TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
4 Videos
7 Assessment Questions
2 Journal Articles
18 Other Resources
Videos: First 3 results
Polyurethane Foam in Micro Gravity  
Polyurethane foam is formed in micro gravity (NASA Reduced Gravity Program).
Polymerization
Metallocene Catalyzed Polymerization of Ethylene  
Polymerization chemistry is demonstrated by the reaction between ethylene and a Ziegler-Natta catalyst.
Polymerization |
Catalysis |
Reactions
Formaldehyde Copolymers  
Formaldehyde Copolymers
Electrophilic Substitution |
Phenols |
Polymerization
View all 4 results
Assessment Questions: First 3 results
Special_Topics : BiopolyFromMonomer (20 Variations)
Match each of the following biomolecules to the type of biopolymer it will form.
Polymerization
Special_Topics : Copolymerization (20 Variations)
Identify the polymer produced from the polymerization of glycolic acid.

Polymerization
Special_Topics : IDMonomerFromPoly (20 Variations)
Identify the monomer used to produce the following polymer.

Polymerization
View all 7 results
Journal Articles: 2 results
Pedagogies:
A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory  George D. Bennett
Based on a technology that won a Presidential Green Chemistry Challenge Award, this experiment involves the thermal polymerization of aspartic acid and subsequent hydrolysis to give sodium poly(aspartate). The procedure is suitable for introducing students to the important topic of polymers and for illustrating several of the principles of green chemistry.
Bennett, George D. J. Chem. Educ. 2005, 82, 1380.
Green Chemistry |
Synthesis |
Industrial Chemistry |
Natural Products |
Polymerization |
Proteins / Peptides
Polymers (Oxford Chemistry Primers No. 85) (David Walton and J. Phillip Lorimer)  John H. Shibata
Although the title suggests a broad, general coverage of polymers, in reality this book focuses primarily on synthesis and the macroscopic properties of polymers. A significant portion of the book emphasizes practical considerations of polymerscommercial aspects determined by the properties of polymers and the industrial processes for polymer synthesis and three-dimensional network formation. In many cases, specific polymer types and materials are described in detail. The concreteness of explicit examples to illustrate the principles of polymerization and the properties of networks and functional polymers are appropriate for readers seeking a practical introduction to polymers.
Shibata, John H. J. Chem. Educ. 2005, 82, 533.
Polymerization |
Synthesis
Other Resources: First 3 results
Addition Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Polymerization
Condensation Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Polymerization
Copoly; A Tool for Understanding Copolymerization and Monomer Sequence Distribution of Copolymers  Massoud Miri, Juan A. Morales-Tirado
The study of the composition and monomer sequence distribution of binary copolymers is often complicated because of the many definitions of representative properties for the sequence distribution, the numerous calculations required, and occasionally the abstract treatment of the statistical processes describing the copolymer formation. Copoly resolves these issues with a user-friendly, highly visual interface to perform all calculations. Using Microsoft Excel and Word, Copoly is compatible with Windows and Mac OS. In Copoly the students enter up to five independent data parameters using the Data Input Window, and immediately see the results. To obtain diagrams for a copolymerization obeying a second-order Markovian process, the fraction of one monomer, A, and the reactivity ratios, rA, rB, rA´ and rB´ need to be entered; for a first-order Markovian process only the first three of these are required. For a Bernoullian- or zeroth-order Markovian process only A and rA are required. The results are displayed on separate sheets labeled: 1. Copolymerization Diagrams, 2. Dyads and Triads, 3. Sequence Length Distribution, 4. Simulated Copolymer Design, and 5. Summary.
Polymerization
View all 18 results