TIGER

Journal Articles: 52 results
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography  Benjamin T. Burlingham and Joseph C. Rettig
Presents a microscale experiment in which cyclohexene is dihydroxylated under three sets of conditions and the products determined through thin-layer chromatography. Teams of students evaluate proposed mechanisms for each dihydroxylation in light of the data collected.
Burlingham, Benjamin T.; Rettig, Joseph C. J. Chem. Educ. 2008, 85, 959.
Addition Reactions |
Alkenes |
Diastereomers |
Mechanisms of Reactions |
Microscale Lab |
Stereochemistry |
Synthesis |
Thin Layer Chromatography
Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines  Damian A. Allen, Anthony E. Tomaso, Jr., Owen P. Priest, David F. Hindson, and Jamie L. Hurlburt
In this experiment, teams of students are given an optically-pure amine of known structure but unknown stereochemistry. Different teams derivatize samples of the amine with (R) and (S) conformations of Mosher's acid chloride. The resulting diastereomers are analyzed by NMR to determine the absolute configuration of the initial, unknown amine.
Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L. J. Chem. Educ. 2008, 85, 698.
Amides |
Chirality / Optical Activity |
Chromatography |
Diastereomers |
Microscale Lab |
NMR Spectroscopy |
Stereochemistry
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Dynamic Stereochemistry: A Simple Approach To Delineating Relative Configuration  Dipak K. Mandal
A simple approach is presented for delineating relative stereochemistry of the product in reactions involving stereogenic center(s).
Mandal, Dipak K. J. Chem. Educ. 2007, 84, 274.
Chirality / Optical Activity |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry
Precision in Stereochemical Terminology  LeRoy G. Wade, Jr.
This article recommends that instructors use the precise terms asymmetric carbon atom and chirality center when they apply, and use the broader term stereocenter only when there is a need to include stereogenic atoms that are not chirality centers.
Wade, LeRoy G., Jr. J. Chem. Educ. 2006, 83, 1793.
Chemical Technicians |
Diastereomers |
Enantiomers |
Stereochemistry |
Nomenclature / Units / Symbols |
Chirality / Optical Activity
The Step-by-Step Robinson Annulation of Chalcone and Ethyl Acetoacetate. An Advanced Undergraduate Project in Organic Synthesis and Structural Analysis  Lionel Delaude, Jean Grandjean, and Alfred F. Noels
The Robinson annulation is a three-step process involving a Michael addition followed by an internal aldol condensation and a dehydration. It is possible to stop the reaction after every step and to isolate the three products, allowing students to confirm the validity of the stepwise mechanism and develop a more thorough understanding of the whole process.
Delaude, Lionel; Grandjean, Jean; Noels, Alfred F. J. Chem. Educ. 2006, 83, 1225.
Catalysis |
Chirality / Optical Activity |
Conformational Analysis |
Diastereomers |
IR Spectroscopy |
Synthesis |
NMR Spectroscopy |
Stereochemistry
The Addition of Bromine to 1,2-Diphenylethene   Judith C. Amburgey-Peters and LeRoy W. Haynes
We investigated the reaction of (Z)-1,2-diphenylethene (cis-stilbene) with various brominating reagents and solvents following directions in standard organic chemistry manuals. We were particularly interested in learning which combination of brominating reagent and solvent gave the best yield of (d,l)-1,2-dibromo-1,2-diphenylethane without the formation of significant amounts of meso-1,2-dibromo-1,2-diphenylethane, which is essentially the sole product from the reaction of bromine with (E)-1,2-diphenylethene (trans-stilbene). Based on the results from the standard preparatory methods, some permutations of solvent and brominating reagent were tried.
Amburgey-Peters, Judith C.; Haynes, LeRoy W. J. Chem. Educ. 2005, 82, 1051.
Addition Reactions |
Alkenes |
Carbocations |
Diastereomers |
Enantiomers |
Mechanisms of Reactions |
Stereochemistry
An Engaging Illustration of the Physical Differences among Menthol Stereoisomers  Edward M. Treadwell and T. Howard Black
The differences and similarities in the physical behavior of enantiomers and diastereomers can easily be demonstrated using the commercial stereoisomers (-)-menthol, (+)-menthol, (+)-isomenthol, and (+)-neomenthol. Thin-layer chromatography and melting point determinations clearly show that diastereomers have different physical properties from enantiomers and each other, but that enantiomers have identical physical properties in achiral environments. By obtaining a mixed melting point and optical rotations the difference in enantiomers can be observed.
Treadwell, Edward M.; Black, T. Howard. J. Chem. Educ. 2005, 82, 1046.
Chirality / Optical Activity |
Stereochemistry |
Thin Layer Chromatography |
Diastereomers |
Enantiomers |
Physical Properties
Enantiomeric Resolution of (±)-Mandelic Acid by (1R,2S)-(–)-Ephedrine. An Organic Chemistry Laboratory Experiment Illustrating Stereoisomerism  Marsha R. Baar and Andrea L. Cerrone-Szakal
There has been an increasing need, particularly in the pharmaceutical industry, to prepare chiral substances in single-isomer form. A chiral technique that makes an excellent introductory organic chemistry experiment is enantiomeric resolution. The classical resolution of ()-mandelic acid using the chiral amine, (1R,2S)-()-ephedrine, was adapted for use in introductory organic chemistry lab curricula.
Baar, Marsha R.; Cerrone-Szakal, Andrea L. J. Chem. Educ. 2005, 82, 1040.
Acids / Bases |
Chirality / Optical Activity |
Separation Science |
Stereochemistry |
Diastereomers |
Enantiomers
Enantiomeric and Diastereoisomeric Relationships: A Practical Approach  V. Durieu, G. Martiat, M. Ch. Vandergeten, F. Pirsoul, F. Toubeau, and Agnès Van Camp
An experiment in organic chemistry in which the students prepare, purify, and characterize optical isomers. The three optical isomers of the bisoxalamides obtained by the reaction of racemic 1-phenylethylamine with diethyloxalate are separable by flash chromatography into the racemic mixture of (R,R) + (S,S) oxalamides and the (R,S) meso compound.
Durieu, V.; Martiat, G.; Vandergeten, M. Ch.; Pirsoul, F.; Toubeau, F.; Van Camp, Agnès. J. Chem. Educ. 2000, 77, 752.
Molecular Properties / Structure |
Stereochemistry |
Separation Science |
Enantiomers |
Diastereomers |
Chirality / Optical Activity |
Synthesis
Synthesis and Separation of a Diastereomeric Sulfonium Ion by Capillary Zone Electrophoresis  Francisco A. Valenzuela, Thomas K. Green, and Darwin B. Dahl
An undergraduate laboratory exercise utilizing capillary zone electrophoresis in the analysis of the student-synthesized sulfonium ion sec-butylmethyl-p-tolylsulfonium tetrafluoroborate is presented. The sulfonium ion contains two stereogenic centers and thereby yields four optical isomers.
Valenzuela, Francisco A.; Green, Thomas K.; Dahl, Darwin B. J. Chem. Educ. 1998, 75, 1590.
Electrophoresis |
Stereochemistry |
NMR Spectroscopy |
Diastereomers |
Separation Science |
Synthesis
Stereowordimers-Minding Your P's and Q's  Edward G. Neeland
The use of words having different colored sides is a excellent way to introduce stereochemical concepts that might not be easily grasped when using molecular examples. We have found that concepts such as enantiomers, diastereomers, identical molecules, chirality, achirality, mirror planes of symmetry, and internal planes of symmetry are readily understood by students when using stereowordimer examples.
Neeland, Edward G. J. Chem. Educ. 1998, 75, 1573.
Stereochemistry |
Diastereomers |
Enantiomers |
Molecular Properties / Structure
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
1H NMR Analysis of R/S Ibuprofen by the Formation of Diasteriomeric Pairs: Microscale Stereochemistry Experiment for the Undergraduate Organic Laboratory  Stephanie E. Sen and Keith S. Anliker
A multicomponent experiment is described which elucidates the chirality of the commercially available analgesic, ibuprofen.
Stephanie E. Sen and Keith S. Anliker. J. Chem. Educ. 1996, 73, 569.
Stereochemistry |
Enantiomers |
Drugs / Pharmaceuticals |
Diastereomers |
Gas Chromatography |
NMR Spectroscopy
The stereochemistry of commercial 2,6-dimethylcyclohexanone: An application of capillary gas chromatography   Garner, Charles M.
One example of how capillary gas chromatography can be employed in undergraduate organic laboratories.
Garner, Charles M. J. Chem. Educ. 1993, 70, A310.
Gas Chromatography |
Microscale Lab |
Laboratory Equipment / Apparatus |
Aldehydes / Ketones |
Diastereomers |
Stereochemistry
The enumeration of isomers-With special reference to the stereoisomers of decane  Whyte, J. R. C.; Clugston, M. J.
Structural isomers predicted through algorithms.
Whyte, J. R. C.; Clugston, M. J. J. Chem. Educ. 1993, 70, 874.
Alkanes / Cycloalkanes |
Stereochemistry |
Diastereomers
The square knot and the granny knot: An analogy for diastereomers.  Tavernier, Dirk.
Few of the diastereomorphs generated by joining two man-made chiral objects have different names; the author is aware of just one example - the square knot and the granny knot.
Tavernier, Dirk. J. Chem. Educ. 1992, 69, 627.
Diastereomers |
Molecular Properties / Structure |
Stereochemistry |
Chirality / Optical Activity
An introduction to fullerene structures: Geometry and symmetry.  Boo, W. O. J.
The formidable task of organizing the fullerenes can be simplified greatly by categorizing them by their symmetries.
Boo, W. O. J. J. Chem. Educ. 1992, 69, 605.
Alkenes |
Molecular Properties / Structure |
Group Theory / Symmetry |
Stereochemistry |
Diastereomers
The synthesis of E-beta-bromostyrene: An experiment illustrating the use of IR bending modes to distinguish E and Z isomers and the concept of kinetic and thermodynamic controlled reactions.  Strom, Laura A.; Anderson, James R.; Gandler, Joseph R.
An experiment illustrating the concept of thermodynamic and kinetically controlled reactions to produce E and Z isomers (respectively); the use of IR to distinguish E and Z isomers; and the different properties of E and Z isomers (only the E isomer has a pleasant odor).
Strom, Laura A.; Anderson, James R.; Gandler, Joseph R. J. Chem. Educ. 1992, 69, 588.
Synthesis |
IR Spectroscopy |
Stereochemistry |
Kinetics |
Thermodynamics |
Alkenes |
Diastereomers |
Mechanisms of Reactions |
Molecular Properties / Structure
The stereochemistry of additions to trans-anethole  McGahey, Lawrence
Trans-anethole is brominated with pyridinium bromide perbromide in dichloromethane.
McGahey, Lawrence J. Chem. Educ. 1990, 67, 554.
Addition Reactions |
Stereochemistry |
Mechanisms of Reactions |
Alkenes |
Diastereomers |
Enantiomers
Photochemical and thermal isomerization of trans- and cis-1,2-dibenzoylethylene: A microscale approach  Klemm, Dennis V; Tuncay, Atilla
Both conversions are analyzed through thin layer chromatography.
Klemm, Dennis V; Tuncay, Atilla J. Chem. Educ. 1989, 66, 519.
Photochemistry |
Stereochemistry |
Microscale Lab |
Thin Layer Chromatography |
Diastereomers
The interconversion of cis and trans isomers  McGinn, Clifford J.; Wheatley, William B.
Trans-alkene oxides are converted to cis-alkenes on treatment with tributylphosphine, yet this reaction does not appear in most organic textbooks.
McGinn, Clifford J.; Wheatley, William B. J. Chem. Educ. 1989, 66, 486.
Stereochemistry |
Diastereomers |
Alkenes |
Mechanisms of Reactions
Stereochemistry of cyclic hydrocarbons   Perkins, Robert R.
The topic of stereochemistry always poses great difficulties for many students in introductory organic chemistry. The following problems can be used as a tutorial question after having introduced the various terms associated with stereochemistry. The question requires skills at the applications level in the Bloom taxonomy.
Perkins, Robert R. J. Chem. Educ. 1988, 65, 860.
Alkanes / Cycloalkanes |
Chirality / Optical Activity |
Stereochemistry |
Diastereomers |
Constitutional Isomers
A synthesis of chrysanthemic ester: An undergraduate experiment  Kelly, Lawrence F.
Procedure for producing a mixture of cis- and trans-ethyl chrysanthemates.
Kelly, Lawrence F. J. Chem. Educ. 1987, 64, 1061.
Esters |
Synthesis |
Catalysis |
Diastereomers |
Stereochemistry
A Wittig reaction that gives only one stereoisomer  Silversmith, Ernest F.
This popular experiment can be extended to illustrate the use of spectroscopy to elucidate stereochemistry.
Silversmith, Ernest F. J. Chem. Educ. 1986, 63, 645.
Stereochemistry |
Diastereomers |
Separation Science
Stress the twofold axis of the threo isomer  Tavernier, D.
The author weighs in on the the controversy of the threo and erythro nomenclature.
Tavernier, D. J. Chem. Educ. 1986, 63, 511.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers
Relative activating ability of various ortho, para-directors  Zaezek, Norbert M.; Tyszkiewicz, Robert B.
The authors saw a need to develop an experiment for students to comprehensively learn about electrophilic aromatic substitution.
Zaezek, Norbert M.; Tyszkiewicz, Robert B. J. Chem. Educ. 1986, 63, 510.
Aromatic Compounds |
Reactions |
Diastereomers |
Stereochemistry
The Wittig reaction in the undergraduate organic laboratory  Warner, John C.; Anastas, Paul T.; Anselme, Jean-Pierre
Using phase-transfer catalysis to prepare cis- and trans-stilbenes from the Wittig condensation of benzaldehyde.
Warner, John C.; Anastas, Paul T.; Anselme, Jean-Pierre J. Chem. Educ. 1985, 62, 346.
Mechanisms of Reactions |
Synthesis |
Catalysis |
Diastereomers |
Stereochemistry
Determination of stereochemical relationships  Ayorinde, Folahan O.
A sequence of steps to enable students to arrive with relative ease at correct stereochemical relationships.
Ayorinde, Folahan O. J. Chem. Educ. 1985, 62, 297.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Diastereomers
Structural isomer identification via NMR: A nuclear magnetic resonance experiment for organic, analytical, or physical chemistry  Szafran, Zvi
This experiment examines the ability of NMR to distinguish between structural isomers via resonance multiplicities and chemical shifts.
Szafran, Zvi J. Chem. Educ. 1985, 62, 260.
NMR Spectroscopy |
Stereochemistry |
Diastereomers
Models for illustrating chirality at two centers  Feldman, Martin R.
This note suggests common objects that can be used as models to illustrate chirality at two centers, and to introduce the concepts of diastereomers and the meso configuration.
Feldman, Martin R. J. Chem. Educ. 1984, 61, 1050.
Molecular Properties / Structure |
Molecular Modeling |
Chirality / Optical Activity |
Diastereomers |
Stereochemistry |
Enantiomers
Examples of diastereomers  Bell, William
Using right- and left-handed doors as examples of familiar objects that exhibit enantiomerism.
Bell, William J. Chem. Educ. 1984, 61, 901.
Stereochemistry |
Diastereomers |
Molecular Properties / Structure |
Chirality / Optical Activity
Aromatic substitution reactions: when you've said ortho, meta, and para you haven't said it all  Traynham, James G.
The author presents a range of examples for nucleophilic, electrophilic, and free-radical reactions where the ipso is an important, predominant, or even exclusive site of reaction.
Traynham, James G. J. Chem. Educ. 1983, 60, 937.
Nucleophilic Substitution |
Electrophilic Substitution |
Free Radicals |
Diastereomers |
Stereochemistry |
Reactions
An experiment on isomerism in metal-amino acid complexes: Preparation and characterization of cobalt(III) complexes containing N-bonded monodentate, O-bonded monodentate and N,O-chelated glycine ligands  Harrison, R. Graeme; Nolan, Kevin B.
Synthesis of three cobalt(III) complexes that illustrate three possible modes of bonding of glycine to a metal ion, as well as methods for distinguishing among the products.
Harrison, R. Graeme; Nolan, Kevin B. J. Chem. Educ. 1982, 59, 1054.
Stereochemistry |
Amino Acids |
Coordination Compounds |
Synthesis |
Diastereomers |
IR Spectroscopy |
Crystal Field / Ligand Field Theory
The preparation and characterization of the geometric isomers of a coordination complex: cis- and trans-bis-glycinato copper(II) monohydrates  O'Brien, Paul
The preparation of the cis and trans isomers of the kinetically labile bis glycinato copper(II) has a number of advantages including its facility, economy, ready theoretical interpretation, and biological relevance.
O'Brien, Paul J. Chem. Educ. 1982, 59, 1052.
Synthesis |
Stereochemistry |
Diastereomers |
IR Spectroscopy |
Coordination Compounds |
Crystal Field / Ligand Field Theory
An easily conducted free radical substitution for organic chemistry courses  Pavlis, Robert R.
The photobromination of 1,2-diphenylethane into its dibromo derivative, (2R) (3S) 1,2-dibromo-1,2-diphenylethane.
Pavlis, Robert R. J. Chem. Educ. 1982, 59, 658.
Free Radicals |
Reactions |
Molecular Properties / Structure |
Stereochemistry |
Diastereomers |
Photochemistry |
Alkanes / Cycloalkanes |
Aromatic Compounds
Diastereomers, geometric isomers, and rotation about bonds  McCullough, John J.
A simple and consistent introduction to the stereochemistry of carbon, diastereomers, and geometric isomers.
McCullough, John J. J. Chem. Educ. 1982, 59, 37.
Stereochemistry |
Diastereomers |
Molecular Properties / Structure
A helpful stereochemical instructional tool  England, Don
The figure found in this note has been helpful in aiding student understanding of stereochemistry.
England, Don J. Chem. Educ. 1981, 58, 31.
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Diastereomers |
Enantiomers
Stereochemical nonequivalence of ligands and faces (heterotopicity)  Eliel, Ernest L.
Reviews the concepts associated with stereochemical non-equivalence (heterotopicity).
Eliel, Ernest L. J. Chem. Educ. 1980, 57, 52.
Stereochemistry |
Enantiomers |
Diastereomers |
Constitutional Isomers |
Group Theory / Symmetry
Optical illusions in drawings of cyclohexane derivatives  Feldman, Martin R.
An optical illusion in the representation of chair cyclohexanes.
Feldman, Martin R. J. Chem. Educ. 1979, 56, 659.
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers |
Alkanes / Cycloalkanes
Computation of the number of isomers of coordination compounds containing different monodentate ligands  Chung, Chung-Sun

Chung, Chung-Sun J. Chem. Educ. 1979, 56, 398.
Chemometrics |
Molecular Properties / Structure |
Coordination Compounds |
Stereochemistry |
Diastereomers
Identification of geometrical isomers of the cobalt(III)-iminodiacetate system: An inorganic experiment  Lawrance, Geoffrey A.; Rix, Colin J.
Procedure for the preparation and isolation of two differently colored geometric isomers of Co(IDA)2- and their characterization using pmr and visible spectroscopy.
Lawrance, Geoffrey A.; Rix, Colin J. J. Chem. Educ. 1979, 56, 211.
Stereochemistry |
Diastereomers |
Coordination Compounds |
Spectroscopy |
UV-Vis Spectroscopy
Schemes and transformations in the (CH)8 series. The "valence isomers" of cyclooctatetraene  Smith, Leverett R.
The authors provide a scheme for deriving valence isomers.
Smith, Leverett R. J. Chem. Educ. 1978, 55, 569.
Aromatic Compounds |
Enantiomers |
Stereochemistry |
Diastereomers
Selectivity and specificity in organic reactions  Ault, Addison
Distinguishes between various forms of selectivity and specificity (e.g. the us of and differences between stereoselective and stereospecific).
Ault, Addison J. Chem. Educ. 1977, 54, 614.
Reactions |
Stereochemistry |
Diastereomers |
Enantiomers |
Nomenclature / Units / Symbols
Experiments with electrophilic aromatic substitution reactions  Cox, B.; Kubler, D. G.; Wilson, C. A.
Comparing the bromination and nitration of benzene.
Cox, B.; Kubler, D. G.; Wilson, C. A. J. Chem. Educ. 1977, 54, 379.
Reactions |
Aromatic Compounds |
Electrophilic Substitution |
Stereochemistry |
Diastereomers
Calculation of the number of cis-trans isomers in a "symmetric" polyene  Har-zvi, Ron; Wittes, Janet Turk
A problem in which students are to derive a general expression for the number of cis-trans isomers in a "symmetric" straight chain polyene when there are n double bonds.
Har-zvi, Ron; Wittes, Janet Turk J. Chem. Educ. 1975, 52, 545.
Stereochemistry |
Molecular Properties / Structure |
Diastereomers |
Alkenes
Photochemical and thermal interconversion of cis and trans isomers. An organic laboratory experiment  Silversmith, Ernest F.; Dunson, Fay C.
The photoisomerization of trans-1,4-diphenyl-2-butene-1,4-dione to the cis isomer.
Silversmith, Ernest F.; Dunson, Fay C. J. Chem. Educ. 1973, 50, 568.
Photochemistry |
Molecular Properties / Structure |
Diastereomers |
Stereochemistry
On diastereomeric meso compounds  Andrist, A. Harry
A table of the number of diastereomeric meso diacids possible from the oxidation of carbohydrates containing different numbers of asymmetric carbon atoms.
Andrist, A. Harry J. Chem. Educ. 1972, 49, 551.
Oxidation State |
Stereochemistry |
Diastereomers |
Carbohydrates
A modern look at Markovnikov's rule and the peroxide effect  Isenberg, Norbert; Grdinic, Marcel
Presents a "carbonium ion" definition of Markovnikov's Rule and examines the peroxide effect.
Isenberg, Norbert; Grdinic, Marcel J. Chem. Educ. 1969, 46, 601.
Mechanisms of Reactions |
Stereochemistry |
Diastereomers |
Free Radicals |
Alkenes |
Addition Reactions
Conformational analysis and chemical reactivity  Idoux, John P.
Uses acyclic chemistry to illustrate important concepts regarding conformational analysis and chemical reactivity.
Idoux, John P. J. Chem. Educ. 1967, 44, 495.
Conformational Analysis |
Stereochemistry |
Diastereomers
The unraveling of geometric isomerism and tautomerism  Ihde, Aaron J.
Examines the work of Van't Hoff in unraveling isomerism due to carbon-carbon double bonds using fumaric and maleic acids as exemplars.
Ihde, Aaron J. J. Chem. Educ. 1959, 36, 330.
Molecular Properties / Structure |
Stereochemistry |
Diastereomers