TIGER

Journal Articles: 313 results
Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography  Pei-Yu Chao, Yao-Yuan Chuang, Grace Hsiuying Ho, Shiow-Huey Chuang, Tseng-Chang Tsai, Chi-Young Lee, Shang-Tien Tsai, and Jun-Fu Huang
This analytical or physical chemistry sorption experiment uses hexane isomers as probe molecules to demonstrate the "molecular-shape selectivity" behavior of zeolites. Students can also modify the sorption protocol to build their own experiments.
Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu. J. Chem. Educ. 2008, 85, 1558.
Alkanes / Cycloalkanes |
Constitutional Isomers |
Gas Chromatography |
Molecular Properties / Structure |
Physical Properties |
Separation Science |
Solid State Chemistry |
Molecular Recognition
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment  Vladimir Tsionsky
Describes a typical student experiment on the determination of the viscosity of liquids using a quartz-crystal microbalance.
Tsionsky, Vladimir. J. Chem. Educ. 2007, 84, 1337.
Alcohols |
Alkanes / Cycloalkanes |
Laboratory Equipment / Apparatus |
Liquids |
Physical Properties |
Solutions / Solvents
The Origin of the Names Malic, Maleic, and Malonic Acid  William B. Jensen
Explores the origins of the terms malic, maleic, and malonic acid.
Jensen, William B. J. Chem. Educ. 2007, 84, 924.
Nomenclature / Units / Symbols
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
A Short History of Three Chemical Shifts  Shin-ichi Nagaoka
Regrettably, the term "chemical shift" to designate the position of a spectral signal has a poor reputation as a technical term. Nevertheless, the "chemical" environment around an atom of interest influences the electronic environment and hence, leads to spectral shifts, making the prefix "chemical" appropriate.
Nagaoka, Shin-ichi. J. Chem. Educ. 2007, 84, 801.
NMR Spectroscopy |
Spectroscopy |
Nomenclature / Units / Symbols
Sudoku Puzzles as Chemistry Learning Tools  Thomas D. Crute and Stephanie A. Myers
Sudoku puzzles that use a mixture of chemical terms and symbols serve as a tool to encourage the necessary repetition and attention to detail desired for mastering chemistry. The classroom-ready examples provided use polyatomic ions, organic functional groups, and strong nucleophiles. Guidelines for developing additional puzzles are described.
Crute, Thomas D.; Myers, Stephanie A. J. Chem. Educ. 2007, 84, 612.
Learning Theories |
Nomenclature / Units / Symbols |
Student-Centered Learning
Precision in Stereochemical Terminology  LeRoy G. Wade, Jr.
This article recommends that instructors use the precise terms asymmetric carbon atom and chirality center when they apply, and use the broader term stereocenter only when there is a need to include stereogenic atoms that are not chirality centers.
Wade, LeRoy G., Jr. J. Chem. Educ. 2006, 83, 1793.
Chemical Technicians |
Diastereomers |
Enantiomers |
Stereochemistry |
Nomenclature / Units / Symbols |
Chirality / Optical Activity
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
The IUPAC Rules for Naming Organic Molecules  Stanislaw Skonieczny
A systematic approach to naming polyfunctional organic compounds is presented. Latest IUPAC rules are incorporated and the table of order of precedence for the major functional groups is assembled.
Skonieczny, Stanislaw. J. Chem. Educ. 2006, 83, 1633.
Nomenclature / Units / Symbols
Colorful Chemical Demonstrations on the Extraction of Anionic Species from Water into Ether Mediated by Tricaprylylmethylammonium Chloride (Aliquat 336), a Liquid–Liquid Phase-Transfer Agent  Anil Joseph Pezhathinal, Kerensa Rocke, Louis Susanto, Derek Handke, Roch Chan-Yu-King, and Patrick Gordon
Provides a list of safe and easy experiments to demonstrate the extraction of colorful, water-soluble reagents by Aliquat 336 into ether. The demonstrations simulate the preliminary extractive step of an ionic species in liquidliquid phase transfer-catalyzed reactions and introduce various undergraduate chemistry concepts and principles to students.
Pezhathinal, Anil Joseph; Rocke, Kerensa; Susanto, Louis; Handke, Derek; Chan-Yu-King, Roch; Gordon, Patrick. J. Chem. Educ. 2006, 83, 1161.
Alkanes / Cycloalkanes |
Amines / Ammonium Compounds |
Catalysis |
Dyes / Pigments |
Reactions |
Mechanisms of Reactions
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the HartreeFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
The Vocabulary and Concepts of Organic Chemistry, Second Edition (Milton Orchin, Roger S. Macomber, Allan R. Pinhas, R. Marshall Wilson)  R. David Crouch
As the title implies, this book serves as a reference for someone who needs to answer a question such as What is a carbene? or Whats the difference between a sulfenate and a sulfinate?
Crouch, R. David. J. Chem. Educ. 2006, 83, 706.
Nomenclature / Units / Symbols
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
A Template-Controlled Solid-State Reaction for the Organic Chemistry Laboratory  Tomislav Friscic, Tamara D. Hamilton, Giannis S. Papaefstathiou, and Leonard R. MacGillivray
Describes a laboratory experiment that employs linear hydrogen-bond templates to direct [2 + 2] photodimerization in the solid state. The experiment introduces undergraduates to supramolecular and solid-state chemistry, as well as aspects of green chemistry.
Friscic, Tomislav; Hamilton, Tamara D.; Papaefstathiou, Giannis S.; MacGillivray, Leonard R. J. Chem. Educ. 2005, 82, 1679.
Green Chemistry |
Solid State Chemistry |
Crystals / Crystallography |
Alkenes |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Materials Science |
NMR Spectroscopy
Introducing JCE ChemInfo: Organic  Hans J. Reich
JCE ChemInfo: Organic is a collection of Web pages containing information useful to teachers, researchers, and students in organic chemistry, biochemistry, and medicinal chemistry. The pages have been selected for ease of use, broad applicability, and quality of coverage. Topics will include structural information, organic reactions, nomenclature, physical properties, and spectroscopic data. These Web pages will be updated when possible and additional Web pages will be added as they become available.
Reich, Hans J. J. Chem. Educ. 2005, 82, 495.
Medicinal Chemistry |
Nomenclature / Units / Symbols |
NMR Spectroscopy
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
Etymology as an Aid to Understanding Chemistry Concepts  Nittala S. Sarma
Recognition of word roots and the pattern of evolution of scientific terms can be helpful in understanding chemistry concepts (gaining knowledge of new concepts represented by related terms). The meaning and significance of various etymological roots, occurring as prefixes and suffixes in technical terms particularly of organic chemistry, are explained in a unified manner in order to show the connection of various concepts vis  vis the terms in currency. The meanings of some special words and many examples are provided.
Sarma, Nittala S. J. Chem. Educ. 2004, 81, 1437.
Nomenclature / Units / Symbols
Molecular Modeling of Non-Trivial Cyclohexane Derivatives: A Discovery Approach  Gail Horowitz
An experiment is described that utilizes molecular modeling to study the effects of sp2 hybridization, bond elongation, and heteroatom substitution upon the stabilities of the axial and equatorial conformers of cyclohexane.
Horowitz, Gail. J. Chem. Educ. 2004, 81, 1006.
Molecular Modeling |
Alkanes / Cycloalkanes |
Computational Chemistry |
Molecular Properties / Structure
SI for Chemists: A Modification  Robert D. Freeman
To correct my original blunder, I recommend that the name "amount of substance" be replaced by "quant" (rather than posos). The word "quant" is in standard dictionaries and has a single meaning related to boating.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 802.
Nomenclature / Units / Symbols
SI for Chemists: Another Position  Tomislav Cvitas
I must say that I agree neither with what was said in the original commentary by R. D. Freeman, nor with the letter by P. Karol.
Cvitas, Tomislav. J. Chem. Educ. 2004, 81, 801.
Nomenclature / Units / Symbols
SI for Chemists: Persistent Problems, Solid Solutions; SI Basic Units: The Kilogram and the Mole  Robert D. Freeman
Karols letter is a prime example of the type of article about which he complains in his first paragraph. There are four major flaws in Karols suggestions.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
Functional Group Wordsearch  Terry L. Helser
This puzzle contains 24 names and terms from organic chemistry in a 12 ? 12 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 517.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Organic Chemistry Wordsearch  Terry L. Helser
This puzzle contains 27 names and terms from organic chemistry in a 13 ? 13 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 515.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Using Hydrocarbon Acidities To Demonstrate Principles of Organic Structure and Bonding  Andrew P. Dicks
This article demonstrates the utility of hydrocarbon acidity as a teaching tool within the undergraduate classroom. Acidities of compounds containing only hydrogen and carbon vary by at least 50 orders of magnitude. Differences in acidities are rationalized by invoking principles of hybridization, resonance, induction, and aromaticity.
Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1322.
Acids / Bases |
Aromatic Compounds |
Alkanes / Cycloalkanes
Reactions (→) vs Equations (=)  S. R. Logan
A recent chemical kinetics text uses an equals sign for an overall reaction, whereas an arrow is used in each of the reaction steps that are proposed to constitute the mechanism, and for any elementary process.
Logan, S. R. J. Chem. Educ. 2003, 80, 1258.
Kinetics |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions
Organic Nomenclature  David B. Shaw and Laura R. Yindra
Organic Nomenclature is a drill-and-practice exercise in naming organic compounds (using both common and IUPAC names) and identifying structural formulas. It consists of multiple-choice questions where a name or formula is given and the correct formula or name is chosen from a list of five possible answers.
Shaw, David B.; Yindra, Laura R. J. Chem. Educ. 2003, 80, 1223.
Nomenclature / Units / Symbols
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Electron Transport Wordsearch  Terry L. Helser
Wordsearch puzzle containing 30 words that describe electron transport and oxidative phosphorylation.
