stoichiometry |
Titration / Volumetric Analysis
Letters to the editor  Linde, Charlotte
Suggests the term "ionocule" for the opposite of molecule.
Linde, Charlotte J. Chem. Educ. 1963, 40, 270.
Nomenclature / Units / Symbols
Letters to the editor  Swayze, Donald R.
Examines balancing chemical equations.
Swayze, Donald R. J. Chem. Educ. 1963, 40, 269.
Stoichiometry |
Industrial Chemistry
Basic mathematics of science and engineering (Wood, Reuben E.)  Rosenberg, Robert M.

Rosenberg, Robert M. J. Chem. Educ. 1962, 39, A60.
Chemometrics |
Mathematics / Symbolic Mathematics |
Enrichment / Review Materials
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Ultramacro and ultramicro science terms  de Ment, Jack
Proposes a convenient and consistent set of metric prefixes for very large and very small multiples and sub-multiples.
de Ment, Jack J. Chem. Educ. 1962, 39, 587.
Nomenclature / Units / Symbols
Balancing ionic equations by the method of undetermined coefficients  Haas, Rudy; Gayer, Karl H.
Describes a mathematical method for balancing chemical equations.
Haas, Rudy; Gayer, Karl H. J. Chem. Educ. 1962, 39, 537.
Stoichiometry |
Chemometrics
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
The mole concept in chemistry (Kieffer, William F.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 488.
Stoichiometry
The "reaction equivalent" in stoichiometric problems  Dorf, Harold
Presents a simplified method for solving all stoichiometric problems based on chemical equations.
Dorf, Harold J. Chem. Educ. 1962, 39, 298.
Stoichiometry
Writing a chemical equation from titration data: Experiment for general chemistry  State, Harold M.
Students titrate phosphoric acid with sodium hydroxide to determine the chemical formula of Na2HPO4.
State, Harold M. J. Chem. Educ. 1962, 39, 297.
Acids / Bases |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Stoichiometry
The carbon-12 scale of atomic masses  Labbauf, Abbas
Examines the concept of atomic weight and the rise and coexistence of the oxygen and carbon scales of atomic mass.
Labbauf, Abbas J. Chem. Educ. 1962, 39, 282.
Nomenclature / Units / Symbols |
Physical Properties
Editorially speaking  Kieffer, William F.
Discusses differences between mass and weight.
Kieffer, William F. J. Chem. Educ. 1962, 39, 275.
Physical Properties |
Nomenclature / Units / Symbols
Letters  Crawford, Crayton M.
Comments on use of the term equivalent weights and the determination of equivalent mass.
Crawford, Crayton M. J. Chem. Educ. 1961, 38, 637.
Nomenclature / Units / Symbols |
Stoichiometry
A simple method for finding slopes  Hoare, James P.
Describes a simple method for determining the tangent at any point on a given curve using a solid glass rod.
Hoare, James P. J. Chem. Educ. 1961, 38, 570.
Chemometrics
Molecular weights by cryoscopy: A general chemistry laboratory experiment  Mikulak, Robert; Runquist, Olaf
Presents an experiment determining the cryoscopic constant of cyclohexanol.
Mikulak, Robert; Runquist, Olaf J. Chem. Educ. 1961, 38, 557.
Nomenclature / Units / Symbols
Moles and equivalents: Quantities of matter  Cohen, Irwin
Examines the various means of describing and measuring quantities of matter, including the mole and the equivalent.
Cohen, Irwin J. Chem. Educ. 1961, 38, 555.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Foy, John R.
Suggests a modification to an earlier proposed definition for the term mole.
Foy, John R. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Bieber, Theodore I.
Provides a concise definition for the mole.
Bieber, Theodore I. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Cohen, Irwin
Proposes use of the term cardinal weight.
Cohen, Irwin J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
A redefinition of "mole"  Lee, Shiu
Proposes improvements to a set of terms related to gram formula weights.
Lee, Shiu J. Chem. Educ. 1961, 38, 549.
Stoichiometry |
Nomenclature / Units / Symbols
Calculating molar solubilities from equilibrium constants  Butler, James N.
Presents several examples of calculating molar solubilities from equilibrium constants.
Butler, James N. J. Chem. Educ. 1961, 38, 460.
Chemical Technicians |
Equilibrium |
Stoichiometry |
Qualitative Analysis |
Aqueous Solution Chemistry
Letters  Laughton, P. M.
A short discussion on the meaning of empirical formula.
Laughton, P. M. J. Chem. Educ. 1961, 38, 378.
Nomenclature / Units / Symbols
Is there an alternative to pH?  Crane, Francis E., Jr.
Provides some alternatives to the traditional definition of pH that introductory students may find more intuitive and less confusing.
Crane, Francis E., Jr. J. Chem. Educ. 1961, 38, 365.
pH |
Acids / Bases |
Nomenclature / Units / Symbols
Redox revisited  Lockwood, Karl L.
Examines issues regarding instruction in oxidation-reduction chemistry.
Lockwood, Karl L. J. Chem. Educ. 1961, 38, 326.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
An approach to complex equilibrium problems  Butler, James N.
Presents an approach to equilibrium problems that sets up enough equations relating the various concentrations present to define the system completely and then makes approximations that simplify the equations.
Butler, James N. J. Chem. Educ. 1961, 38, 141.
Equilibrium |
Chemometrics |
Acids / Bases |
Aqueous Solution Chemistry
The mole and related quantities  Guggenheim, E. A.
Examines some of the terminology associated with the mole and expressing amounts of substances.
Guggenheim, E. A. J. Chem. Educ. 1961, 38, 86.
Stoichiometry |
Nomenclature / Units / Symbols
Editorially speaking  Kieffer, William K.
Calls attention to an article in this issue of the Journal on the mole concept.
Kieffer, William K. J. Chem. Educ. 1961, 38, 51.
Stoichiometry
New Prefixes for Units  
Outlines new recommendations for standardized metric prefixes.
J. Chem. Educ. 1960, 37, 85.
Nomenclature / Units / Symbols
Letters to the editor  Hall, Arthur C.
The molality-molarity paradox presented in an earlier article is artificial rather than apparent.
Hall, Arthur C. J. Chem. Educ. 1959, 36, 584.
Stoichiometry |
Solutions / Solvents |
Nomenclature / Units / Symbols
Letters to the editor  Perkins, Alfred J.
A discussion of balancing redox equations in response to an earlier article in the Journal.
Perkins, Alfred J. J. Chem. Educ. 1959, 36, 474.
Stoichiometry |
Oxidation / Reduction
Faint (heart, mind) ne'er won fair chemistry student  Olsen, Ralph
A humorous application of molar calculations and other basic concepts in the form of a short chemistry quiz.
Olsen, Ralph J. Chem. Educ. 1959, 36, 285.
Stoichiometry |
Atomic Properties / Structure
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Writing oxidation-reduction equations: A review of textbook materials  Yalman, Richard G.
The purpose of this paper is to review those parts of a number of textbooks containing aids or suggestions to help students balance oxidation-reduction reactions.
Yalman, Richard G. J. Chem. Educ. 1959, 36, 215.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Balancing organic redox equations  Burrell, Harold P. C.
This paper presents a method for balancing organic redox equations based on the study of structural formulas and an artificial device - the use of hypothetical free radicals.
Burrell, Harold P. C. J. Chem. Educ. 1959, 36, 77.
Stoichiometry |
Oxidation / Reduction |
Free Radicals
Letters  Copley, G. N.
The author proposes terms and symbolism to represent different phase changes.
Copley, G. N. J. Chem. Educ. 1958, 35, 528.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Initial ratio of reactants to give, at equilibrium, a maximum yield of products  Haslam, E.
Derivation of the initial ratio of reactants to give, at equilibrium, a maximum yield of products.
Haslam, E. J. Chem. Educ. 1958, 35, 471.
Stoichiometry |
Chemometrics
An exact titration equation  Bolie, Victor W.
The purpose of this paper is to show the development of a titration equation for a precipitation reaction which is exact in the mathematical sense.
Bolie, Victor W. J. Chem. Educ. 1958, 35, 449.
Titration / Volumetric Analysis |
Chemometrics |
Undergraduate Research
Radioactive decay calculations without calculus  Guenther, William B.
Presents a method for half-life calculations that does not rely on the use of calculus.
Guenther, William B. J. Chem. Educ. 1958, 35, 414.
Chemometrics |
Nuclear / Radiochemistry
Thought stimulation by demonstration experiments  Stone, Hosmer W.
Two projects are presented in which students are asked to predict the results of certain proposed experiments.
Stone, Hosmer W. J. Chem. Educ. 1958, 35, 349.
Stoichiometry
Solution of problems in chemistry  Trousdale, Everett A.
Presents a method for analyzing and solving mole calculations.
Trousdale, Everett A. J. Chem. Educ. 1958, 35, 299.
Chemometrics |
Stoichiometry
Letters  Fisher, D. Jerome
A spirited discussion regarding terminology for crystal classes.
Fisher, D. Jerome J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Letters  Donohue, Jerry
A spirited discussion regarding terminology for crystal classes.
Donohue, Jerry J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Nomenclature of phase transition  McDonald, James E.
Discusses the curious situation in which the terminology of chemistry and physics has only five words to describe the six possible transitions between three states of matter.
McDonald, James E. J. Chem. Educ. 1958, 35, 205.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Estimation of Avogadro's number: An experiment for general chemistry laboratory  King, L. Carroll; Neilsen, E. K.
This procedure involves measuring a film of oleic acid on water.
King, L. Carroll; Neilsen, E. K. J. Chem. Educ. 1958, 35, 198.
Stoichiometry
Letters  Pokras, Lewis
The author proposes the term "senacule" as analagous to molecule and to be used to refer to ionic species.
Pokras, Lewis J. Chem. Educ. 1958, 35, 159.
Nomenclature / Units / Symbols
Revised inorganic (Stock) nomenclature for the general chemistry student  Brasted, Robert C.
Examines the Stock System as applied to teaching general chemistry and naming binary compounds of nonmetals and metals, complex entities, and oxy-anions.
Brasted, Robert C. J. Chem. Educ. 1958, 35, 136.
Nomenclature / Units / Symbols
A suggested convention for the representation of ionic substances  Sunderwirth, Stanely G.
The author suggests conventions for the representation of ionic substances that may prove less confusing for introductory students.
Sunderwirth, Stanely G. J. Chem. Educ. 1957, 34, 520.
Nomenclature / Units / Symbols
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Dimensional analysis of chemical laws and theories  Benfey, O. Theodore
The dimensional analysis of the kinetic theory and organic structural theory.
Benfey, O. Theodore J. Chem. Educ. 1957, 34, 286.
Chemometrics |
Kinetic-Molecular Theory
On the second order rate equation  Said, Abdel S.
Presents a derivation of the rate equation of a second order reaction.
Said, Abdel S. J. Chem. Educ. 1957, 34, 251.
Kinetics |
Rate Law |
Chemometrics
Determination of the equivalent weight of metals: A freshman research project  Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin
This procedure involves a gravimetric method in which zinc, cadmium, or manganese is reacted in acid and the resulting solution is heated to dryness.
Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin J. Chem. Educ. 1957, 34, 133.
Stoichiometry |
Metals |
Gravimetric Analysis
A formula for indirect gravimetry  Fiekers, B. A.
Derivation of a formula for indirect gravimetry and application to a sample problem.
Fiekers, B. A. J. Chem. Educ. 1956, 33, 575.
Gravimetric Analysis |
Chemometrics |
Quantitative Analysis
A graphical method for determining the order of homogeneous reactions  Wright, J. H.; Black, J. H.; Coull, James
Provides a review of classical kinetics, derivation of the reaction order equation, and the determination of reaction order using a graph provided.
Wright, J. H.; Black, J. H.; Coull, James J. Chem. Educ. 1956, 33, 542.
Kinetics |
Chemometrics
Letters to the editor  Foster, Laurence S.
Thanks a reader for pointing out a misstatement in an earlier article involving atomic mass units and avograms.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Letters to the editor  Mayper, Stuart A.
Points out a misstatement in an earlier article involving atomic mass units and avograms.
Mayper, Stuart A. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Letters to the editor  Saxena, Satish Chandra
The author offers a restatement of Avogadro's law.
Saxena, Satish Chandra J. Chem. Educ. 1956, 33, 188.
Gases |
Stoichiometry
The experimental determination of an error distribution  Nelson, Lloyd S.
Discusses an experiment in which students are asked to the average deviation and probable errors in their measurements.
Nelson, Lloyd S. J. Chem. Educ. 1956, 33, 126.
Chemometrics
Movable symbols and formulas as a teaching aid  Lippincott, W. T.; Wheaton, Roger
Movable magnetic squares with symbols and formulas printed on them are used as a visual teaching aid involving a variety of fundamental chemistry concepts.
Lippincott, W. T.; Wheaton, Roger J. Chem. Educ. 1956, 33, 15.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Letters to the editor  Weiner, Samuel
Discusses some of the semantic confusions that plague teaching in chemistry.
Weiner, Samuel J. Chem. Educ. 1955, 32, 646.
Nomenclature / Units / Symbols
Pocket slide rule for pH calculations  Pitzer, Edgar C.
A pocket slide rule may be used for direct conversion from hydrogen-ion activity to pH, or vice versa, without the need for arithmetical computation.
Pitzer, Edgar C. J. Chem. Educ. 1955, 32, 300.
pH |
Aqueous Solution Chemistry |
Chemometrics
Letters to the editor  Gaddis, Shirley W.
Has not the time come to bring up for debate the question of the advisability of teaching the equivalent weight concept?
Gaddis, Shirley W. J. Chem. Educ. 1955, 32, 289.
Stoichiometry
Trends in chemical education  Currier, Arnold J.
Topics examined include chemical nomenclature, the organization of subject matter in chemistry, carbon chemistry versus qualitative analysis, the laboratory versus the textbook, and supplies in chemistry teachers.
Currier, Arnold J. J. Chem. Educ. 1955, 32, 286.
Nomenclature / Units / Symbols |
Qualitative Analysis
Finding the rest point of an undamped analytical balance  Stacy, Irving F.
Provides a mathematical analysis for finding the rest point of an undamped analytical balance.
Stacy, Irving F. J. Chem. Educ. 1955, 32, 90.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Chemometrics
The laws of definite composition and of multiple proportions: A graphical approach  Fiekers, B. A.
The method presented here minimizes mathematical operations so that a fuller meaning of the laws of definite composition and of multiple proportions can be realized.
Fiekers, B. A. J. Chem. Educ. 1955, 32, 89.
Stoichiometry
Gram equivalent weights  Meldrum, William B.
The purpose of this paper is to review briefly the subject of equivalent weights and the more directly applicable gram equivalents and to offer a general method by which they may be deduced from chemical equations.
Meldrum, William B. J. Chem. Educ. 1955, 32, 48.
Nomenclature / Units / Symbols |
Stoichiometry
A general equation for approximate hydronium ion calculations  Drenan, James W.
Presents a general equation for simplifying calculations of the hydronium ion.
Drenan, James W. J. Chem. Educ. 1955, 32, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Chemometrics
Proper place problems  MacKenzie, Scott
A mathematical analysis of evaluating problems in which students are asked to place items in the correct order.
MacKenzie, Scott J. Chem. Educ. 1954, 31, 428.
Chemometrics
Crossword puzzle solution  Brown, Curtis L.
Solution to a crossword puzzle appearing earlier in this issue of the Journal.
Brown, Curtis L. J. Chem. Educ. 1954, 31, 330.
Nomenclature / Units / Symbols
Material balances and redox equations  Bennett, George W.
It is the purpose of this paper to remind teachers of a third method of balancing redox equations that does not depend on rule-of-thumb empiricism but relies on the conservation of matter.
Bennett, George W. J. Chem. Educ. 1954, 31, 324.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
A log table for pH problems  Condon, Francis E.
Provides a readily remembered log table suitable for computing pH from hydronium-ion concentration and the reverse.
Condon, Francis E. J. Chem. Educ. 1954, 31, 323.
pH |
Chemometrics |
Acids / Bases |
Aqueous Solution Chemistry
Crossword puzzle of chemical symbols  Brown, Curtis L.
A crossword puzzle of chemical symbols and molecular formulas.
Brown, Curtis L. J. Chem. Educ. 1954, 31, 298.
Nomenclature / Units / Symbols
Letters to the editor  Steinhardt, Ralph G., Jr.
The author replies to a commentary on his earlier article regarding the definition of "spectrum."
Steinhardt, Ralph G., Jr. J. Chem. Educ. 1954, 31, 217.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Rosenbaum, E. J.
Commentary on an earlier article regarding the definition of "spectrum."
Rosenbaum, E. J. J. Chem. Educ. 1954, 31, 216.
Spectroscopy |
Nomenclature / Units / Symbols
Otis Coe Johnson and redox equations  Bennett, George W.
It is the purpose of this paper to point out what is basic verity and what is empiricism in Johnson's method for balancing oxidation-reduction equations.
Bennett, George W. J. Chem. Educ. 1954, 31, 157.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Letters to the editor  Weaver, Elbert C.
Acknowledges and corrects an error in the referenced article regarding an example of Pearson's square.
Weaver, Elbert C. J. Chem. Educ. 1954, 31, 102.
Solutions / Solvents |
Chemometrics
Letters to the editor  Wescott, Emery N.
Points out an error in the referenced article regarding an example of Pearson's square.
Wescott, Emery N. J. Chem. Educ. 1954, 31, 101.
Solutions / Solvents |
Chemometrics
Letters to the editor  Standen, Anthony
Helping students to understand the experiment they have done is a difficult task; experiments that claim to "prove" physical laws or determine Avogadro's number compound this problem.
Standen, Anthony J. Chem. Educ. 1954, 31, 46.
Stoichiometry
Mathematical chemistry  Swinbourne, Ellice S.; Lark, P. David
Examines some of the challenges involved in the design of a course in mathematics suitable for undergraduate chemists.
Swinbourne, Ellice S.; Lark, P. David J. Chem. Educ. 1953, 30, 570.
Chemometrics |
Mathematics / Symbolic Mathematics
Letters  Nair, C. N.
A mathematical derivation demonstrating that masses of different elements equal to their atomic weights must contain the same number of atoms.
Nair, C. N. J. Chem. Educ. 1953, 30, 155.
Stoichiometry |
Atomic Properties / Structure
Letters  Azcuenaga-Chacon, J. V.
The author suggests that valence electrons be called "valentrons."
Azcuenaga-Chacon, J. V. J. Chem. Educ. 1953, 30, 155.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Recent history of the notion of a chemical species  Bulloff, Jack J.
Quantum and nuclear chemistry have challenged the doctrine that chemical elements are homogeneous entities while studies of the structure and stoichiometry of solids invite a change in our ideas of definite proportions in chemical combinations.
Bulloff, Jack J. J. Chem. Educ. 1953, 30, 78.
Nuclear / Radiochemistry |
Isotopes |
Stoichiometry |
Solids
An experiment on the law of multiple proportions  Secrist, John H.
It is suggested that the reduction of cuprous and cupric oxides serves as a satisfactory laboratory demonstration of the law of multiple proportions.
Secrist, John H. J. Chem. Educ. 1952, 29, 283.
Stoichiometry |
Oxidation / Reduction
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
A procedure for solving equilibrium problems  Boyd, Robert Neilson
A procedure for solving equilibrium problems is illustrated through several sample problems.
Boyd, Robert Neilson J. Chem. Educ. 1952, 29, 198.
Equilibrium |
Chemometrics |
Aqueous Solution Chemistry
On accenting observations in chemistry  Campbell, J. A.
A chemical equations is, for many a student, such a complete abstraction that he would be hard put to describe the actual observations that would be made in a process for which he was supplied the complete equation.
Campbell, J. A. J. Chem. Educ. 1951, 28, 634.
Reactions |
Stoichiometry |
Nomenclature / Units / Symbols
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Letters  Seeger, Walfried
Commentary on determining the combining weights of zinc or cadmium by dissolving them in HCl or aqua regia.
Seeger, Walfried J. Chem. Educ. 1951, 28, 397.
Stoichiometry
Letters  Ferreira, Ricardo C.
The author suggests a different approach to instruction regarding balancing chemical equations.
Ferreira, Ricardo C. J. Chem. Educ. 1951, 28, 285.
Stoichiometry