TIGER

Journal Articles: 47 results
"As Simple as Possible, but Not Simpler"—The Case of Dehydroascorbic Acid  Robert C. Kerber
Textbooks routinely assign dehydroascorbic acid a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. Studies of oxidized forms of ascorbic acid are summarized here, and a plea is entered for accurate descriptions of chemical structures in this and other cases, even at the cost of some simplicity.
Kerber, Robert C. J. Chem. Educ. 2008, 85, 1237.
Bioorganic Chemistry |
Free Radicals |
Natural Products |
NMR Spectroscopy |
Vitamins
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Using a Premade Grignard Reagent To Synthesize Tertiary Alcohols in a Convenient Investigative Organic Laboratory Experiment  Michael A. G. Berg and Roy D. Pointer
Describes the use of a commercially available Grignard reagent in a Grignard synthesis that avoided the failures typically associated with the Grignard reaction.
Berg, Michael A. G.; Pointer, Roy D. J. Chem. Educ. 2007, 84, 483.
Aldehydes / Ketones |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Organometallics |
Synthesis
A Networked NMR Spectrometer: Configuring a Shared Instrument  David Alonso, G. William Mutch, Peter Wong, Steven Warren, Bal Barot, Jan Kosinski, and Mark Sinton
Andrews University, Lake Michigan College, and Southwestern Michigan College established an educational consortium in southwest lower Michigan. An FT-NMR spectrometer was installed at AU and networked with the community colleges. Students and faculty from LMC and SMC visit Andrews on a regular basis to receive training and operate the NMR. The instrument is accessible via the Internet for data acquisition, processing, and transfer. The spectrometer has helped the consortium schools improve the quality of chemistry education, exposed students in chemistry courses to the concepts and techniques of modern NMR spectroscopy, and strengthened the collaboration between the chemistry faculty of the three schools. This article describes the NMR network configuration and the methodology for NMR data acquisition and distribution.
Alonso, David; Mutch, G. William; Wong, Peter; Warren, Steven; Barot, Bal; Kosinski, Jan; Sinton, Mark. J. Chem. Educ. 2005, 82, 1342.
Instrumental Methods |
NMR Spectroscopy
Introducing JCE ChemInfo: Organic  Hans J. Reich
JCE ChemInfo: Organic is a collection of Web pages containing information useful to teachers, researchers, and students in organic chemistry, biochemistry, and medicinal chemistry. The pages have been selected for ease of use, broad applicability, and quality of coverage. Topics will include structural information, organic reactions, nomenclature, physical properties, and spectroscopic data. These Web pages will be updated when possible and additional Web pages will be added as they become available.
Reich, Hans J. J. Chem. Educ. 2005, 82, 495.
Medicinal Chemistry |
Nomenclature / Units / Symbols |
NMR Spectroscopy
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
Investigation of Secondary Metabolites in Plants. A General Protocol for Undergraduate Research in Natural Products  Jonathan Cannon, Du Li, Steven G. Wood, Noel L. Owen, Alexandra Gromova, and Vladislav Lutsky
Typical experimental procedures to extract and isolate individual chemical constituents from a plant, suggestions for some simple procedures to test for selected bioactivity, and explain how the molecular structures of natural products may be determined using spectroscopic techniques.
Cannon, Jonathan; Li, Du; Wood, Steven G.; Owen, Noel L.; Gromova, Alexandra; Lutsky, Vladislav. J. Chem. Educ. 2001, 78, 1234.
Chromatography |
Natural Products |
NMR Spectroscopy |
Separation Science |
Plant Chemistry |
Molecular Properties / Structure |
Drugs / Pharmaceuticals |
Separation Science
WebSpectra: Online NMR and IR Spectra for Students  Craig A. Merlic, Barry C. Fam, and Michael M. Miller
WebSpectra is a World Wide Web site at UCLA through which organic chemistry students have convenient access to a library of problems in NMR and IR spectroscopy, ranging in difficulty from introductory to advanced. Students are presented with high-resolution spectra of unknown compounds in addition to the molecular formula.
Merlic, Craig A.; Fam, Barry C.; Miller, Michael M. J. Chem. Educ. 2001, 78, 118.
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
The FT-NMR Free Induction Decay Archive  Craig B. Fryhle, Dean A. Waldow, and J. Chris Bock
The on-line FTNMR Free Induction Decay (FID) Archive offers a free and readily accessible means by which students and faculty can obtain high field FTNMR data for processing on personal computers.
Fryhle, Craig B.; Waldow, Dean A.; Bock, J. Chris. J. Chem. Educ. 1997, 74, 442.
Fourier Transform Techniques |
NMR Spectroscopy
1H NMR, 13C NMR, and Mass Spectrometry of 1-Phenyl-1,2-Dihaloethanes  Joseph R. Gandler, Kevin W. Kittredge, and Oliver L. Saunders
Procedure to introduce organic chemistry students to spectroscopic methods for characterizing structure and calculating 13C NMR chemical shifts.
Gandler, Joseph R.; Kittredge, Kevin W.; Saunders, Oliver L. . J. Chem. Educ. 1995, 72, 855.
NMR Spectroscopy |
Mass Spectrometry
Charge Distribution in 1,1-Dicyano-2-Arylethenes: An Undergraduate Organic Experiment Utilizing the Knoevenagel Condensation and NMR Spectroscopy  Rowland, Alex T.
Organic synthesis illustrating the effect of ring substituents on an aromatic ring.
Rowland, Alex T. J. Chem. Educ. 1995, 72, 548.
Mechanisms of Reactions |
Synthesis |
NMR Spectroscopy |
Aromatic Compounds
3,9-Diaryl-2,4,8,10-Tetraoxaspiro[5.5]Undecanes by Rapid Microscale Preparation: Products with Instructive NMR Spectra  Clark, Thomas J.
Organic synthesis designed to produce product with an interesting structure to illustrate the effects of conformation and symmetry on NMR spectra; includes sample data and analysis.
Clark, Thomas J. J. Chem. Educ. 1995, 72, 375.
Synthesis |
NMR Spectroscopy |
Molecular Properties / Structure |
Synthesis |
Microscale Lab
Characterization of Low-Valent Nickel Complexes Stabilized by Bis(diphenylphosphino)methane Using Multinuclear NMR and IR Spectroscopy.  Trumpy, Valory A.; Oriskovich, Tracy A.; Gallaher, Thomas N.; Schreiner, Serge
Experimental method for the synthesis of zero-valent nickel complexes containing bis(diphenylphosphino)methane and identification through NMR and IR spectroscopy; sample data and analysis included.
Trumpy, Valory A.; Oriskovich, Tracy A.; Gallaher, Thomas N.; Schreiner, Serge J. Chem. Educ. 1995, 72, 357.
Metals |
NMR Spectroscopy |
IR Spectroscopy |
Atomic Properties / Structure |
Coordination Compounds |
Synthesis
Hands-on Use of High-Field NMR without the NMR  Swartz, James E.; Vojta, Gail M.; Erickson, Luther E.
The authors describe how and why they provide students with free induction decay data for an unknown and the students work on the unknown on a personal computer using spectral analysis software.
Swartz, James E.; Vojta, Gail M.; Erickson, Luther E. J. Chem. Educ. 1994, 71, 1069.
NMR Spectroscopy
Platinum(II) Chemistry Monitored by NMR Spectroscopy  Berry, David E.
Preparation and characterization of three platinum coordination compounds.
Berry, David E. J. Chem. Educ. 1994, 71, 899.
NMR Spectroscopy |
Synthesis |
Molecular Properties / Structure |
Coordination Compounds
FT NMR in the Instrumental Analysis Course: A Curriculum and a Laboratory  Fuson, Michael M.
Discussion of NMR in the context of instrumental analysis should focus on the nature of the FT NMR experiment; a procedure to support this discussion is provided.
Fuson, Michael M. J. Chem. Educ. 1994, 71, 126.
Fourier Transform Techniques |
NMR Spectroscopy |
Instrumental Methods
Oxidation of (R)-(+)-pulegone to (R)-(+)-3-methyladipic acid  Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F.
This paper addresses the demand for microscale laboratories and minimizes waste disposal while linking students to current organic chemistry research.
Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F. J. Chem. Educ. 1993, 70, 951.
Microscale Lab |
Undergraduate Research |
NMR Spectroscopy |
IR Spectroscopy
The Aqueous Ring-Opening Metathesis Polymerization of Furan-Maleic Anhydride Adduct: Increased Catalytic Activity Using a Recyclable Transition Metal Catalyst  Viswanathan, Tito; Jethmalani, Jagdish
ROMP offers an opportunity for an experiment that should fit well within the context of a laboratory in organic or polymer chemistry because the experimental yield can be characterized at the molecular level.
Viswanathan, Tito; Jethmalani, Jagdish J. Chem. Educ. 1993, 70, 165.
Polymerization |
NMR Spectroscopy
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.  Lee, Moses.
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.
Lee, Moses. J. Chem. Educ. 1992, 69, A172.
Microscale Lab |
Synthesis |
Aldehydes / Ketones |
Fourier Transform Techniques |
NMR Spectroscopy |
IR Spectroscopy |
Gas Chromatography |
Thin Layer Chromatography |
Instrumental Methods
1H NMR analysis of mixtures using internal standards: A quantitative experiment for the instrumental analysis laboratory  Peterson, Jim
Procedure to illustrate the general principles of quantitative NMR methodology.
Peterson, Jim J. Chem. Educ. 1992, 69, 843.
NMR Spectroscopy |
Quantitative Analysis |
Instrumental Methods
Identification of methylcyclohexanones by NMR  Gurst, Jerome E.
Distinguishing between three isomeric methylcyclohexanones using NMR.
Gurst, Jerome E. J. Chem. Educ. 1992, 69, 774.
Aldehydes / Ketones |
NMR Spectroscopy |
Diastereomers
Proton and carbon-13 NMR simulation of mixtures  Bell, Harold M.
133. Bits and pieces, 47. The program for simulation of spectra of mixtures can accommodate five components, each containing as many as six coupled nuclei.
Bell, Harold M. J. Chem. Educ. 1992, 69, 44.
NMR Spectroscopy
Isomerization of dimethyl maleate to dimethyl fumarate: An undergraduate experiment illustrating amine-catalyzed alkene isomerization, stereochemical principles, sublimation, and product identification by spectroscopic methods  Fryhle, Craig B.; Rybak, Carol M.; Pulley, Kenneth E.
An undergraduate experiment illustrating amine-catalyzed alkene isomerization, stereochemical principles, sublimation, and product identification by spectroscopic methods.
Fryhle, Craig B.; Rybak, Carol M.; Pulley, Kenneth E. J. Chem. Educ. 1991, 68, 1050.
Amines / Ammonium Compounds |
Diastereomers |
Gas Chromatography |
NMR Spectroscopy |
Fourier Transform Techniques |
Catalysis
NMR and the structure of D-glucose  Gurst, Jerome E.
A discussion of typical organic chemistry textbook treatment of NMR evidence of glucose structure.
Gurst, Jerome E. J. Chem. Educ. 1991, 68, 1003.
Carbohydrates |
NMR Spectroscopy
Proton-carbon chemical shift correlations  Macomber, Roger S.
The purpose of this paper is to examine the correlation between H-1 chemical shifts and C-13 chemical shifts in some detail.
Macomber, Roger S. J. Chem. Educ. 1991, 68, 284.
NMR Spectroscopy |
Instrumental Methods
The Fourier transform in chemistry--NMR: Part 4. Two-dimensional methods   Williams, Kathryn R.; King, Roy W.
This article will conclude the series with an examination of some of the most important types of two-dimensional spectra.
Williams, Kathryn R.; King, Roy W. J. Chem. Educ. 1990, 67, A125.
Fourier Transform Techniques |
NMR Spectroscopy
The Fourier transform in chemistry--NMR: A glossary of NMR terms   King, Roy W.; Williams, Kathryn R.
This glossary is a resource for anyone new to the literature of the Fourier transform.
King, Roy W.; Williams, Kathryn R. J. Chem. Educ. 1990, 67, A100.
Fourier Transform Techniques |
NMR Spectroscopy
The Fourier transform in chemistry--NMR: Part 3. Multiple-pulse experiments   Williams, Kathryn R.; King, Roy W.
This paper will provide the average chemist with an introduction to the information that can be gained from Fourier transform in chemistry.
Williams, Kathryn R.; King, Roy W. J. Chem. Educ. 1990, 67, A93.
Fourier Transform Techniques |
NMR Spectroscopy
A tandem Michael-aldol reaction sequence: An undergraduate research organic experiment  Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T.
A short reaction sequence that allows students to determine by spectroscopic methods the constitutions of and stereochemistry in the reaction products.
Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T. J. Chem. Educ. 1989, 66, 520.
Mechanisms of Reactions |
Spectroscopy |
Stereochemistry |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy
A simple computer program for the calculation of 13C-NMR chemical shifts  Olivieri, Alejandro C.; Kaufman, Teodoro S.
99. Bits and pieces, 39. The authors have written a computer program in which the characteristics of any given carbon atom are introduced as a succession of letter and numbers in a predetermined order.
Olivieri, Alejandro C.; Kaufman, Teodoro S. J. Chem. Educ. 1989, 66, 53.
NMR Spectroscopy
A step-by-step picture of pulsed (time domain) NMR  Schwartz, Leslie J.
The goal of this paper is to describe a pulsed NMR experiment that is as simple and pictorial as possible, but that stops short of dangerous generalizations and oversimplifications that can lead to contradictions.
Schwartz, Leslie J. J. Chem. Educ. 1988, 65, 752.
NMR Spectroscopy |
Magnetic Properties |
Instrumental Methods
The correlation of multinuclear spectral data for selectively fluorinated organic compounds  Everett, T. Stephen
This article presents a general discussion of fluorine-19 NMR spectroscopy, spectral data for two series of selectively fluorinated compounds, and the detailed correlation of multinuclear data for one specific compound.
Everett, T. Stephen J. Chem. Educ. 1988, 65, 422.
Aromatic Compounds |
NMR Spectroscopy |
Isotopes
Fourier transforms for chemists. Part 2. Fourier transforms in chemistry and spectroscopy  Glasser, L.
Considers the number of data channels in a spectrometer, the dispersive element as a delay device, the Fourier transform technique and its advantages, the fast Fourier transform technique and its advantages, and applications of these techniques to chemistry.
Glasser, L. J. Chem. Educ. 1987, 64, A260.
Fourier Transform Techniques |
Spectroscopy |
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy
A very brief, rapid, simple, and unified method for estimating carbon-13 NMR chemical shifts: The BS method  Shoulders, Hen; Welch, Steven C.
The "BS" method is so brief and simple that students can memorize and use it to interpret 13C NMR spectra with ease.
Shoulders, Hen; Welch, Steven C. J. Chem. Educ. 1987, 64, 915.
NMR Spectroscopy |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Instrumental Methods
The structure of bis(trimethylsilyl) amides: A multinuclear NMR project  Samples, Majorie S.; Yoder, Claude H.; Schaeffor, Charles D., Jr.
A project designed to illustrate the great value of observing nuclei other than 1H and 13C (29Si, 14N, 17O).
Samples, Majorie S.; Yoder, Claude H.; Schaeffor, Charles D., Jr. J. Chem. Educ. 1987, 64, 177.
Molecular Properties / Structure |
Amides |
NMR Spectroscopy
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
Prediction of the appearance of non-first-order proton NMR spectra   Macomber, Roger S.
Undergraduates generally become equipped only to handle only first-order coupling patterns. This means that they have a hard time understanding a real spectra. By scaffolding students through the synthesis level of Bloom's taxonomy, students can work toward a more expert level of understanding.
Macomber, Roger S. J. Chem. Educ. 1983, 60, 525.
NMR Spectroscopy |
Aldehydes / Ketones |
Learning Theories
Structure elucidation of a natural product  Letcher, Roy M.
This experiment is an attempt to simulate a real-life structure elucidation problem through the isolation, characterization, and chemical transformation of an unknown naturally occurring monoterpene, with extensive use being made of spectroscopy and aided by biogenetic considerations.
Letcher, Roy M. J. Chem. Educ. 1983, 60, 79.
Natural Products |
Separation Science |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Reactions
Carbon-13, Nuclear Magnetic Resonance Spectroscopy, 2nd Edition (Levy, George C.; Lichter, Robert L.; Nelson, Gordon L.)  Gust, Devens
Theory and application of carbon-13 NMR.
Gust, Devens J. Chem. Educ. 1982, 59, A29.
Isotopes |
NMR Spectroscopy
Hydrogen bonding and proton transfer  Joesten, Melvin D.
A review of the types of hydrogen bonds and discussion of the application of spectroscopic and diffraction methods to studies of moderate and strong hydrogen bonds.
Joesten, Melvin D. J. Chem. Educ. 1982, 59, 362.
Hydrogen Bonding |
Acids / Bases |
IR Spectroscopy |
NMR Spectroscopy |
Spectroscopy
High resolution NMR theory and chemical applications, 2nd edition (Becker, Edwin D.)  Hayes, Robert G.

Hayes, Robert G. J. Chem. Educ. 1981, 58, A226.
NMR Spectroscopy
Phosphorus coupling in 13C and 1H NMR  Krudy, George A.; Macomber, Roger S.
Provides a variety of spectra of organophosphorus compounds that exhibit informative 1H and 13C spectra.
Krudy, George A.; Macomber, Roger S. J. Chem. Educ. 1979, 56, 109.
Spectroscopy |
NMR Spectroscopy
Interpretation of a 13C magnetic resonance spectrum  Dorn, Harry C.; Kingston, David G. I.; Simpers, Bruce R.
The analysis and interpretation of the cmr spectrum of bis-(2-ethylhexyl) phthalate (I) provides an instructive and simple example of the utility of this technique. [Original feature title: Interpretative Experiments.]
Dorn, Harry C.; Kingston, David G. I.; Simpers, Bruce R. J. Chem. Educ. 1976, 53, 584.
Nuclear / Radiochemistry |
Isotopes |
NMR Spectroscopy
The preparation and spectral analysis of toluene-a[alpha]-d  Ellis, Jerry W.; Buchanan, David H.
Provides dramatic visual evidence of the changes in IR, NMR, and mass spectra upon substitution of deuterium for hydrogen in a simple molecule.
Ellis, Jerry W.; Buchanan, David H. J. Chem. Educ. 1975, 52, 265.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Spectroscopy
Spectrometric identification of organic compounds  Silverstein, Robert M.; Bassler, G. Clayton
Presents a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy, along with specific examples of unknowns and their spectra,
Silverstein, Robert M.; Bassler, G. Clayton J. Chem. Educ. 1962, 39, 546.
Spectroscopy |
Qualitative Analysis |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy |
UV-Vis Spectroscopy
Nuclear magnetic resonance spectroscopy  Roberts, J. D.
Presents nuclear magnetic spectroscopy in a manner that makes it suitable for presentation to undergraduates.
Roberts, J. D. J. Chem. Educ. 1961, 38, 581.
NMR Spectroscopy |
Spectroscopy