TIGER

Journal Articles: 30 results
NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils  Molly W. Crowther
This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy in the analysis of five edible and structurally similar fats and oils for average chain length, degree of unsaturation, and trans fat content.
Crowther, Molly W. J. Chem. Educ. 2008, 85, 1550.
Consumer Chemistry |
Food Science |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy |
Fatty Acids
Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited  Markus M. Hoffmann, Joshua T. Caccamis, Mark P. Heitz, and Kenneth D. Schlecht
Substantial modifications intended for a second- or third-year laboratory course in analytical chemistry are presented for a previously described procedure using NMR spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment introduces student collaboration to critically interpret a relatively large set of data.
Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D. J. Chem. Educ. 2008, 85, 1421.
Alcohols |
Aldehydes / Ketones |
Consumer Chemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Quantitative Analysis
"As Simple as Possible, but Not Simpler"—The Case of Dehydroascorbic Acid  Robert C. Kerber
Textbooks routinely assign dehydroascorbic acid a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. Studies of oxidized forms of ascorbic acid are summarized here, and a plea is entered for accurate descriptions of chemical structures in this and other cases, even at the cost of some simplicity.
Kerber, Robert C. J. Chem. Educ. 2008, 85, 1237.
Bioorganic Chemistry |
Free Radicals |
Natural Products |
NMR Spectroscopy |
Vitamins
Why Are 1H NMR Integrations Not Perfect? An Inquiry-Based Exercise for Exploring the Relationship Between Spin Dynamics and NMR Integration in the Organic Lab  Haim Weizman
When FT-NMR is used to collect data without a sufficient delay time between subsequent pulses, the integrated area under certain peaks may result in a lower value than should be observed under appropriate conditions. This exercise is designed to raise awareness of this issue in students and to serve as an inquiry-based stepping-stone into basic FT-NMR.
Weizman, Haim. J. Chem. Educ. 2008, 85, 294.
Aldehydes / Ketones |
Microscale Lab |
NMR Spectroscopy
Determination of Solvent Effects on Keto—Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR  A. Gilbert Cook and Paul M. Feltman
Expands the classic physical chemistry experiment using of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents.
Cook, A. Gilbert; Feltman, Paul M. J. Chem. Educ. 2007, 84, 1827.
Aldehydes / Ketones |
Equilibrium |
Hydrogen Bonding |
Molecular Modeling |
Molecular Properties / Structure |
NMR Spectroscopy |
Solutions / Solvents |
Thermodynamics
A New Tool To Aid Students in NMR Interpretation  John V. McClusky
Presents a tool that allows students to logically analyze NMR spectra and to visualize how peak multiplicity reveals molecular connectivity.
McClusky, John V. J. Chem. Educ. 2007, 84, 983.
NMR Spectroscopy |
Spectroscopy
A Laboratory Assignment in 1H NMR Spectroscopy: A Comparative Analysis of Calculated and Experimental 1H NMR Chemical Shifts  Susan D. Van Arnum
A computer program is used to determine the proton NMR chemical shifts of endo- and exo-norbornenyl ketones and these values are compared to empirical results.
Van Arnum, Susan D. J. Chem. Educ. 2006, 83, 429.
Constitutional Isomers |
NMR Spectroscopy |
Photochemistry
1H NMR Measurement of the Trans–Cis Photoisomerization of Cinnamic Acid Derivatives  Basil Danylec and Magdy N. Iskander
Procedure that illustrates trans-cis photoisomerization.
Danylec, Basil; Iskander, Magdy N. J. Chem. Educ. 2002, 79, 1000.
NMR Spectroscopy |
Photochemistry |
Stereochemistry |
Aromatic Compounds |
Alcohols |
Esters |
Alkenes |
Molecular Properties / Structure
The Discovery Approach to NMR: Development of Chemical-Shift Additivity Tables and Application to Product Identification  Eric Bosch
A discovery-based approach to the preparation and application of chemical-shift additivity tables is presented to give students insight into the development of NMR spectral prediction software.
Bosch, Eric. J. Chem. Educ. 2000, 77, 890.
Laboratory Computing / Interfacing |
NMR Spectroscopy |
Aromatic Compounds |
Molecular Properties / Structure
Keep Going with Cyclooctatetraene!  Addison Ault
This paper shows how some simple properties of cyclooctatetraene can indicate important ideas about the structure of cyclooctatetraene.
Ault, Addison. J. Chem. Educ. 2000, 77, 55.
Aromatic Compounds |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Reduction of 2,6-Dimethylcyclohexanone with Sodium Borohydride Revisited: A Correction on the Structural Assignments of the Products, and the Discovery of a Solvent Effect  Bruce A. Hathaway
Changing the solvent from methanol to ethanol produced a different ratio of cis-cis to trans-trans than was reported in the original work. Therefore, a short series of solvents was investigated to determine if there was a solvent effect. The results indicate that as the size and bulk of the solvent increase, the proportion of the trans alcohol product increases.
Hathaway, Bruce A. J. Chem. Educ. 1998, 75, 1623.
Stereochemistry |
NMR Spectroscopy |
Aldehydes / Ketones |
Alcohols
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Investigation of Atropisomerism in ortho-Substituted Tetraphenylporphyrins: An Experimental Module Involving Synthesis, Chromatography, and NMR Spectroscopy  Ruth Freitag Beeston, Shannon E. Stitzel , and Mitchell A. Rhea
It is shown that as the number of cofacial methyl neighbors for a particular methyl group decreases, the chemical shift of the methyl protons increases. This experiment leads to a greater understanding of chromatography and NMR spectroscopy in addition to introducing students to porphyrin synthesis and the concepts of atropisomerism and statistical distributions.
Beeston, Ruth Freitag; Stitzel, Shannon E.; Rhea, Mitchell A. J. Chem. Educ. 1997, 74, 1468.
Instrumental Methods |
NMR Spectroscopy |
Synthesis |
Stereochemistry
An Experiment to Demonstrate Magnetic Nonequivalence in Proton NMR  Christopher J. Welch
The bicyclic compound, 3a,6a-diethoxycarbonyl-2,5-dimethyl-1,4-dioxo-octahydropyrrolo[3,4-c]pyrrole, prepared by a literature procedure is used to demonstrate magnetic nonequivalence for methylene protons in the proton NMR experiment.
Welch, Christopher J. J. Chem. Educ. 1997, 74, 247.
Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Aldehydes / Ketones
An Analogy To Assist Understanding of Splitting Patterns in NMR Spectra  Dianne A. Thoben and Thomas H. Lowry
An analogy to the "point of view shot" as used in the movies is used to help students understand and interpret splitting patterns in proton NMR spectra.
Thoben, Dianne A.; Lowry, Thomas H. J. Chem. Educ. 1997, 74, 68.
NMR Spectroscopy |
Molecular Properties / Structure
The Quantitative Analysis of an Analgesic Tablet: An NMR Experiment for the Instrumental Analysis Course   Thomas A. Schmedake, Lawrence E. Welch
Initial work utilizes a known compound (acenapthene) to assess the type of NMR experiment necessary to achieve a proportional response from all of the carbons in the compound. Once the experiments with the known compound have illuminated the merits of the differing strategies for obtaining a proportional carbon response, a quantitative assessment of an unknown analgesic tablet is undertaken. The amounts of the two major components of the tablet, acetaminophen and aspirin, are determined following addition of an internal standard to the mixture.
Schmedake, Thomas A.; Welch, Lawrence E. J. Chem. Educ. 1996, 73, 1045.
Quantitative Analysis |
Drugs / Pharmaceuticals |
NMR Spectroscopy |
Instrumental Methods
Proton NMR Basics  Carolyn S. Judd, Joel D. Morrisett, Mohan V. Chari, and Jeffrey L. Browning
Multimedia tutorial to introduce and develop understanding of NMR spectroscopy concepts and techniques.
Judd, C. Sweeney; Morrisett, J. D.; Chari, M. V. ; Browning, J. L. J. Chem. Educ. 1995, 72, 706.
NMR Spectroscopy
Hydrogen-Bonding Equilibrium in Phenol Analyzed by NMR Spectroscopy  Lessinger, Leslie
Experimental procedure for determining the equilibrium constant for the hydrogen-bonding equilibrium of phenol in carbon tetrachloride solution; data and analysis included.
Lessinger, Leslie J. Chem. Educ. 1995, 72, 85.
Equilibrium |
Noncovalent Interactions |
NMR Spectroscopy |
Hydrogen Bonding |
Aromatic Compounds |
Alcohols
Undergraduate organic and polymer lab experiments that exemplify structure determination by NMR  Viswanathan, T.; Watson, F.; Yang, D. T. C.
Where in the curriculum is the best place to teach experimental NMR methods that are so essential to chemists and chemistry? These authors are of the opinion that NMR must be given more than a cursory introduction involving a single experiment, and present a series of experiments.
Viswanathan, T.; Watson, F.; Yang, D. T. C. J. Chem. Educ. 1991, 68, 685.
Instrumental Methods |
NMR Spectroscopy
The Fourier transform in chemistry--NMR: Part 4. Two-dimensional methods   Williams, Kathryn R.; King, Roy W.
This article will conclude the series with an examination of some of the most important types of two-dimensional spectra.
Williams, Kathryn R.; King, Roy W. J. Chem. Educ. 1990, 67, A125.
Fourier Transform Techniques |
NMR Spectroscopy
The addition of hydrogen bromide to unsymmetrical alkenes: Introductory experiments in NMR spectroscopy and mechanistic chemistry  Brown, Trevor M.; Dronsfield, Alan T.; Ellis, Robert
As an introduction to NMR the authors center their work around the addition of hydrogen bromide to unsymmetrical alkenes and use the coupling patterns in the proton NMR spectra to establish whether the addition product is consistent with the Markovnikov rule.
Brown, Trevor M.; Dronsfield, Alan T.; Ellis, Robert J. Chem. Educ. 1990, 67, 518.
NMR Spectroscopy |
Alkenes |
Mechanisms of Reactions
Nuclear magnetic resonance spectroscopy in biochemistry   Cheatham, Steve
This review will discuss the nature of the NMR experiment, the techniques used, the types of structural and dynamic information one obtains, and how one can view and refine structures using computer graphics techniques in combination with NMR data.
Cheatham, Steve J. Chem. Educ. 1989, 66, 111.
NMR Spectroscopy
The correlation of multinuclear spectral data for selectively fluorinated organic compounds  Everett, T. Stephen
This article presents a general discussion of fluorine-19 NMR spectroscopy, spectral data for two series of selectively fluorinated compounds, and the detailed correlation of multinuclear data for one specific compound.
Everett, T. Stephen J. Chem. Educ. 1988, 65, 422.
Aromatic Compounds |
NMR Spectroscopy |
Isotopes
Proton NMR spectra: Deceptively simple and deceptively complex examples  Gurst, J. E.; Dellinger, C. M.; Jacobus, John
NMR experiments that result in deceptively simple and deceptively complex spectra.
Gurst, J. E.; Dellinger, C. M.; Jacobus, John J. Chem. Educ. 1985, 62, 871.
NMR Spectroscopy
Nuclear magnetic resonance interpretation with graphics  Draper, R. D.; Penfold, B. R.
54. Bits and pieces, 21. A suite of programs to help students interpret NMR spectra.
Draper, R. D.; Penfold, B. R. J. Chem. Educ. 1984, 61, 789.
NMR Spectroscopy |
Enrichment / Review Materials
Interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds for the beginner  Ingham, A. M.; Henson, R. C.
Flowcharts to help the beginner become proficient in interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds.
Ingham, A. M.; Henson, R. C. J. Chem. Educ. 1984, 61, 704.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Hydrogen bonding and proton transfer  Joesten, Melvin D.
A review of the types of hydrogen bonds and discussion of the application of spectroscopic and diffraction methods to studies of moderate and strong hydrogen bonds.
Joesten, Melvin D. J. Chem. Educ. 1982, 59, 362.
Hydrogen Bonding |
Acids / Bases |
IR Spectroscopy |
NMR Spectroscopy |
Spectroscopy
Allyl alcohol plant stream analysis: Relating industrial chemistry to the undergraduate laboratory  Bard, James R.; Sandoval, Antonio A.
Exercise that seeks to familiarize students with an industrial chemical process using a reaction not normally found in undergraduate textbooks and to broaden appreciation of NMR spectroscopy to include its analytical capabilities and limitations by showing how NMR could be used for analysis of a typical plant stream.
Bard, James R.; Sandoval, Antonio A. J. Chem. Educ. 1980, 57, 218.
Alcohols |
Industrial Chemistry |
Applications of Chemistry |
NMR Spectroscopy
Boron-11 nmr  Smith, Wayne L.
Principles of 11B NMR and the interpretation of representative spectra.
Smith, Wayne L. J. Chem. Educ. 1977, 54, 469.
Spectroscopy |
NMR Spectroscopy
An interactive NMR chemical shift search program  Heller, Stephen R.; Feldmann, Richard J.
A computer program has been developed to rapidly search for spectra containing specified chemical shifts from proton nmr spectral data.
Heller, Stephen R.; Feldmann, Richard J. J. Chem. Educ. 1972, 49, 291.
NMR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure