TIGER

Journal Articles: 15 results
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Markovnikov's Rule  Predrag-Peter Ilich
More insight into the mechanisms of addition reactions to alkenes is needed before completely abandoning Markovnikov and anti-Markovnikov terminology
Ilich, Predrag-Peter. J. Chem. Educ. 2007, 84, 1109.
Addition Reactions |
Reactions |
Mechanisms of Reactions
Markovnikov's Rule  Robert C. Kerber
The use of Markovniknov and anti-Markovnikov to describe addition reactions and their products has long outlived its utility.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1109.
Addition Reactions |
Reactions |
Mechanisms of Reactions
Markovnikov's Rule  Robert C. Kerber
The use of Markovniknov and anti-Markovnikov to describe addition reactions and their products has long outlived its utility.
Kerber, Robert C. . J. Chem. Educ. 2007, 84, 1109.
Addition Reactions |
Reactions |
Mechanisms of Reactions
Polar Addition to C=C Group: Why Is Anti-Markovnikov Hydroboration–Oxidation of Alkenes Not "Anti-"?  Predrag-Peter Ilich, Lucas S. Rickertsen, and Erienne Becker
The authors redefine Markovnikov or anti-Markovnikov regioselectivity and propose that the teaching of organic chemistry should be based on robust and portable concepts such as energy difference and atomic charge rather than historical labels.
Ilich, Predrag-Peter; Rickertsen, Lucas S.; Becker, Erienne. J. Chem. Educ. 2006, 83, 1681.
Addition Reactions |
Alkenes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling
Moving Past Markovnikov's Rule  E. Eugene Gooch
Extension of the Markovnikov Rule for addition reactions across a carbon-carbon double bond.
Gooch, E. Eugene. J. Chem. Educ. 2001, 78, 1358.
Synthesis |
Reactions |
Alkenes |
Addition Reactions |
Mechanisms of Reactions
The Addition of Hydrogen Bromide to Simple Alkenes  Hilton M. Weiss
Synthesis of 1-bromohexane.
Weiss, Hilton M. . J. Chem. Educ. 1995, 72, 848.
Synthesis |
Mechanisms of Reactions |
Addition Reactions |
Alkenes
The electrophilic addition to alkynes  Weiss, Hilton M.
Electrophilic additions to alkynes traditionally do not receive as much attention in organic textbooks as electrophilic addition to alkenes.
Weiss, Hilton M. J. Chem. Educ. 1993, 70, 873.
Addition Reactions |
Alkynes
Synthesis of trans-2-tert-butylcyclohexanol via hydroboration: A microscale organic experiment demonstrating syn addition  Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P.
This microscale experiment demonstrates the relative stereochemistry of the titled addition.
Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P. J. Chem. Educ. 1991, 68, A299.
Synthesis |
Microscale Lab |
Addition Reactions |
Aromatic Compounds |
Stereochemistry
A quick and effective demonstration of anti-Markovnikov addition to alkenes  Brown, Trevor M.; Dronsfield, Alan T.; Hitchcock, Ian
This reaction can be performed in less then 10 minutes and the product is easily identifiable.
Brown, Trevor M.; Dronsfield, Alan T.; Hitchcock, Ian J. Chem. Educ. 1991, 68, 785.
Alkenes |
Addition Reactions
The stereochemistry of additions to trans-anethole  McGahey, Lawrence
Trans-anethole is brominated with pyridinium bromide perbromide in dichloromethane.
McGahey, Lawrence J. Chem. Educ. 1990, 67, 554.
Addition Reactions |
Stereochemistry |
Mechanisms of Reactions |
Alkenes |
Diastereomers |
Enantiomers
Who is anti-Markovnikov?  Tedder, J. M.
What are the factors that control the rate and orientation of free radical addition to alkenes?
Tedder, J. M. J. Chem. Educ. 1984, 61, 237.
Mechanisms of Reactions |
Addition Reactions |
Free Radicals |
Alkenes
Student preparation of alkanols from alkenes  McKee, J. R.; Kauffman, J. M.
The hydration of 1-hexene to form 2-hexanol demonstrates Markovnikov addition, produces a higher yield of alcohol, and starts with a less expensive alkene than cyclohexene hydrations.
McKee, J. R.; Kauffman, J. M. J. Chem. Educ. 1982, 59, 695.
Alcohols |
Alkenes |
Mechanisms of Reactions |
Addition Reactions
Free-radical addition of tetrahalomethanes to [beta]-pinene. Experiments in organic chemistry  Kaye, Irving Allan; Odum, Robert A.
This laboratory provides a much needed learning opportunity about free-radicals.
Kaye, Irving Allan; Odum, Robert A. J. Chem. Educ. 1976, 53, 60.
Free Radicals |
Addition Reactions
A modern look at Markovnikov's rule and the peroxide effect  Isenberg, Norbert; Grdinic, Marcel
Presents a "carbonium ion" definition of Markovnikov's Rule and examines the peroxide effect.
Isenberg, Norbert; Grdinic, Marcel J. Chem. Educ. 1969, 46, 601.
Mechanisms of Reactions |
Stereochemistry |
Diastereomers |
Free Radicals |
Alkenes |
Addition Reactions