TIGER

Journal Articles: 10 results
Polar Addition to C=C Group: Why Is Anti-Markovnikov Hydroboration–Oxidation of Alkenes Not "Anti-"?  Predrag-Peter Ilich, Lucas S. Rickertsen, and Erienne Becker
The authors redefine Markovnikov or anti-Markovnikov regioselectivity and propose that the teaching of organic chemistry should be based on robust and portable concepts such as energy difference and atomic charge rather than historical labels.
Ilich, Predrag-Peter; Rickertsen, Lucas S.; Becker, Erienne. J. Chem. Educ. 2006, 83, 1681.
Addition Reactions |
Alkenes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling
Iodolactonization of 4-Pentenoic Acid   R. David Crouch, Alexander Tucker-Schwartz, and Kathryn Barker
Describes an experiment in which 4-pentenoic acid is converted into a lactone via iodolactonization.
Crouch, R. David; Tucker-Schwartz, Alexander; Barker, Kathryn. J. Chem. Educ. 2006, 83, 921.
Alkenes |
Carboxylic Acids |
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactions |
Synthesis
Moving Past Markovnikov's Rule  E. Eugene Gooch
Extension of the Markovnikov Rule for addition reactions across a carbon-carbon double bond.
Gooch, E. Eugene. J. Chem. Educ. 2001, 78, 1358.
Synthesis |
Reactions |
Alkenes |
Addition Reactions |
Mechanisms of Reactions
The Discovery-Oriented Approach to Organic Chemistry. 5. Stereochemistry of E2 Elimination: Elimination of cis- and trans-2-Methylcyclohexyl Tosylate  Marcus E. Cabay, Brad J. Ettlie, Adam J. Tuite, Kurt A. Welday, and Ram S. Mohan
A discovery-oriented lab that illustrates the stereochemistry of the E2 elimination reaction and is a good exercise in 1H NMR spectroscopy. The added element of discovery insures that student interest and enthusiasm are retained.
Cabay, Marcus E.; Ettlie, Brad J.; Tuite, Adam J.; Welday, Kurt A.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 79.
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Elimination Reactions |
Reactions |
Alkenes
Synthesis of trans-2-tert-butylcyclohexanol via hydroboration: A microscale organic experiment demonstrating syn addition  Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P.
This microscale experiment demonstrates the relative stereochemistry of the titled addition.
Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P. J. Chem. Educ. 1991, 68, A299.
Synthesis |
Microscale Lab |
Addition Reactions |
Aromatic Compounds |
Stereochemistry
Hydroboration-oxidation of (1R)-(+)-alpha-pinene to isopinocampheol: A microscale experiment that displays regio- and stereochemistry using NMR spectroscopy and molecular mechanics calculations  Blankespoor, Ronald L.; Piers, Kenneth
The hydroboration-oxidation of alkenes is an important route to alcohols and therefore receives considerable treatment in standard organic textbooks. These authors present their findings of an example (an alkene that undergoes the hydroboration oxidation process) that displays both regiochemistry and stereochemistry.
Blankespoor, Ronald L.; Piers, Kenneth J. Chem. Educ. 1991, 68, 693.
Alkenes |
Oxidation / Reduction |
NMR Spectroscopy |
Alcohols
An operationally simple hydroboration-oxidation experiment  Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana
The reactions involve the use of in situ generated diborane as the hydroborating reagent and sodium perborate as the oxidizing agent to convert cyclopentene to cyclopentanol.
Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana J. Chem. Educ. 1990, 67, 975.
Synthesis |
Mechanisms of Reactions |
Alkenes |
Alcohols
Hydroboration for the large organic laboratory  Pickering, Miles
This paper reports an experiment in hydroboration without large hood space requirements, without special glassware requirements, and without inert atmospheric precautions.
Pickering, Miles J. Chem. Educ. 1990, 67, 436.
Oxidation / Reduction |
Alkenes |
Alcohols |
Qualitative Analysis
The hydroboration-oxidation of alkenes. A convenient anti-Markownikoff hydration experiment  Kabalka, George W.; Hedgecock, Herbert C., Jr.
A hydroboration-oxidation sequence that relies on the borane dimethylsulfide complex as the hydroborating agent and trimethylamine-N-oxide dihydrate as the oxidizing agent.
Kabalka, George W.; Hedgecock, Herbert C., Jr. J. Chem. Educ. 1975, 52, 745.
Alkenes |
Oxidation / Reduction |
Addition Reactions
Indene reactions: An organic chemistry laboratory problem  Garrison, James A.
Students are given a problem in which they are to determine which of two published accounts of reaction products involving derivatives of idene is correct.
Garrison, James A. J. Chem. Educ. 1970, 47, 300.
Alkenes |
Alcohols