TIGER

Journal Articles: 96 results
NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils  Molly W. Crowther
This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy in the analysis of five edible and structurally similar fats and oils for average chain length, degree of unsaturation, and trans fat content.
Crowther, Molly W. J. Chem. Educ. 2008, 85, 1550.
Consumer Chemistry |
Food Science |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy |
Fatty Acids
Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited  Markus M. Hoffmann, Joshua T. Caccamis, Mark P. Heitz, and Kenneth D. Schlecht
Substantial modifications intended for a second- or third-year laboratory course in analytical chemistry are presented for a previously described procedure using NMR spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment introduces student collaboration to critically interpret a relatively large set of data.
Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D. J. Chem. Educ. 2008, 85, 1421.
Alcohols |
Aldehydes / Ketones |
Consumer Chemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Quantitative Analysis
"As Simple as Possible, but Not Simpler"—The Case of Dehydroascorbic Acid  Robert C. Kerber
Textbooks routinely assign dehydroascorbic acid a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. Studies of oxidized forms of ascorbic acid are summarized here, and a plea is entered for accurate descriptions of chemical structures in this and other cases, even at the cost of some simplicity.
Kerber, Robert C. J. Chem. Educ. 2008, 85, 1237.
Bioorganic Chemistry |
Free Radicals |
Natural Products |
NMR Spectroscopy |
Vitamins
Polymer-Supported Reagents and 1H–19F NMR Couplings: The Synthesis of 2-Fluoroacetophenone  Nicola Pohl and Kimberly Schwarz
Describes an experiment in which 2-bromoacetophenone is converted to 2-fluoroacetophenone using a solid-phase nucleophilic fluorine source. The experiment introduces students to the utility of solid-phase reagents in organic synthesis, to NMR-active nuclei other than 1H without the requirement of a special NMR probe, and to the unique uses of fluorine in molecular design.
Pohl, Nicola; Schwarz, Kimberly. J. Chem. Educ. 2008, 85, 834.
Aldehydes / Ketones |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Synthesis of Quaternary Ammonium Salts of Tricyclic Cationic Drugs: A One-Pot Synthesis for the Bioorganic Chemistry Laboratory  Linda S. Brunauer, Abid C. Mogannam, Won B. Hwee, and James Y. Chen
Describes a one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms for a widely used bioactive drug, chlorpromazine, a phenothiazine-based antipsychotic. The conversion of parent drug to the methylated form was evaluated by qualitatively measuring its ability to induce alterations in the shape of mammalian erythrocytes.
Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y. J. Chem. Educ. 2007, 84, 1992.
Amines / Ammonium Compounds |
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography
Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol  Bruce M. Branan, Joshua T. Butcher, and Lawrence R. Olsen
This organic laboratory involves the ozonolysis of eugenol (clove oil) followed by a reductive workup that generates an aldehyde easily identified by its NMR and IR spectra.
Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R. J. Chem. Educ. 2007, 84, 1979.
Aldehydes / Ketones |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Natural Products |
NMR Spectroscopy |
Synthesis |
Oxidation / Reduction
Determination of Solvent Effects on Keto—Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR  A. Gilbert Cook and Paul M. Feltman
Expands the classic physical chemistry experiment using of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents.
Cook, A. Gilbert; Feltman, Paul M. J. Chem. Educ. 2007, 84, 1827.
Aldehydes / Ketones |
Equilibrium |
Hydrogen Bonding |
Molecular Modeling |
Molecular Properties / Structure |
NMR Spectroscopy |
Solutions / Solvents |
Thermodynamics
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
A New Tool To Aid Students in NMR Interpretation  John V. McClusky
Presents a tool that allows students to logically analyze NMR spectra and to visualize how peak multiplicity reveals molecular connectivity.
McClusky, John V. J. Chem. Educ. 2007, 84, 983.
NMR Spectroscopy |
Spectroscopy
Keeping Your Students Awake: Facile Microscale Synthesis of Modafinil, a Modern Anti-Narcoleptic Drug  Evangelos Aktoudianakis, Rui Jun Lin, and Andrew P. Dicks
Describes the microscale preparation of modafinil, a pharmaceutical recently approved for the treatment of narcolepsy, by a sulfide oxidation reaction. An unusual feature of modafinil is the presence of a chiral sulfoxide functionality where a sulfur atom acts as a stereocenter, demonstrating that atoms other than carbon can act as centers of chirality.
Aktoudianakis, Evangelos; Lin, Rui Jun; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 1832.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Synthesis |
Mechanisms of Reactions |
IR Spectroscopy |
NMR Spectroscopy |
Microscale Lab |
Stereochemistry
Enhancements on the Photochromism of 2-(2,4-Dinitrobenzyl)pyridine: Molecular Modeling, NMR Spectrometry, Photo- and Solvent-Bleaching  Ernest C. McGoran, Kevin Hintz, Kristin Hoffman, and Ramon Iovin
Describes molecular-modeling studies on the photochromism of 2-(2,4-dinitrobenzyl)pyridine (a-DNBP) that focus on the hydrogen atom migratory distances and the energies for the two very different tautomers arising from the photo-induced proton transfers.
McGoran, Ernest C.; Hintz, Kevin; Hoffman, Kristin; Iovin, Ramon. J. Chem. Educ. 2006, 83, 923.
Constitutional Isomers |
Molecular Modeling |
NMR Spectroscopy |
Photochemistry
A Laboratory Assignment in 1H NMR Spectroscopy: A Comparative Analysis of Calculated and Experimental 1H NMR Chemical Shifts  Susan D. Van Arnum
A computer program is used to determine the proton NMR chemical shifts of endo- and exo-norbornenyl ketones and these values are compared to empirical results.
Van Arnum, Susan D. J. Chem. Educ. 2006, 83, 429.
Constitutional Isomers |
NMR Spectroscopy |
Photochemistry
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
Convenient Microscale Synthesis of a Coumarin Laser Dye Analog  Evangelos Aktoudianakis and Andrew P. Dicks
Describes the Knoevenagel synthesis of 3-acetyl-7-(diethylamino)-2H-1-benzopyran-2-one, a fluorescent coumarin laser dye analog.
Aktoudianakis, Evangelos; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 287.
Aromatic Compounds |
Fluorescence Spectroscopy |
IR Spectroscopy |
Microscale Lab |
Synthesis |
NMR Spectroscopy |
UV-Vis Spectroscopy
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
Measurement of the Isotopic Ratio of 10B/11B in NaBH4 by 1H NMR  Murray Zanger and Guillermo Moyna
A simple and remarkably accurate method for estimating the isotopic ratio between 10B and 11B through the use of 1H nuclear magnetic resonance (NMR) spectroscopy is presented. The experiment relies on the splitting caused by 10B (I = 3) and 11B (I = 3/2) on the 1H signal of a proton directly bound to boron, a phenomenon readily observed on an aqueous sample of NaBH4. In combination with a brief lecture or prelaboratory presentation, this laboratory can serve to introduce students to magnetic properties as well as theoretical and experimental aspects of NMR spectroscopy as early as the freshman-level chemistry.
Zanger, Murray; Moyna, Guillermo. J. Chem. Educ. 2005, 82, 1390.
Instrumental Methods |
Magnetic Properties |
NMR Spectroscopy |
Atomic Properties / Structure |
Isotopes
Generation, Isolation, and Characterization of a Stable Enol from Grignard Addition to a Bis-Ester. A Microscale Experiment for the Undergraduate Organic Chemistry Laboratory  Olivier J.-C. Nicaise, Kyle F. Ostrom, and Brent J. Dalke
A microscale experiment for the undergraduate organic chemistry laboratory that consists of preparing and characterizing an alpha-ketoester and its corresponding, remarkably stable enol form, has been developed. The reaction is that of a Grignard reagent with a bis-ester. A difference in reaction temperature is responsible for the selective generation of the alpha-ketoester and the enol ester. Analysis of spectral data (1H NMR and IR) and a knowledge of organic reactions allows the students to determine the detailed structure of the two reaction products and also to suggest a mechanism for their formation. This experiment introduces students to the concept of stability of the tetrahedral intermediate in acyl-transfer reactions. It also gives them a taste of the unexpected.
Nicaise, Olivier J.-C.; Ostrom, Kyle F.; Dalke, Brent J. J. Chem. Educ. 2005, 82, 1059.
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Organometallics |
Reactive Intermediates |
Synthesis
Isolation of Shikimic Acid from Star Aniseed  Richard Payne and Michael Edmonds
The isolation of shikimic acid from star aniseed is described. This experiment uses Soxhlet extraction followed by ion exchange chromatography to isolate crude shikimic acid from the star aniseed. Subsequent charcoal decolorization and recrystallization from toluene and methanol afford the pure shikimic acid in 27% w/w yield.
Payne, Richard; Edmonds, Michael. J. Chem. Educ. 2005, 82, 599.
Bioorganic Chemistry |
Natural Products |
NMR Spectroscopy |
Plant Chemistry
Two-Step Semi-Microscale Preparation of a Cinnamate Ester Sunscreen Analog  Ryan G. Stabile and Andrew P. Dicks
The two-step synthesis and characterization of a sunscreen analog (ethyl trans-4-methoxycinnamate) is presented. This experiment is tailored towards students with a sound theoretical understanding of organic chemistry and related laboratory techniques. Appropriate synthetic discussion topics include carbonyl condensation reactions, carboxylic acid esterifications, and the so-called "cesium effect" in organic synthesis.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2004, 81, 1488.
Conductivity |
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy |
Consumer Chemistry
The Darzens Condensation: Structure Determination through Spectral Analysis and Understanding Substrate Reactivity  R. David Crouch, Michael S. Holden, and Candice A. Romany
The Darzens condensation involves two steps that are typically included in the sophomore organic curriculum: an aldol reaction followed by an intramolecular nucleophilic substitution.
Crouch, R. David; Holden, Michael S.; Romany, Candice A. J. Chem. Educ. 2004, 81, 711.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Mechanisms of Reactions |
Aldehydes / Ketones
Microscale Synthesis and Spectroscopic Analysis of Flutamide, an Antiandrogen Prostate Cancer Drug  Ryan G. Stabile and Andrew P. Dicks
The synthesis involves N-acylation of a trisubstituted aromatic compound, 3-trifluoromethyl-4-nitroaniline. The procedure is easily adapted to generate structural analogues of flutamide. A significant feature is the curricular flexibility afforded by this experiment.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1439.
Drugs / Pharmaceuticals |
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
1H NMR Measurement of the Trans–Cis Photoisomerization of Cinnamic Acid Derivatives  Basil Danylec and Magdy N. Iskander
Procedure that illustrates trans-cis photoisomerization.
Danylec, Basil; Iskander, Magdy N. J. Chem. Educ. 2002, 79, 1000.
NMR Spectroscopy |
Photochemistry |
Stereochemistry |
Aromatic Compounds |
Alcohols |
Esters |
Alkenes |
Molecular Properties / Structure
Diastereoselective Synthesis of a Strawberry Flavoring Agent by Epoxidation of Ethyl trans-b-Methylcinnamate  Gayle J. Pageau, Rodwell Mabaera, Kathryn M. Kosuda, Tamara A. Sebelius, Ali H. Ghaffari, Kenneth A. Kearns, Jean P. McIntyre, Tina M. Beachy, and Dasan M. Thamattoor
Synthesis of the "strawberry aldehyde" epoxide, a well-known food and perfume additive.
Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M. J. Chem. Educ. 2002, 79, 96.
Molecular Modeling |
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Epoxides |
Consumer Chemistry |
Food Science
Preparation of a D-Glucose-Derived Alkene. An E2 Reaction for the Undergraduate Organic Chemistry Laboratory  Peter Norris and Andrew Fluxe
Synthesis of four carbohydrate derivatives that highlight techniques such as inert atmosphere work, rotary evaporators, and flash column chromatography.
Norris, Peter; Fluxe, Andrew. J. Chem. Educ. 2001, 78, 1676.
Carbohydrates |
NMR Spectroscopy |
Synthesis |
Alkenes |
Elimination Reactions |
Chromatography
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A  Juan Reyes, Melita Morton, Kelsey Downum, and Kevin E. O'Shea
An experiment in which students isolate (from ragweed) and characterize thiarubrine A; thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications.
Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E. J. Chem. Educ. 2001, 78, 781.
Aromatic Compounds |
IR Spectroscopy |
Natural Products |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Medicinal Chemistry
The Discovery Approach to NMR: Development of Chemical-Shift Additivity Tables and Application to Product Identification  Eric Bosch
A discovery-based approach to the preparation and application of chemical-shift additivity tables is presented to give students insight into the development of NMR spectral prediction software.
Bosch, Eric. J. Chem. Educ. 2000, 77, 890.
Laboratory Computing / Interfacing |
NMR Spectroscopy |
Aromatic Compounds |
Molecular Properties / Structure
Multicomponent Reactions: A Convenient Undergraduate Organic Chemistry Experiment  Ricardo Bossio, Stefano Marcaccini, Carlos F. Marcos, and Roberto Pepino
Two experiments for the synthesis of a -lactam and a succinimide, based on a 4-component Ugi condensation. The experimental procedures for both syntheses are identical except for the choice of the starting amine, whose electron richness is controlled by the presence or absence of an electron-withdrawing group.
Bossio, Ricardo; Marcaccini, Stefano; Marcos, Carlos F.; Pepino, Roberto. J. Chem. Educ. 2000, 77, 382.
Synthesis |
Drugs / Pharmaceuticals |
IR Spectroscopy |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Understanding NMR Multiplet Structure with WinDNMR  N. Bampos and A. Vidal-Ferran
Employing interactive, user-friendly software packages (such as WinDNMR) on a conventional personal computer to investigate the effect of changing the constituent coupling constants on the appearance of a multiplet. As an example, a multiplet representing a proton coupled to three neighboring environments (four-spin system) is treated in detail.
Bampos, N.; Vidal-Ferran, A. J. Chem. Educ. 2000, 77, 130.
NMR Spectroscopy |
Instrumental Methods
The Discovery-Oriented Approach to Organic Chemistry. 3. Rearrangement of cis- and trans-Stilbene Oxides with Boron Trifluoride Etherate. An Exercise in 1H NMR Spectroscopy for Sophomore Organic Laboratories  Erik A. Sgariglia, Regina Schopp, Kostas Gavardinas, and Ram S. Mohan
A discovery-oriented laboratory experiment that involves the rearrangement of both cis- and trans-stilbene oxides with boron trifluoride etherate.
Sgariglia, Erik A.; Schopp, Regina; Gavardinas, Kostas; Mohan, Ram S. J. Chem. Educ. 2000, 77, 79.
Mechanisms of Reactions |
NMR Spectroscopy |
Constitutional Isomers
Keep Going with Cyclooctatetraene!  Addison Ault
This paper shows how some simple properties of cyclooctatetraene can indicate important ideas about the structure of cyclooctatetraene.
Ault, Addison. J. Chem. Educ. 2000, 77, 55.
Aromatic Compounds |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Analysis of Soft Drinks Using Nuclear Magnetic Resonance Spectroscopy: A Mentorship  Arkim Wilson, Craig Myers, George Crull, Michael Curtis, and Pamela Pasciak Patterson
This mentorship was designed to expose a student to the laboratory routine for a chemist at Bristol Myers Squibb Company (BMS). The student visited BMS, collaborated with BMS scientists, and actually completed a project on site. He was asked to determine the identity of an unknown sample of soft drink retrieved from a fictitious crime scene using NMR spectroscopy.
Wilson, Arkim; Myers, Craig; Crull, George; Curtis, Michael; Pasciak, Pamela M. J. Chem. Educ. 1999, 76, 1414.
Instrumental Methods |
Atomic Properties / Structure |
NMR Spectroscopy |
Qualitative Analysis |
Separation Science |
Student / Career Counseling
Organic Chemistry Course Development in a Forensic Science Program: Use of FT-NMR  Ronald Callahan, Lawrence Kobilinsky, and Robert Rothchild
The acquisition of a modern, multinuclear, medium-field (7 tesla) FT-NMR, with partial support from NSF-ILI, has made possible the introduction of a major special project for second-semester organic chemistry laboratory, within a forensic science program.
Callahan, Ronald; Kobilinsky, Lawrence; Rothchild, Robert. J. Chem. Educ. 1999, 76, 1332.
Forensic Chemistry |
NMR Spectroscopy |
Synthesis |
Microscale Lab |
Molecular Modeling |
Stereochemistry
A Simple and Convenient Method for Generation and NMR Observation of Stable Carbanions  Hamid S. Kasmai
A simple and convenient method for the generation and NMR study of stable carbanions is described. The data and sample spectra illustrate that reliable and good quality NMR spectra of stable carbanions may be obtained. The experiments described provide a good opportunity for students to apply the basic principles of 1H and 13C NMR spectrometry and the interesting topic of the exchange phenomenon in NMR.
Kasmai, Hamid S. J. Chem. Educ. 1999, 76, 830.
Acids / Bases |
Reactive Intermediates |
NMR Spectroscopy |
Aromatic Compounds
The Discovery-Oriented Approach to Organic Chemistry. 1. Nitration of Unknown Organic Compounds. An Exercise in 1H NMR and 13C NMR Spectrosopy for Sophomore Organic Laboratories  Sonia R. McElveen, Kostas Gavardinas, Jean A. Stamberger, and Ram S. Mohan
Two simple nitration experiments that present the student with a puzzle and are a good exercise in 1H NMR and 13C NMR spectroscopy. The experiment involves nitration of unknown organic compounds and product analysis by 1H NMR and 13C NMR spectroscopy, which enables the student to determine the identity of the unknown.
McElveen, Sonia R.; Gavardinas, Kostas; Stamberger, Jean A.; Mohan, Ram S. J. Chem. Educ. 1999, 76, 535.
NMR Spectroscopy |
Synthesis |
Reactions
Reduction of 2,6-Dimethylcyclohexanone with Sodium Borohydride Revisited: A Correction on the Structural Assignments of the Products, and the Discovery of a Solvent Effect  Bruce A. Hathaway
Changing the solvent from methanol to ethanol produced a different ratio of cis-cis to trans-trans than was reported in the original work. Therefore, a short series of solvents was investigated to determine if there was a solvent effect. The results indicate that as the size and bulk of the solvent increase, the proportion of the trans alcohol product increases.
Hathaway, Bruce A. J. Chem. Educ. 1998, 75, 1623.
Stereochemistry |
NMR Spectroscopy |
Aldehydes / Ketones |
Alcohols
Organic Reactions Involving Bromine: Puzzles for the Organic Laboratory  Sarita I. McGowens and Ernest F. Silversmith
Five puzzles for the organic chemistry laboratory are described. All involve bromine, which is generated in a safe, convenient way that makes it possible to control the amount of bromine precisely. Three of the puzzles involve orientation in electrophilic aromatic substitution, one is a determination of the stereochemistry of addition to alkenes, and the other one looks at the possibility of dehydrohalogenation following addition.
McGowens, Sarita I.; Silversmith, Ernest F. J. Chem. Educ. 1998, 75, 1293.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Mechanisms of Reactions
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Educational NMR Software  Peter Lundberg
A description of a compilation of computer programs (EduNMRSoft) suitable for teaching NMR at an introductory to advanced level is presented. Each program is categorized and described by function, hardware requirements, availability, author, and references in the list.
Lundberg, Peter. J. Chem. Educ. 1997, 74, 1489.
Instrumental Methods |
NMR Spectroscopy |
Spectroscopy
Investigation of Atropisomerism in ortho-Substituted Tetraphenylporphyrins: An Experimental Module Involving Synthesis, Chromatography, and NMR Spectroscopy  Ruth Freitag Beeston, Shannon E. Stitzel , and Mitchell A. Rhea
It is shown that as the number of cofacial methyl neighbors for a particular methyl group decreases, the chemical shift of the methyl protons increases. This experiment leads to a greater understanding of chromatography and NMR spectroscopy in addition to introducing students to porphyrin synthesis and the concepts of atropisomerism and statistical distributions.
Beeston, Ruth Freitag; Stitzel, Shannon E.; Rhea, Mitchell A. J. Chem. Educ. 1997, 74, 1468.
Instrumental Methods |
NMR Spectroscopy |
Synthesis |
Stereochemistry
Regioselective Hydrochlorination: An Experiment for the Undergraduate Laboratory  Philip Boudjouk, Beon-Kyu Kim, and Byung-Hee Han
A simple and convenient procedure for the addition of hydrogen chloride to a variety of olefins is described. Conventional glassware is used and product isolation is straightforward using distillation techniques.
Boudjouk, Philip; Kim, Beon-Kyu; Han, Byung-Hee. J. Chem. Educ. 1997, 74, 1223.
Learning Theories |
NMR Spectroscopy |
Synthesis |
Electrophilic Substitution
An Experiment to Demonstrate Magnetic Nonequivalence in Proton NMR  Christopher J. Welch
The bicyclic compound, 3a,6a-diethoxycarbonyl-2,5-dimethyl-1,4-dioxo-octahydropyrrolo[3,4-c]pyrrole, prepared by a literature procedure is used to demonstrate magnetic nonequivalence for methylene protons in the proton NMR experiment.
Welch, Christopher J. J. Chem. Educ. 1997, 74, 247.
Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Aldehydes / Ketones
An Analogy To Assist Understanding of Splitting Patterns in NMR Spectra  Dianne A. Thoben and Thomas H. Lowry
An analogy to the "point of view shot" as used in the movies is used to help students understand and interpret splitting patterns in proton NMR spectra.
Thoben, Dianne A.; Lowry, Thomas H. J. Chem. Educ. 1997, 74, 68.
NMR Spectroscopy |
Molecular Properties / Structure
Grignard Reaction of an Epoxide: A Mechanistic Study  James A. Ciaccio, Sabrina Volpi, Ransford Clarke
Unlike most undergraduate Grignard experiments which are performed merely for the sake of illustrating a textbook reaction, this Grignard synthesis is performed to probe the reactivity of styrene oxide. Students are required to analyze their products by TLC and NMR spectroscopy (instead of just submitting them for a grade) in order to obtain the data necessary for making mechanistic conclusions.
Ciaccio, James A.; Volpi, Sabrina; Clarke, Ransford. J. Chem. Educ. 1996, 73, 1196.
Grignard Reagents |
Epoxides |
Thin Layer Chromatography |
NMR Spectroscopy |
Synthesis
Four Programs for Windows: Abstract of Volume 4D, Number 2: SPECPNMR: A Proton NMR Slide Show  Adrian J. Blackman
SPECPNMR is one of a set of programs developed as an aid for teaching introductory spectroscopy to organic chemistry students. It includes a brief introduction to nuclear magnetic resonance spectroscopy followed by a detailed look at proton magnetic resonance spectroscopy. The program generates electronic slides for display in a lecture theatre on a large screen using a video projector or LCD panel and overhead projector. The slides are designed to help a lecturer teach spectroscopy.
Blackman, Adrian J. J. Chem. Educ. 1996, 73, 1078.
NMR Spectroscopy |
Spectroscopy
Four Programs for Windows: Abstract of Volume 4D, Number 2: HIPPO-CNMRS: Highly Improved Prediction Program of Carbon Nuclear Magnetic Resonance Shifts  Helmut Honig
HIPPO-CNMRS is a "highly improved" version of a 13C-NMR program previously available from the author. It can predict the 13C NMR spectrum for most substituted alicyclic saturated and aromatic ring systems (cyclopropane to cyclooctane; benzene, naphthalene, anthracene; cis- and trans-decaline; some heterocyclic systems like furan, tetrahydofuran, pyridine, piperidine and quinoline; most substituted acyclic compounds with up to six carbons in the parent structure; and simple olefins and alkynes.
Honig, Helmut. J. Chem. Educ. 1996, 73, 1078.
NMR Spectroscopy
The Quantitative Analysis of an Analgesic Tablet: An NMR Experiment for the Instrumental Analysis Course   Thomas A. Schmedake, Lawrence E. Welch
Initial work utilizes a known compound (acenapthene) to assess the type of NMR experiment necessary to achieve a proportional response from all of the carbons in the compound. Once the experiments with the known compound have illuminated the merits of the differing strategies for obtaining a proportional carbon response, a quantitative assessment of an unknown analgesic tablet is undertaken. The amounts of the two major components of the tablet, acetaminophen and aspirin, are determined following addition of an internal standard to the mixture.
Schmedake, Thomas A.; Welch, Lawrence E. J. Chem. Educ. 1996, 73, 1045.
Quantitative Analysis |
Drugs / Pharmaceuticals |
NMR Spectroscopy |
Instrumental Methods
A New Photochemistry Experiment, A Simple 2+2 Photocycloaddition that Poses an Interesting NMR Problem   John T. Magner, Matthias Selke, Arlene A. Russell, Orville L. Chapman
The cycloaddition of -nitrostyrene to 2,3-dimethyl-1,3-butadiene provides an extremely clean example of 2 + 2 cycloaddition. This laboratory exercise combines theory, technique, spectroscopy, and data interpretation.
J. Chem. Educ. 1996, 73, 854.
Photochemistry |
NMR Spectroscopy |
Qualitative Analysis |
Instrumental Methods |
Addition Reactions |
Mechanisms of Reactions
The Baylis-Hillman Reaction: Synthesizing a Compound and Explaining Its Formation  Crouch, R. David; Nelson, Todd D.
Experimental procedure for the synthesis of an unpredictable and unknown mechanism to be identified and described by students through analytical techniques (spectroscopy).
Crouch, R. David; Nelson, Todd D. J. Chem. Educ. 1995, 72, A6.
Synthesis |
Mechanisms of Reactions |
NMR Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Microscale Lab
Proton NMR Basics  Carolyn S. Judd, Joel D. Morrisett, Mohan V. Chari, and Jeffrey L. Browning
Multimedia tutorial to introduce and develop understanding of NMR spectroscopy concepts and techniques.
Judd, C. Sweeney; Morrisett, J. D.; Chari, M. V. ; Browning, J. L. J. Chem. Educ. 1995, 72, 706.
NMR Spectroscopy
Hydrogen-Bonding Equilibrium in Phenol Analyzed by NMR Spectroscopy  Lessinger, Leslie
Experimental procedure for determining the equilibrium constant for the hydrogen-bonding equilibrium of phenol in carbon tetrachloride solution; data and analysis included.
Lessinger, Leslie J. Chem. Educ. 1995, 72, 85.
Equilibrium |
Noncovalent Interactions |
NMR Spectroscopy |
Hydrogen Bonding |
Aromatic Compounds |
Alcohols
FT NMR in the Instrumental Analysis Course: A Curriculum and a Laboratory  Fuson, Michael M.
Discussion of NMR in the context of instrumental analysis should focus on the nature of the FT NMR experiment; a procedure to support this discussion is provided.
Fuson, Michael M. J. Chem. Educ. 1994, 71, 126.
Fourier Transform Techniques |
NMR Spectroscopy |
Instrumental Methods
Oxidation of (R)-(+)-pulegone to (R)-(+)-3-methyladipic acid  Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F.
This paper addresses the demand for microscale laboratories and minimizes waste disposal while linking students to current organic chemistry research.
Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F. J. Chem. Educ. 1993, 70, 951.
Microscale Lab |
Undergraduate Research |
NMR Spectroscopy |
IR Spectroscopy
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.  Lee, Moses.
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.
Lee, Moses. J. Chem. Educ. 1992, 69, A172.
Microscale Lab |
Synthesis |
Aldehydes / Ketones |
Fourier Transform Techniques |
NMR Spectroscopy |
IR Spectroscopy |
Gas Chromatography |
Thin Layer Chromatography |
Instrumental Methods
Proton and carbon-13 NMR simulation of mixtures  Bell, Harold M.
133. Bits and pieces, 47. The program for simulation of spectra of mixtures can accommodate five components, each containing as many as six coupled nuclei.
Bell, Harold M. J. Chem. Educ. 1992, 69, 44.
NMR Spectroscopy
Hydroboration-oxidation of (1R)-(+)-alpha-pinene to isopinocampheol: A microscale experiment that displays regio- and stereochemistry using NMR spectroscopy and molecular mechanics calculations  Blankespoor, Ronald L.; Piers, Kenneth
The hydroboration-oxidation of alkenes is an important route to alcohols and therefore receives considerable treatment in standard organic textbooks. These authors present their findings of an example (an alkene that undergoes the hydroboration oxidation process) that displays both regiochemistry and stereochemistry.
Blankespoor, Ronald L.; Piers, Kenneth J. Chem. Educ. 1991, 68, 693.
Alkenes |
Oxidation / Reduction |
NMR Spectroscopy |
Alcohols
Undergraduate organic and polymer lab experiments that exemplify structure determination by NMR  Viswanathan, T.; Watson, F.; Yang, D. T. C.
Where in the curriculum is the best place to teach experimental NMR methods that are so essential to chemists and chemistry? These authors are of the opinion that NMR must be given more than a cursory introduction involving a single experiment, and present a series of experiments.
Viswanathan, T.; Watson, F.; Yang, D. T. C. J. Chem. Educ. 1991, 68, 685.
Instrumental Methods |
NMR Spectroscopy
A laboratory study of 1,3-dipole-dipolarophile addition: An extension of the Diels Alder reaction  Gingrich, Henry L.; Pickering, Miles
Some easy organic reactions that can also be used as the basis for puzzles, or as facile heterocyclic syntheses: an area neglected in the student experiment literature.
Gingrich, Henry L.; Pickering, Miles J. Chem. Educ. 1991, 68, 614.
Mechanisms of Reactions |
Addition Reactions |
Synthesis |
Heterocycles |
Physical Properties |
NMR Spectroscopy
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid  Olsen, Julie A.; Olsen, Robert J.
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid.
Olsen, Julie A.; Olsen, Robert J. J. Chem. Educ. 1991, 68, 436.
Acids / Bases |
NMR Spectroscopy |
Enzymes |
Molecular Modeling |
Diastereomers
A convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety  Price, William A.; Patten, Timothy E.
Description of a convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety.
Price, William A.; Patten, Timothy E. J. Chem. Educ. 1991, 68, 256.
Synthesis |
Alcohols |
Alkenes |
NMR Spectroscopy
The Fourier transform in chemistry--NMR: Part 4. Two-dimensional methods   Williams, Kathryn R.; King, Roy W.
This article will conclude the series with an examination of some of the most important types of two-dimensional spectra.
Williams, Kathryn R.; King, Roy W. J. Chem. Educ. 1990, 67, A125.
Fourier Transform Techniques |
NMR Spectroscopy
Synthesis of 5-nitrofurfural diacetate and 5-nitrofurfural semicarbazone: An undergraduate laboratory experiment  Li, Xiaorong; Liu, Qianguang; Chang, James C.
Demonstrates how to nitrate an aromatic compound having an aldehyde group that can be oxidized by nitrating agents.
Li, Xiaorong; Liu, Qianguang; Chang, James C. J. Chem. Educ. 1990, 67, 986.
Synthesis |
Aldehydes / Ketones |
Esters |
Ethers |
Electrophilic Substitution |
Aromatic Compounds |
NMR Spectroscopy
Proton NMR simulator  Black, Kersey A.
Software designed to help students learn how to correlate proton NMR spectral data with molecular structure.
Black, Kersey A. J. Chem. Educ. 1990, 67, 589.
NMR Spectroscopy |
Molecular Properties / Structure
The addition of hydrogen bromide to unsymmetrical alkenes: Introductory experiments in NMR spectroscopy and mechanistic chemistry  Brown, Trevor M.; Dronsfield, Alan T.; Ellis, Robert
As an introduction to NMR the authors center their work around the addition of hydrogen bromide to unsymmetrical alkenes and use the coupling patterns in the proton NMR spectra to establish whether the addition product is consistent with the Markovnikov rule.
Brown, Trevor M.; Dronsfield, Alan T.; Ellis, Robert J. Chem. Educ. 1990, 67, 518.
NMR Spectroscopy |
Alkenes |
Mechanisms of Reactions
The Fourier transform in chemistry. Part 1. Nuclear magnetic resonance: Introduction  King, Roy W.; Williams, Kathryn R.
Provides a fundamental understanding and appreciation of FT-NMR.
King, Roy W.; Williams, Kathryn R. J. Chem. Educ. 1989, 66, A213.
Fourier Transform Techniques |
NMR Spectroscopy |
Instrumental Methods
Organic spectroscopy  Hiatt, Richard
Six programs that generate and display infrared, proton NMR, carbon-13 NMR, and mass spectra.
Hiatt, Richard J. Chem. Educ. 1989, 66, 927.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry
Synthesis and reactivity of ?5-cyclopentadienylruthenium compounds: An organometallic chemistry experiment  Ballester, L.; Gutierrez, A.; Perpinan, M. F.
Procedure permits the application of concepts regarding the reactivity of organometallic compounds and the use of IR and NMR spectral data in the characterization of the synthesized complexes.
Ballester, L.; Gutierrez, A.; Perpinan, M. F. J. Chem. Educ. 1989, 66, 777.
Organometallics |
IR Spectroscopy |
NMR Spectroscopy |
Coordination Compounds
Student comparisons of analytical chemical methods in undergraduate chemistry courses  Harrison, Aline M.; Peterman, Keith E.
Four experiments in which different analytical methods are used to make the same measurement for purposes of comparison.
Harrison, Aline M.; Peterman, Keith E. J. Chem. Educ. 1989, 66, 772.
Gravimetric Analysis |
Atomic Properties / Structure |
Titration / Volumetric Analysis |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Enzymes |
Quantitative Analysis
A tandem Michael-aldol reaction sequence: An undergraduate research organic experiment  Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T.
A short reaction sequence that allows students to determine by spectroscopic methods the constitutions of and stereochemistry in the reaction products.
Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T. J. Chem. Educ. 1989, 66, 520.
Mechanisms of Reactions |
Spectroscopy |
Stereochemistry |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy
The isolation of sesquiterpenes from Artemisia annua  Roth, Ronald J.; Acton, Nancy.
Artemisia annua is a Eurasian import in North America and has been found growing in diverse parts of the United States. Procedures have been reported for the isolation of arteannuin B and of arteannuic acid.
Roth, Ronald J.; Acton, Nancy. J. Chem. Educ. 1989, 66, 349.
Plant Chemistry |
Natural Products |
IR Spectroscopy |
NMR Spectroscopy
Nuclear magnetic resonance spectroscopy in biochemistry   Cheatham, Steve
This review will discuss the nature of the NMR experiment, the techniques used, the types of structural and dynamic information one obtains, and how one can view and refine structures using computer graphics techniques in combination with NMR data.
Cheatham, Steve J. Chem. Educ. 1989, 66, 111.
NMR Spectroscopy
Trifluoroacetylation of unknown alcohols: An integrated microscale organic experiment using spectroscopic methods  Piers, Kenneth; Hsung, Richard
The authors have found that trifluoroacetylation of unknown alcohols is a fast, clean, easily performed microscale experiment that integrates a number of aspects of laboratory work, viz. synthesis, isolation, characterization, spectroscopic measurement, and interpretation, and unknown identification.
Piers, Kenneth; Hsung, Richard J. Chem. Educ. 1989, 66, 90.
Alcohols |
Microscale Lab |
Qualitative Analysis |
NMR Spectroscopy |
IR Spectroscopy
The correlation of multinuclear spectral data for selectively fluorinated organic compounds  Everett, T. Stephen
This article presents a general discussion of fluorine-19 NMR spectroscopy, spectral data for two series of selectively fluorinated compounds, and the detailed correlation of multinuclear data for one specific compound.
Everett, T. Stephen J. Chem. Educ. 1988, 65, 422.
Aromatic Compounds |
NMR Spectroscopy |
Isotopes
A straightforward way to determine relative intensities of spin-spin splitting lines of equivalent nuclei in NMR spectra  Orcutt, Ronald H.
Because of the increasingly widespread availability of FT-NMR spectrometers with multinuclear capability, it is desirable to have a simple rule for predicting relative intensities to be expected in spin systems other than {-1/2, +1/2}.
Orcutt, Ronald H. J. Chem. Educ. 1987, 64, 763.
NMR Spectroscopy |
Fourier Transform Techniques
Synthesis and proton NMR spectrum of p-xylylenebis(2-(2-ethyl-1,3-propanediol))  Lisensky, George C.; Friedman, Robert M.
An experiment that is suitable for a second semester organic class where both the isolation of the product and the NMR spectral interpretation are straightforward.
Lisensky, George C.; Friedman, Robert M. J. Chem. Educ. 1986, 63, 644.
NMR Spectroscopy |
Synthesis
The esterification of trifluoroacetic acid: An NMR kinetics experiment  Minter, David E.; Villarreal, Mark C.
Procedure to determine pseudo-first-order rate constants for the esterification of trifluoroacetic acid.
Minter, David E.; Villarreal, Mark C. J. Chem. Educ. 1985, 62, 911.
NMR Spectroscopy |
Kinetics |
Instrumental Methods
Proton NMR spectra: Deceptively simple and deceptively complex examples  Gurst, J. E.; Dellinger, C. M.; Jacobus, John
NMR experiments that result in deceptively simple and deceptively complex spectra.
Gurst, J. E.; Dellinger, C. M.; Jacobus, John J. Chem. Educ. 1985, 62, 871.
NMR Spectroscopy
An analogy of the NMR effect  Lee, Albert W. M.
Analogy using the difference between standing upright and on one's head in the earth's gravitational field.
Lee, Albert W. M. J. Chem. Educ. 1985, 62, 319.
NMR Spectroscopy
Nuclear magnetic resonance interpretation with graphics  Draper, R. D.; Penfold, B. R.
54. Bits and pieces, 21. A suite of programs to help students interpret NMR spectra.
Draper, R. D.; Penfold, B. R. J. Chem. Educ. 1984, 61, 789.
NMR Spectroscopy |
Enrichment / Review Materials
Interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds for the beginner  Ingham, A. M.; Henson, R. C.
Flowcharts to help the beginner become proficient in interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds.
Ingham, A. M.; Henson, R. C. J. Chem. Educ. 1984, 61, 704.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
An analysis of a commercial furniture refinisher: a comprehensive introductory NMR experiment  Markow, Peter G.; Cramer, John A.
The author presents a laboratory experiment which introduces undergraduate students to the techniques of NMR through the analysis of a commercial furniture refinisher.
Markow, Peter G.; Cramer, John A. J. Chem. Educ. 1983, 60, 1078.
NMR Spectroscopy |
Consumer Chemistry
Prediction of the appearance of non-first-order proton NMR spectra   Macomber, Roger S.
Undergraduates generally become equipped only to handle only first-order coupling patterns. This means that they have a hard time understanding a real spectra. By scaffolding students through the synthesis level of Bloom's taxonomy, students can work toward a more expert level of understanding.
Macomber, Roger S. J. Chem. Educ. 1983, 60, 525.
NMR Spectroscopy |
Aldehydes / Ketones |
Learning Theories
Structure elucidation of a natural product  Letcher, Roy M.
This experiment is an attempt to simulate a real-life structure elucidation problem through the isolation, characterization, and chemical transformation of an unknown naturally occurring monoterpene, with extensive use being made of spectroscopy and aided by biogenetic considerations.
Letcher, Roy M. J. Chem. Educ. 1983, 60, 79.
Natural Products |
Separation Science |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Reactions
Hydrogen bonding and proton transfer  Joesten, Melvin D.
A review of the types of hydrogen bonds and discussion of the application of spectroscopic and diffraction methods to studies of moderate and strong hydrogen bonds.
Joesten, Melvin D. J. Chem. Educ. 1982, 59, 362.
Hydrogen Bonding |
Acids / Bases |
IR Spectroscopy |
NMR Spectroscopy |
Spectroscopy
Allyl alcohol plant stream analysis: Relating industrial chemistry to the undergraduate laboratory  Bard, James R.; Sandoval, Antonio A.
Exercise that seeks to familiarize students with an industrial chemical process using a reaction not normally found in undergraduate textbooks and to broaden appreciation of NMR spectroscopy to include its analytical capabilities and limitations by showing how NMR could be used for analysis of a typical plant stream.
Bard, James R.; Sandoval, Antonio A. J. Chem. Educ. 1980, 57, 218.
Alcohols |
Industrial Chemistry |
Applications of Chemistry |
NMR Spectroscopy
Phosphorus coupling in 13C and 1H NMR  Krudy, George A.; Macomber, Roger S.
Provides a variety of spectra of organophosphorus compounds that exhibit informative 1H and 13C spectra.
Krudy, George A.; Macomber, Roger S. J. Chem. Educ. 1979, 56, 109.
Spectroscopy |
NMR Spectroscopy
Boron-11 nmr  Smith, Wayne L.
Principles of 11B NMR and the interpretation of representative spectra.
Smith, Wayne L. J. Chem. Educ. 1977, 54, 469.
Spectroscopy |
NMR Spectroscopy
The design of integrated inorganic experiments. An example from organo-transition-element chemistry  Hunt, G. R. A.
This lab was designed in response to a need for an integrated exercise in undergraduate practical chemistry.
Hunt, G. R. A. J. Chem. Educ. 1976, 53, 53.
Descriptive Chemistry |
NMR Spectroscopy |
Organometallics |
Transition Elements
Isomer analysis by spectral methods  Poulton, Gerald A.
The use of NMR, UV and mass spectroscopy and gas chromatography to introduce students to the use of spectra to determine the products of a reaction and their relative amounts.
Poulton, Gerald A. J. Chem. Educ. 1975, 52, 397.
Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Gas Chromatography
The preparation and spectral analysis of toluene-a[alpha]-d  Ellis, Jerry W.; Buchanan, David H.
Provides dramatic visual evidence of the changes in IR, NMR, and mass spectra upon substitution of deuterium for hydrogen in a simple molecule.
Ellis, Jerry W.; Buchanan, David H. J. Chem. Educ. 1975, 52, 265.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Spectroscopy
Paramagnetic moment measurements by nmr. A micro technique  Loliger, J.; Scheffold, R.
Design of a coaxial cell consisting of a simple melting point tube that is used to to determine the paramagnetic moment of a given substance.
Loliger, J.; Scheffold, R. J. Chem. Educ. 1972, 49, 646.
NMR Spectroscopy |
Microscale Lab |
Magnetic Properties |
Instrumental Methods
An interactive NMR chemical shift search program  Heller, Stephen R.; Feldmann, Richard J.
A computer program has been developed to rapidly search for spectra containing specified chemical shifts from proton nmr spectral data.
Heller, Stephen R.; Feldmann, Richard J. J. Chem. Educ. 1972, 49, 291.
NMR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure
Instrumentation teaching equipment. Part three: Miscellaneous  Eisner, Leonard
Considers magnetic resonance spectroscopy, magnetic susceptibility, atomic beam spectroscopy, mass spectrometers, chromatography, electrochemistry, electron diffraction, field emission microscopes, glass blowing and vacuum systems, high and low temperatures, and ultrasonics.
Eisner, Leonard J. Chem. Educ. 1964, 41, A607.
NMR Spectroscopy |
Spectroscopy |
Instrumental Methods |
Mass Spectrometry |
Magnetic Properties |
Chromatography |
Electrochemistry |
Laboratory Equipment / Apparatus