TIGER

Journal Articles: 57 results
Biochemical View: A Web Site Providing Material for Teaching Biochemistry Using Multiple Approaches  Fernanda C. Dórea, Higor S. Rodrigues, Oscar M. M. Lapouble, Márcio R. Pereira, Mariana S. Castro, and Wagner Fontes
Biochemical View is a free, full access Web site whose main goals are to complement existing biochemistry instruction and materials, provide material to teachers preparing conventional and online courses, and popularize the use of these resources in undergraduate courses.
Dórea, Fernanda C.; Rodrigues, Higor S.; Lapouble, Oscar M. M.; Pereira, Márcio R.; Castro, Mariana S.; Fontes, Wagner. J. Chem. Educ. 2007, 84, 1866.
Amino Acids |
Bioenergetics |
Carbohydrates |
Enzymes |
Glycolysis |
Lipids |
Metabolism |
Fatty Acids
A New Colorimetric Assay of Tabletop Sweeteners Using a Modified Biuret Reagent  Christopher J. Fenk, Nathan Kaufman, and Donald G. Gerbig, Jr.
Presents a new, fast and effective colorimetric analysis of aspartame that incorporates a less caustic biuret reagent and visible spectroscopic analysis for selective detection in aqueous solutions using readily available instrumentation.
Fenk, Christopher J.; Kaufman, Nathan; Gerbig, Donald G., Jr. J. Chem. Educ. 2007, 84, 1676.
Consumer Chemistry |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Food Science |
Qualitative Analysis |
Quantitative Analysis |
UV-Vis Spectroscopy |
Amino Acids
Amino Acids  William F. Coleman
The Featured Molecules this month are the 20 standard alpha-amino acids found in proteins. The molecules are presented in two formats, the neutral form and the ionized form found in solution at physiologic pH.
Coleman, William F. J. Chem. Educ. 2006, 83, 1103.
Amino Acids |
Proteins / Peptides |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics
Fluorous Compounds and Their Role in Separation Chemistry  Maria Angeles Ubeda and Roman Dembinski
Reviews fluorous technology and outlines strategies towards organic synthesis.
Ubeda, Maria Angeles; Dembinski, Roman. J. Chem. Educ. 2006, 83, 84.
Amino Acids |
Catalysis |
Esters |
Green Chemistry |
Separation Science |
Synthesis
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type  Natisha L. Rose, Monica M. Palcic, and Stephen V. Evans
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. In this review the chemistry of the blood group ABO system and the role of glycosyltransferase A, glycosyltransferase B, and the four amino acids critical to determining blood group status are discussed.
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V. J. Chem. Educ. 2005, 82, 1846.
Carbohydrates |
Enzymes |
Kinetics |
Bioorganic Chemistry |
Crystals / Crystallography |
Molecular Biology |
X-ray Crystallography |
Amino Acids
Cotton Effect in Copper–Proline Complexes in the Visible Region  Victor Volkov and Rolf Pfister
This article suggests taking advantage of the visible dd electronic transition of Cu2+, which allows one to contrast the normal optical rotatory dispersion response of d- and l-proline in aqueous solution with the strong Cotton effect observed when these amino acids are complexed with a metal cation.
Volkov, Victor; Pfister, Rolf. J. Chem. Educ. 2005, 82, 1663.
Chirality / Optical Activity |
IR Spectroscopy |
Molecular Properties / Structure |
Spectroscopy |
Stereochemistry |
UV-Vis Spectroscopy |
Amino Acids |
Coordination Compounds |
Crystal Field / Ligand Field Theory
Chemical Modification of Papain and Subtilisin: An Active Site Comparison. An Undergraduate Biochemistry Experiment   Mireille St-Vincent and Michael Dickman
This experiment demonstrates the specific chemistry of cysteine and serine residues in the active sites of papain and subtilisin.
St-Vincent, Mireille; Dickman, Michael. J. Chem. Educ. 2004, 81, 1048.
Amino Acids |
Bioorganic Chemistry |
Enzymes
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
Protein Design Using Unnatural Amino Acids  Basar Bilgiçer and Krishna Kumar
Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.
Bilgiçer, Basar; Kumar, Krishna. J. Chem. Educ. 2003, 80, 1275.
Amino Acids |
Bioorganic Chemistry |
Biotechnology |
Proteins / Peptides |
Synthesis |
Molecular Properties / Structure
Thin-Layer Electrophoresis  Tom Lyons Fisher, Tara Leslie Fitzsimmons, and I. David Reingold
Thin-layer electrophoresis apparatus.
Fisher, Tom Lyons; Fitzsimmons, Tara Leslie; Reingold, I. David. J. Chem. Educ. 2001, 78, 1241.
Amino Acids |
Electrophoresis |
Laboratory Equipment / Apparatus |
Separation Science
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?  Sam H. Leung
This article provides a brief survey of the origins of the common names of some amino acids, aromatic compounds, and carboxylic acids.
Leung, Sam H. J. Chem. Educ. 2000, 77, 48.
Amino Acids |
Aromatic Compounds |
Nomenclature / Units / Symbols |
Carboxylic Acids
Amino Acid Wordsearch  Terry L. Helser
This is a short puzzle with all 20 genetically encoded amino acids embedded in the matrix. The unused letters form a sentence describing them.
Helser, Terry L. J. Chem. Educ. 1999, 76, 494.
Amino Acids
A Simplified Procedure for Dipeptide Sequence Analysis in the Undergraduate Laboratory  Paul W. Rogers
This short article reports two simplifications in the standard sequence analysis of dipeptides by the Sanger method.
Rogers, Paul W. J. Chem. Educ. 1996, 73, 189.
Amino Acids |
Chromatography
Computer-Modelling of Metal Speciation in Human Blood Serum  Peter Letkeman
182. This paper briefly describes two computer programs, BEST and ECCLES, both available on disc, that can generate distribution diagrams for various metal-complexes in human blood plasma.
Letkeman, Peter. J. Chem. Educ. 1996, 73, 165.
Metals |
Crystal Field / Ligand Field Theory |
Amino Acids
Using Copper sulfate as a Classification Test for Amino Acids and Amines  Christine K. F. Hermann
Using copper sulfate to test for amino acids and amines that do not dissolve well in water.
Hermann, Christine K. F. J. Chem. Educ. 1995, 72, 940.
Amino Acids |
Laboratory Management |
Amines / Ammonium Compounds |
Qualitative Analysis
Nucleophilic and Enzymic Catalysis of p-Nitrophenylacetate Hydrolysis  Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J.
Experimental procedure for determining the relative effectiveness of several amino acids and enzymes in catalyzing the hydrolysis of p-nitrophenylacetate; sample data and analysis included.
Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J. J. Chem. Educ. 1995, 72, 184.
Amino Acids |
Enzymes |
Proteins / Peptides |
Catalysis
Representation of the stereochemistry of amino acids in textbooks  Behrman, E. J.; Means, G. E.; Zhang, H.
Authors recommend either a return to the standard Fischer convention or the amino-carboxyl linear (AC linear) projection to represent amino acids. Current textbook conventions lead to confusion among readers.
Behrman, E. J.; Means, G. E.; Zhang, H. J. Chem. Educ. 1993, 70, 282.
Amino Acids
On the Formation of Peptide Bonds  Stojanoski, Kiro; Zdravkovski, Zoran
In an attempt to simplify the concept of peptide bond formation, many textbooks misrepresent the energy requirement that is necessary for peptide bonds to form.
Stojanoski, Kiro; Zdravkovski, Zoran J. Chem. Educ. 1993, 70, 134.
Amino Acids |
Biosynthesis |
Equilibrium |
Bioenergetics
Identification of amino acids in unknown dipeptides: A derivatization with 9-fluorenylmethyl chloroformate and HPLC   Clapp, Charles H.; Swan, James S.; Poechmann, James L.
This paper describes a biochemistry experiment in which students use HPLC to identify the amino acids in unknown dipeptides.
Clapp, Charles H.; Swan, James S.; Poechmann, James L. J. Chem. Educ. 1992, 69, A122.
Amino Acids |
Proteins / Peptides |
HPLC
Amino acid discovery  Helser, Terry L.
A biochemical quotation rebus puzzle.
Helser, Terry L. J. Chem. Educ. 1992, 69, 970.
Amino Acids
Inclass interactive worksheets for organic chemistry  Ostercamp, Daryl L.
The author has designed two in-class worksheets for use near the end of a two semester organic chemistry course, one dealing with mono- and disaccharides and the second dealing with alpha-amino acids and dipeptides.
Ostercamp, Daryl L. J. Chem. Educ. 1992, 69, 318.
Carbohydrates |
Amino Acids |
Proteins / Peptides
The malonic ester synthesis in the undergraduate laboratory  Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D.
The versatile reactions of diethyl malonate represent an important lecture topic in introductory organic courses, but are only rarely performed in the lab because of several problems associated with performing these reactions. These authors present a lab the circumvents some of the typical problems.
Hoogenboom, Bernard E.; Ihrig, Phillip J.; Langsjoen, Arne N.; Linn, Carol J.; Mulder, Stephen D. J. Chem. Educ. 1991, 68, 689.
Aromatic Compounds |
Aldehydes / Ketones |
Amino Acids |
Heterocycles |
Amides
Color reactions and thin-layer chromatography of amino acids: An undergraduate organic chemistry experiment for students in the allied health sciences  Hurst, Michael O.; Cobb, D. Keith
Students identify unknowns by determining Rf's and applying color reagents to the chromatograms.
Hurst, Michael O.; Cobb, D. Keith J. Chem. Educ. 1990, 67, 978.
Thin Layer Chromatography |
Amino Acids |
Qualitative Analysis
Amino acid chromatography: The "best" technique for student labs  Helser, Terry L.
Comparisons of linear, conical, and circular chromatograms, as well as media and elutants.
Helser, Terry L. J. Chem. Educ. 1990, 67, 964.
Amino Acids |
Chromatography |
Separation Science
Qualitative amino acid analysis of small peptides by GC/MS  Mabbott, Gary A.
Besides being appealing to students the exercise described here gives them experiences in derivation methods that are often necessary in order to make nonvolatile samples amenable to gas chromatography separation.
Mabbott, Gary A. J. Chem. Educ. 1990, 67, 441.
Amino Acids |
Qualitative Analysis |
Gas Chromatography |
Mass Spectrometry |
Instrumental Methods
Oxidation of cysteine to cystine using hydrogen peroxide  Hill, John W.; Coy, Robert B.; Lewandowski, Peter E.
This synthesis has several advantages as an undergraduate laboratory exercise.
Hill, John W.; Coy, Robert B.; Lewandowski, Peter E. J. Chem. Educ. 1990, 67, 172.
Amino Acids |
Oxidation / Reduction
Microscale synthesis and analysis of a dipeptide  Blatchly, Richard A.; Allen, Timothy R.; Bergstrom, Dirk T.; Shinozaki, Yuji
The synthesis of a dipeptide from its component amino acids and its analysis by chiral-phase thin-layer chromatography.
Blatchly, Richard A.; Allen, Timothy R.; Bergstrom, Dirk T.; Shinozaki, Yuji J. Chem. Educ. 1989, 66, 965.
Microscale Lab |
Synthesis |
Proteins / Peptides |
Thin Layer Chromatography |
Amino Acids
Lecture demonstrations for organic/ biochemistry allied health courses  Deavor, James P.
Simple demonstrations on enantiomeric pairs and protein structure.
Deavor, James P. J. Chem. Educ. 1988, 65, 622.
Enantiomers |
Chirality / Optical Activity |
Proteins / Peptides |
Nonmajor Courses |
Amino Acids
Analysis of aspartame and its hydrolysis products by thin-layer chromatography  Conklin, Alfred R.
Separating and identifying the amino acids found in aspartame.
Conklin, Alfred R. J. Chem. Educ. 1987, 64, 1065.
Thin Layer Chromatography |
Amino Acids |
Food Science |
Separation Science |
Qualitative Analysis
A project lab for an advanced general chemistry course featuring the amino acid, glycine  Dudek, Emily P.
Synthesis of glycine, measurement of its nitrogen content by eudiometry, and the estimation of its Rf value as compared to other amino acids using paper chromatography.
Dudek, Emily P. J. Chem. Educ. 1987, 64, 899.
Amino Acids |
Synthesis
The enzymatic resolution of aromatic amino acids  Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D.
This article presents an experiment that can demonstrate as many principles of steroisomersim as possible and is also efficient in terms of time and preparation.
Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D. J. Chem. Educ. 1986, 63, 646.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Aromatic Compounds |
Amino Acids |
Enzymes
An experiment on isomerism in metal-amino acid complexes: Preparation and characterization of cobalt(III) complexes containing N-bonded monodentate, O-bonded monodentate and N,O-chelated glycine ligands  Harrison, R. Graeme; Nolan, Kevin B.
Synthesis of three cobalt(III) complexes that illustrate three possible modes of bonding of glycine to a metal ion, as well as methods for distinguishing among the products.
Harrison, R. Graeme; Nolan, Kevin B. J. Chem. Educ. 1982, 59, 1054.
Stereochemistry |
Amino Acids |
Coordination Compounds |
Synthesis |
Diastereomers |
IR Spectroscopy |
Crystal Field / Ligand Field Theory
The synthesis of a dipeptide from its component amino acids: Protecting groups in the elementary organic laboratory  Young, Paul E.; Campbell, Andrew
A three-step procedure for synthesizing a dipeptide from its component amino acids.
Young, Paul E.; Campbell, Andrew J. Chem. Educ. 1982, 59, 701.
Synthesis |
Amino Acids |
Proteins / Peptides
Confusion over D and L Nomenclature  Yuan, Sun-Shine
The use of the (R,S) convention will eliminate (D,L) confusion.
Yuan, Sun-Shine J. Chem. Educ. 1980, 57, 528.
Amino Acids |
Stereochemistry |
Nomenclature / Units / Symbols
Glutamic acid in pheromone synthesis: A useful chiral synthon  Smith, Leverett R.; Williams, Howard J.
Outlines synthetic routes for the formation of various pheromones from glutamic acid.
Smith, Leverett R.; Williams, Howard J. J. Chem. Educ. 1979, 56, 696.
Synthesis |
Chirality / Optical Activity |
Natural Products |
Stereochemistry |
Enantiomers |
Amino Acids
Amino acid sequence diversity in proteins  Blackman, David
The number of unique proteins that can be generated from a small number of amino acids is truly enormous.
Blackman, David J. Chem. Educ. 1977, 54, 170.
Proteins / Peptides |
Amino Acids
Photooxidation of methionine. An integrated organic-analytical-biochemistry laboratory experiment  Lewis, Catherine; Scouten, William H.
The experiments presented here familiarize the student with the organic reactions necessary to prepare the starting material; introduces the use of glass beads for immobilizing a catalyst; demonstrates the use of light and methylene blue as oxidizers; requires the implementation of an important analytical technique, thin layer chromatography; provides the student with a good example of the reactivity of one amino acid, methionine.
Lewis, Catherine; Scouten, William H. J. Chem. Educ. 1976, 53, 395.
Thin Layer Chromatography |
Amino Acids |
Laboratory Equipment / Apparatus |
Catalysis
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
A space-filling model of the active site region of carboxypeptidase A  Sebastian, John F.; Butkus, John C.
A three-dimensional CPK space-filling model of the active site of carboxypeptidase A.
Sebastian, John F.; Butkus, John C. J. Chem. Educ. 1975, 52, 660.
Molecular Properties / Structure |
Molecular Modeling |
Enzymes |
Amino Acids
Allied health chemistry laboratory. Amino acids, insulin, proteins, and skin  Dever, David F.
Describes an allied health chemistry laboratory involving amino acids, insulin, proteins and skin that begins with the construction of molecular models of amino acids and proteins.
Dever, David F. J. Chem. Educ. 1975, 52, 338.
Amino Acids |
Proteins / Peptides |
Medicinal Chemistry |
Nonmajor Courses |
Molecular Properties / Structure |
Molecular Modeling |
Applications of Chemistry
Questions [and] Answers  Campbell, J. A.
184-187. Four chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 327.
Enrichment / Review Materials |
Metabolism |
Gases |
Amino Acids
A simple application device for paper chromatography and electrophoresis  Barbeau, Donald L.
The application holder presented eliminates the awkwardness of handling filter paper strips while applying either large quantities of unknown samples or smaller quantities of amino acid standards.
Barbeau, Donald L. J. Chem. Educ. 1973, 50, 391.
Laboratory Equipment / Apparatus |
Laboratory Management |
Chromatography |
Electrophoresis |
Separation Science |
Amino Acids
Photochemical reactions of natural macromolecules. Photoreactions of proteins  Neckers, Douglas C.
Reviews salient features of protein destruction by ultraviolet radiation.
Neckers, Douglas C. J. Chem. Educ. 1973, 50, 164.
Photochemistry |
Proteins / Peptides |
Amino Acids
Quick paper chromatography of amino acids  Heimer, E. P.
Applies acetonitrile-buffer systems for the relatively rapid separation of amino acids.
Heimer, E. P. J. Chem. Educ. 1972, 49, 547.
Chromatography |
Separation Science |
Amino Acids
A unified apparatus for paper and gel electrophoresis  Racusen, David; White, Lee
Presents an apparatus that can be used for either paper and gel electrophoresis.
Racusen, David; White, Lee J. Chem. Educ. 1972, 49, 439.
Electrophoresis |
Separation Science |
Amino Acids |
Proteins / Peptides
Separation of leucine and isoleucine by thin-layer chromatography  Gatto, Karen L.; Borders, C. L., Jr.
This experiment involves the separation of leucine and isoleucine through continuous ascending thin layer chromatography.
Gatto, Karen L.; Borders, C. L., Jr. J. Chem. Educ. 1970, 47, 840.
Separation Science |
Thin Layer Chromatography |
Chromatography |
Amino Acids |
Constitutional Isomers
A short, intensive experiment in paper chromatography  McCullough, Thomas; Lechtenberg, Andre
A paper chromatographic system capable of separating a challenging mixture of components (amino acids) in less than three hours.
McCullough, Thomas; Lechtenberg, Andre J. Chem. Educ. 1970, 47, 141.
Chromatography |
Separation Science |
Amino Acids
The resolution of DL-histidine: An organic chemistry experiment using an ion exchange resin  Bosch, Arthur J.
This experiment involves the isolation of the amino acid, D-histidine, from DL-histidine, and gives a product with high optical purity while demonstrating the use of an ion exchange resin and mixed solvent recrystallization.
Bosch, Arthur J. J. Chem. Educ. 1969, 46, 691.
Ion Exchange |
Amino Acids |
Chirality / Optical Activity |
Enantiomers
Demonstration of radioautography and paper chromatography using a Polaroid camera  Towne, Jack C.; Gatti, Bonnie M.
Presents a simple combined demonstration of paper chromatography and radioautography illustrating the separation of two C-14 labeled amino acids.
Towne, Jack C.; Gatti, Bonnie M. J. Chem. Educ. 1963, 40, 243.
Chromatography |
Isotopes |
Separation Science |
Amino Acids
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
Ion exchange paper chromatography  Thomas, Alan T.; Phillips, J. P.
Describes an experiment/demonstration in ion exchange paper chromatography separating amino acids.
Thomas, Alan T.; Phillips, J. P. J. Chem. Educ. 1961, 38, 406.
Qualitative Analysis |
Ion Exchange |
Chromatography |
Separation Science |
Amino Acids
Identification of amino acids in a protein hydrolysate by paper chromatography  Clapp, L. B.; Hansch, Corwin
By varying the number of amino acids to be identified, the difficulty of this procedure can be easily controlled.
Clapp, L. B.; Hansch, Corwin J. Chem. Educ. 1960, 37, 293.
Amino Acids |
Qualitative Analysis |
Proteins / Peptides |
Chromatography
Multiple chromatograms for detection of amino acids in blood serum  Ven Horst, Sister Helene; Carstens, Yolanda
A simple piece of equipment was constructed whereby 2 to 16 chromatograms could be run simultaneously and under identical conditions.
Ven Horst, Sister Helene; Carstens, Yolanda J. Chem. Educ. 1954, 31, 576.
Chromatography |
Amino Acids |
Qualitative Analysis |
Laboratory Equipment / Apparatus
Potentialities of protein isomerism  Asimov, Isaac
The permutations generated by structural isomerism in proteins could be demonstrated more convincingly and realistically if the amino acid compositions of actual proteins were taken into consideration.
Asimov, Isaac J. Chem. Educ. 1954, 31, 125.
Proteins / Peptides |
Molecular Properties / Structure |
Amino Acids |
Constitutional Isomers
Quantitative paper chromatography for students  Patton, A. R.
Students learn the elementary principles of quantitative paper chromatography by producing a standardized curve for alanine.
Patton, A. R. J. Chem. Educ. 1951, 28, 629.
Chromatography |
Quantitative Analysis |
Amino Acids
A scheme for the qualitative identification of amino acids  Dunn, Max S.; Drell, William
This scheme of analysis has been used to successfully identify seventeen of the naturally occurring amino acids distributed in mixtures containing from two to five components.
Dunn, Max S.; Drell, William J. Chem. Educ. 1951, 28, 480.
Qualitative Analysis |
Amino Acids
Teaching amino acid formulation  Patton, A. R.
Presents a device that aids in explaining the concept of dipolar ions necessary to an understanding of the behavior of amino acids and proteins.
Patton, A. R. J. Chem. Educ. 1951, 28, 471.
Amino Acids |
Proteins / Peptides |
Acids / Bases |
pH