TIGER

Journal Articles: 50 results
Hydration of Acetylene: A 125th Anniversary  Dmitry A. Ponomarev and Sergey M. Shevchenko
The discovery the hydration of alkynes catalyzed by mercury ions by Mikhail Kucherov made possible industrial production of acetaldehyde from acetylene and had a profound effect on the development of industrial chemistry in the 1920th centuries.
Ponomarev, Dmitry A.; Shevchenko, Sergey M. J. Chem. Educ. 2007, 84, 1725.
Addition Reactions |
Aldehydes / Ketones |
Alkynes |
Catalysis |
Industrial Chemistry |
Reactions
A Green Alternative to Aluminum Chloride Alkylation of Xylene  Grigoriy A. Sereda and Vikul B. Rajpara
Presents a simple laboratory experiment that introduces organic chemistry students to the basic principles of green technologies, such as lack of toxic or bulk byproducts, nontoxicity, and reusability of the catalyst.
Sereda, Grigoriy A.; Rajpara, Vikul B. J. Chem. Educ. 2007, 84, 692.
Alkylation |
Green Chemistry |
Catalysis |
NMR Spectroscopy |
Reactions |
Synthesis
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes  William D. Sharpless, Peng Wu, Trond Vidar Hansen, and James G. Lindberg
In keeping with the defining aspects of click chemistry, this reaction is high-yielding, requires no chromatography, is easily monitored by TLC, and displays distinct peaks in both IR and 1H-NMR. Virtually all products precipitate, and with just a few different starting blocks, every student, or pair of lab partners, can produce a unique "clicked" compound.
Sharpless, William D.; Wu, Peng; Hansen, Trond Vidar; Lindberg, James G. J. Chem. Educ. 2005, 82, 1833.
Catalysis |
Heterocycles |
Alkynes |
IR Spectroscopy |
NMR Spectroscopy |
Reactions |
Thin Layer Chromatography |
Synthesis
Spiral Puzzle for Organic Chemistry Students  Ender Erdik
Puzzle to review organic reactions and their reagents.
Erdik, Ender. J. Chem. Educ. 2003, 80, 428.
Synthesis |
Learning Theories |
Enrichment / Review Materials |
Addition Reactions |
Alkylation |
Electrophilic Substitution |
Elimination Reactions |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions |
Grignard Reagents
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Dendrimers: Branching Out of Polymer Chemistry  Eric E. Simanek and Sergio O. Gonzalez
Addresses synthetic concepts surrounding dendrimers including the use of protecting groups, functional group interconversions, and convergent and divergent synthetic strategies.
Simanek, Eric E.; Gonzalez, Sergio O. J. Chem. Educ. 2002, 79, 1222.
Materials Science |
Synthesis |
Molecular Properties / Structure |
Addition Reactions |
Aromatic Compounds |
Alkylation |
Nucleophilic Substitution
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Further Comments upon the Electrophilic Addition to Alkynes: A Response to Criticism from Professor Thomas T.Tidwell  Hilton M. Weiss
This paper responds to the preceding article by Professor T. Tidwell in which he provides arguments for vinyl cations being an intermediate in most electrophilic additions to alkynes.
Weiss, Hilton M. J. Chem. Educ. 1996, 73, 1082.
Addition Reactions |
Alkynes |
Mechanisms of Reactions
The Electrophilic Addition to Alkynes Revisited  Thomas T. Tidwell
A recent claim that vinyl cations are not the predominant intermediates in the electrophilic addition to alkynes is disputed.
Tidwell, Thomas T. J. Chem. Educ. 1996, 73, 1081.
Addition Reactions |
Alkynes |
Mechanisms of Reactions
A Simple and Safe Catalytic Hydrogenation of 4-Vinylbenzoic Acid  De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G.
An alternative procedure to catalytic hydrogenation is catalytic transfer hydrogenation. In this technique, the reduction of an organic compound is achieved with the aid of a donor substance in the presence of a catalyst.
De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G. J. Chem. Educ. 1994, 71, 992.
Catalysis |
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes
The Hydration of 1-Hexene and 1-Hexyne  Touchette, Kim M.; Weiss, Hilton M.; Rozenberg, Daniel
The sulfuric acid-catalyzed hydration of 1-hexene and 1-hexyne.
Touchette, Kim M.; Weiss, Hilton M.; Rozenberg, Daniel J. Chem. Educ. 1994, 71, 534.
Alkynes |
Alkenes |
Alcohols |
Catalysis |
Synthesis
A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas  Cox, Marilyn Blagg
Reacting calcium carbide with water to generate ethyne.
Cox, Marilyn Blagg J. Chem. Educ. 1994, 71, 253.
Alkynes |
Reactions
GC/MS experiments for the organic laboratory: II. Friedel-Crafts alkylation of p-xylene   Novak, Michael; Heinrich, Julie
Experiments for the sophomore organic chemistry laboratory that make use of capillary gas chromatography (GC) and mass spectroscopy(MS), teach the use of MS fragmentation patterns in structure determination, and also illustrate the effects of reaction conditions on the product distribution in well-known reactions.
Novak, Michael; Heinrich, Julie J. Chem. Educ. 1993, 70, A150.
Mass Spectrometry |
Gas Chromatography |
Aromatic Compounds |
Alkylation
The electrophilic addition to alkynes  Weiss, Hilton M.
Electrophilic additions to alkynes traditionally do not receive as much attention in organic textbooks as electrophilic addition to alkenes.
Weiss, Hilton M. J. Chem. Educ. 1993, 70, 873.
Addition Reactions |
Alkynes
A fast, easy-to-run and safe ene reaction between benzyne and [beta]-pinene  Drouin, Jacques; Jacq, Philippe
A fast, easy-to-run and safe ene reaction between benzyne and [beta]-pinene.
Drouin, Jacques; Jacq, Philippe J. Chem. Educ. 1993, 70, 863.
Alkenes |
Aromatic Compounds |
Alkynes |
Reactions
Hydrochlorination of 1-propynylbenzene on alumina: A demonstration of kinetic and thermodynamic control using HCl produced in situ and molecular modeling  Pienta, Norbert J.; Crawford, Scott D.; Kropp, Paul J.
A hydrochlorination experiment that provides sufficient latitude in choice of conditions.
Pienta, Norbert J.; Crawford, Scott D.; Kropp, Paul J. J. Chem. Educ. 1993, 70, 682.
Molecular Modeling |
Alkynes |
Alkenes |
Gas Chromatography |
NMR Spectroscopy |
Microscale Lab
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
A simple preparation of 1,4-di-tert-butylbenzene without AICI3: An undergraduate organic chemistry experiment  Castrillon, Jose
Alkylation of benzene with tert-butyl chloride and aluminum chloride has been very popular in first year organic chemistry courses, but it releases HCl gas fumes. This problem has lead to a replacement preparation using tert-butyl acetate, which provides better yield and eliminated the fumes.
Castrillon, Jose J. Chem. Educ. 1991, 68, 793.
Alkylation |
Aromatic Compounds |
Alcohols |
Microscale Lab
Friedel-Crafts alkylation products   Kolb, Kenneth E.; Field, Kurt W.
Comments on how two recent papers could compliment one and another.
Kolb, Kenneth E.; Field, Kurt W. J. Chem. Educ. 1991, 68, 86.
Alkylation |
Gas Chromatography |
Diastereomers |
Aromatic Compounds
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
Keeping track of directions of atomic orbitals: A useful device in organic chemistry  Talaty, Erach R.
The usefulness of keeping track of the directions of atomic orbitals.
Talaty, Erach R. J. Chem. Educ. 1990, 67, 655.
Atomic Properties / Structure |
Alkenes |
Alkynes
The palladium-catalyzed oxidation of 2-vinylnaphthalene: A microscale organic synthesis experiment   Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R.
The Wacker oxidation experiment as described is cost-efficient due to the small scale employed, and is a valuable addition to the undergraduate organic curriculum.
Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R. J. Chem. Educ. 1990, 67, 340.
Microscale Lab |
Synthesis |
Alkynes |
Aldehydes / Ketones |
Oxidation / Reduction
Friedel Crafts alkylation using elemental aluminum catalyst: An undergraduate laboratory experiment  Meeks, B. Spencer; Lucas, Anita R.
This experiment uses aluminum metal as a catalyst for the synthesis of sec-butyltoluene by Friedel-Crafts alkylation of toluene.
Meeks, B. Spencer; Lucas, Anita R. J. Chem. Educ. 1989, 66, 176.
Alkylation |
Catalysis |
Synthesis
Alkylation of chlorobenzene: An experiment illustrating kinetic versus thermodynamic control  Kolb, Kenneth E.; Standard, Jean M.; Field, Kurt W.
An experiment illustrating kinetic versus thermodynamic control through the alkylation of chlorobenze.
Kolb, Kenneth E.; Standard, Jean M.; Field, Kurt W. J. Chem. Educ. 1988, 65, 367.
Alkylation |
Aromatic Compounds |
Gas Chromatography
A very brief, rapid, simple, and unified method for estimating carbon-13 NMR chemical shifts: The BS method  Shoulders, Hen; Welch, Steven C.
The "BS" method is so brief and simple that students can memorize and use it to interpret 13C NMR spectra with ease.
Shoulders, Hen; Welch, Steven C. J. Chem. Educ. 1987, 64, 915.
NMR Spectroscopy |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Instrumental Methods
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
The synthesis of 4,4'-di-tertbutyl biphenyl: a sophomore organic chemistry experiment  Horne, Deane A.
A brief note providing a sequence of experiments for an introductory organic course that is inexpensive and does not pose a health hazard.
Horne, Deane A. J. Chem. Educ. 1983, 60, 246.
Acids / Bases |
Aromatic Compounds |
Catalysis |
Alkylation |
Solutions / Solvents
3-Ketoesters by malonic synthesis  Pollet, Patrick L.
This essay reviews a synthesis strategy.
Pollet, Patrick L. J. Chem. Educ. 1983, 60, 244.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones |
Alkylation
A hydration of an alkyne illustrating steam and vacuum distillation  Wasacz, J. P.; Badding, V. G.
The conversion of 2,5-dimethylhexyn-2,5-diol to 2,2,5,5-tetramethyltetrahydrofuran-3-one using aqueous mercuric sulfate.
Wasacz, J. P.; Badding, V. G. J. Chem. Educ. 1982, 59, 694.
Alkynes
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Phase transfer catalysis. Part II: Synthetic applications  Gokel, George W.; Weber, William P.
In this month's continuation of an article, the authors have catalogued a number of illustrative examples so that the range of applicability of phase transfer catalysis will be.
Gokel, George W.; Weber, William P. J. Chem. Educ. 1978, 55, 429.
Phases / Phase Transitions / Diagrams |
Catalysis |
Aromatic Compounds |
Organometallics |
Nucleophilic Substitution |
Synthesis |
Esters |
Oxidation / Reduction |
Alkylation
Organoboranes as alkylating agents  Kabalka, George W.; Baker, John D., Jr.; Neal, Gary W.
The authors wish to present two hydroboration-alkylation sequences which clearly demonstrate the synthetic utility of the organoboranes.
Kabalka, George W.; Baker, John D., Jr.; Neal, Gary W. J. Chem. Educ. 1976, 53, 549.
Alkylation |
Reactions
Experiments with butane lighter fluid  Davenport, Derek A.
Non-disposable butane lighters make possible useful semi-quantitative experiments.
Davenport, Derek A. J. Chem. Educ. 1976, 53, 306.
Physical Properties |
Molecular Properties / Structure |
Alkylation
Conversion of a primary alcohol to an alkyl halide via a tosylate intermediate  Wiseman, Park A.; Betras, Steve; Lindley, Barry
The experiment in this article was designed primarily for and has been performed successfully by sophomore chemistry majors.
Wiseman, Park A.; Betras, Steve; Lindley, Barry J. Chem. Educ. 1974, 51, 348.
Alcohols |
Alkylation |
Reactions |
Aromatic Compounds |
NMR Spectroscopy
A simple and inexpensive collector for preparative gas chromatography  Rossley, Nicci L.; Higgins, Gibson W.; Rothberg, Irvin; Friedman, H. Martin
The authors present a more simple and inexpensive collector for studying alkylation of naphthalene with alkenenes.
Rossley, Nicci L.; Higgins, Gibson W.; Rothberg, Irvin; Friedman, H. Martin J. Chem. Educ. 1974, 51, 242.
Gas Chromatography |
Aromatic Compounds |
Alkylation |
Laboratory Equipment / Apparatus
The gas phase free radical halogenation of hydrocarbons. An undergraduate experiment  Scala, Alfred A.
Investigates the photochemically initiated gas phase chlorination and bromination of lower hydrocarbons.
Scala, Alfred A. J. Chem. Educ. 1972, 49, 573.
Free Radicals |
Alkylation |
Reactions |
Electrochemistry |
Photochemistry
Directive effects in electrophilic aromatic substitution. An organic chemistry experiment  Beishline, Robert R.
The student is given the procedure for the monobromination of acetanilide in glacial acetic acid, but is not told where on the ring the bromine will substitute; he is required to prove the structure of the product through an independent synthesis of the preparation of a known derivative.
Beishline, Robert R. J. Chem. Educ. 1972, 49, 128.
Aromatic Compounds |
Electrophilic Substitution |
Synthesis |
Alkylation
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Preparation of the members of an homologous series: An organic chemistry experiment  Kolenbrander, Harold M.
This article describes an experiment involving the synthesis of S-alkyl derivatives of homocysteine.
Kolenbrander, Harold M. J. Chem. Educ. 1970, 47, 56.
Synthesis |
Molecular Properties / Structure |
Alkylation
Chlorination of 2,3-dimethylbutane: A quantitative organic chemistry experiment  Markgraf, J. Hodge
This paper describes the quantitative study of a free radical chlorination in which the student determines the relative reactivity of selected hydrogens.
Markgraf, J. Hodge J. Chem. Educ. 1969, 46, 610.
Quantitative Analysis |
Alkylation |
Alkanes / Cycloalkanes |
Free Radicals
Hydration of an alkyne: Undergraduate organic chemistry experiment  Rose, Norman C.
The hydration of 2-methyl-3-butyn-2-ol to yield 3-hydroxy-3-methyl-2-butanone is a very suitable reaction for undergraduates who have had little prior experience in the organic laboratory.
Rose, Norman C. J. Chem. Educ. 1966, 43, 324.
Alkynes |
Aldehydes / Ketones |
Alcohols
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
The chemistry of benzyne  Bunnett, Joseph F.
Examines the chemistry of benzyne and alkynes.
Bunnett, Joseph F. J. Chem. Educ. 1961, 38, 278.
Aromatic Compounds |
Reactions |
Mechanisms of Reactions |
Alkynes
The side-chain halogenation of n-alkyl benzenes  Goldwhite, H.
A number of textbooks state that in the halogenation of the side-chains of normal alkyl benzenes with elemental halogens there is a strong tendency for halogenation to take place preferentially at the carbon atom next to the aromatic nucleus; the literature does not support this conclusion.
Goldwhite, H. J. Chem. Educ. 1960, 37, 295.
Aromatic Compounds |
Alkylation |
Reactions
Photochlorination of hydrocarbons with chlorine generated in situ: A student laboratory exercise  Condon, F. E.; Sokoloff, Murray
Fair yields of cyclohexane have been obtained simply and safely by irradiating a heterogeneous mixture of cyclohexane, concentrated hydrochloric acid, and manganese dioxide.
Condon, F. E.; Sokoloff, Murray J. Chem. Educ. 1959, 36, 554.
Alkylation |
Photochemistry
Textbook errors: Guest column- XIX. The relative reactivity of acetylenes and olefins toward bromine  Mysels, Karol J.; Daniels, Ralph; Bauer, Ludwig
Many contemporary textbooks and laboratory manuals in organic chemistry either state explicitly or imply that bromine ass much faster to acetylenes than to olefins.
Mysels, Karol J.; Daniels, Ralph; Bauer, Ludwig J. Chem. Educ. 1958, 35, 444.
Reactions |
Addition Reactions |
Alkylation |
Alkynes
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory