TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
2 Videos
15 Assessment Questions
8 Molecular Structures
10 Journal Articles
14 Other Resources
Videos: 2 results
Blue Bottle, Red and Blue Bottle  
Color changes are caused by reactions of oxygen in the air with chemicals in a solution. The colors fade over time, but can be regenerated by shaking the flask containing the solution.
Kinetics |
Mechanisms of Reactions |
Oxidation / Reduction
Induction by Iron(II) of the Oxidation of Iodide by Dichromate  
Acidic aqueous solutions containing dichromate and iodide ions are mixed with no reaction. The addition of a solution of iron(II) ion induces the rapid formation of brown triiodide ion.
Catalysis |
Kinetics |
Mechanisms of Reactions |
Oxidation / Reduction
Assessment Questions: First 3 results
Molecular_Structure : Hybridization (10 Variations)
Which of the following molecules/ions have sp hybridization around the indicated atom?
Covalent Bonding |
MO Theory
Conjugation (1 Variations)
A collection of 1 assessment questions about Conjugation
MO Theory |
Aromatic Compounds
Kinetics : InterpretEnergyProfile (16 Variations)
Use the energy profile below to decide if the following statements are true or false.

Kinetics |
Mechanisms of Reactions
View all 15 results
Molecular Structures: First 3 results
Peroxide Ion O22-

3D Structure

Link to PubChem

Ionic Bonding |
MO Theory

Triiodide Ion I3-

3D Structure

Link to PubChem

VSEPR Theory |
MO Theory |
Nonmetals

Phosphorus Pentachloride PCl5

3D Structure

Link to PubChem

VSEPR Theory |
Nonmetals |
MO Theory

View all 8 results
Journal Articles: First 3 results.
Pedagogies:
Synthesis Explorer: A Chemical Reaction Tutorial System for Organic Synthesis Design and Mechanism Prediction  Jonathan H. Chen and Pierre Baldi
Synthesis Explorer is an interactive tutorial system for organic chemistry that enables students to learn chemical reactions in ways previously unrealized. Pedagogical experiments in undergraduate classes at UC Irvine indicate that the system can improve average student examination performance by ~10%.
Chen, Jonathan H.; Baldi, Pierre. J. Chem. Educ. 2008, 85, 1699.
Mechanisms of Reactions |
Reactions |
Synthesis
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Teaching a Modified Hendrickson, Cram, and Hammond Curriculum in Organic Chemistry  Joel M. Karty, Gene Gooch, and B. Gray Bowman
Describes a new organic chemistry curriculum in which fundamental concepts are introduced before mechanisms, and mechanisms are introduced before reactions. Reactions are introduced according to similarities among mechanisms rather than the functional group involved.
Karty, Joel M.; Gooch, Gene; Bowman, B. Gray. J. Chem. Educ. 2007, 84, 1209.
Learning Theories |
Mechanisms of Reactions
View all 10 articles
Other Resources: First 3 results
Interactive Molecular Orbitals  William F. Coleman
The majority of Introductory Chemistry texts provide students with an adequate introduction to the visual aspects of the molecular orbital model for homonuclear diatomic molecules. The treatment of heteronuclear diatomic and polyatomic molecules is less uniform. Heteronuclear diatomics, when mentioned, are invariably treated as being derived from homonuclear diatomics. While the atomic orbital energy level differences in heteronuclear diatomics is sometimes pictured, the consequences of those differences for the resultant molecular orbitals are rarely discussed. The discussion of polyatomic molecular orbitals in these texts is limited to showing that parallel p-orbitals produce delocalized pi molecular orbitals. The molecules typically mentioned in this context are benzene, nitrate ion and carbonate ion. However, It is rarely pointed out that the six p-orbitals in benzene would form 6 pi molecular orbitals, and that only one of these orbitals would look like the picture in the text.These interactive modules are designed to clarify this subject.
MO Theory
Molecular Orbitals  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
MO Theory |
Magnetic Properties
Delocalized Electrons  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Resonance Theory |
MO Theory
View all 14 results