Helser, Terry L. J. Chem. Educ. 2003, 80, 419.
Metabolism |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Genetic Code Wordsearch  Terry L. Helser
Wordsearch puzzle containing 30 words that describe the nucleotide sequences used to produce proteins.
Helser, Terry L. J. Chem. Educ. 2003, 80, 417.
Biotechnology |
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Nucleic Acids / DNA / RNA
C–H and C–D Bonds: An Experimental Approach to the Identity of C–H Bonds by Their Conversion to C–D Bonds  Alex T. Rowland
Three experiments that allow students to determine the relative reactivity of C-H bonds that are aliphatic, alpha, benzylic, or aromatic by the ease of substitution of deuterium for oxygen.
Rowland, Alex T. J. Chem. Educ. 2003, 80, 311.
Acids / Bases |
IR Spectroscopy |
Isotopes |
NMR Spectroscopy |
Undergraduate Research |
Alkanes / Cycloalkanes |
Aromatic Compounds |
Carboxylic Acids
What's in a Name?   Robert M. Hanson
Quiz that asks questions that are helpful in determining what is happening in an aqueous solution.
Hanson, Robert M. J. Chem. Educ. 2002, 79, 1380.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry
Chemistry Formatter Add-ins for Microsoft Word and Excel  Christopher King
MS Word and Excel add-ins that automatically convert chemistry symbols and notations.
King, Christopher. J. Chem. Educ. 2002, 79, 896.
Nomenclature / Units / Symbols
Fractional Distillation and GC Analysis of Hydrocarbon Mixtures  Craig J. Donahue
Separating and identifying the components of a three-hydrocarbon mixture through fractional distillation and gas chromatography.
Donahue, Craig J. J. Chem. Educ. 2002, 79, 721.
Chromatography |
Gas Chromatography |
Separation Science |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Alternative units in which to express atomic weight.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  George Gorin
Alternative units in which to express atomic weight.
Gorin, George. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  Jay A. Young
Consideration of a flammable liquid above its flash point.
Young, Jay A. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  J. C. Jones
Consideration of a flammable liquid above its flash point.
Jones, J. C. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  J. C. Jones
Consideration of a flammable liquid above its flash point.
Jones, J. C. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Learning the Functional Groups: Keys to Success  Shannon Byrd and David P. Hildreth
Classification activity and scheme for learning functional groups.
Byrd, Shannon; Hildreth, David P. J. Chem. Educ. 2001, 78, 1355.
Nomenclature / Units / Symbols
Correction to Chemical Laboratory Information Profile: n-Hexane (J. Chem. Educ. 2001, 78, 587)  Jay A. Young
Corrected formula for n-hexane.
Young, Jay A. J. Chem. Educ. 2001, 78, 1021.
Alkanes / Cycloalkanes |
Laboratory Management |
Physical Properties
A Method for Drawing the Cyclohexane Ring and Its Substituents  Veljko Dragojlovic
A simple method for drawing cyclohexanes.
Dragojlovic, Veljko. J. Chem. Educ. 2001, 78, 923.
Molecular Properties / Structure |
Stereochemistry |
Alkanes / Cycloalkanes
Chemical Laboratory Information Profile: n-Hexane  Jay A. Young
Properties, hazards, and storage requirements for n-hexane.
Young, Jay A. J. Chem. Educ. 2001, 78, 587.
Alkanes / Cycloalkanes |
Laboratory Management |
Physical Properties
Krebs Cycle Wordsearch  Terry L. Helser
Puzzle with 46 names, terms, prefixes, and acronyms that describe the citric acid (Krebs) cycle.
Helser, Terry L. J. Chem. Educ. 2001, 78, 515.
Metabolism |
Nomenclature / Units / Symbols
Glycolysis Wordsearch  Terry L. Helser
Puzzle with 30 names, terms, prefixes, and acronyms that describe glycolysis and fermentation.
Helser, Terry L. J. Chem. Educ. 2001, 78, 503.
Metabolism |
Nomenclature / Units / Symbols |
Carbohydrates
b-Oxidation Wordsearch  Terry L. Helser
Puzzle with 36 names, terms, prefixes, and acronyms that describe lipid metabolism.
Helser, Terry L. J. Chem. Educ. 2001, 78, 483.
Metabolism |
Nomenclature / Units / Symbols |
Lipids
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Periplanar or Coplanar?  Saul Kane and William H. Hersh
The prefix peri, derived from the Greek for "near", was chosen to make the meaning "approximately planar". However, the current common usage of syn and antiperiplanar is planar, which is incorrect. In the interests of proper language, we suggest that future authors instead use "syn-coplanar" and "anti-coplanar".
Kane, Saul; Hersh, William H. J. Chem. Educ. 2000, 77, 1366.
Mechanisms of Reactions |
Nomenclature / Units / Symbols |
Stereochemistry |
Molecular Properties / Structure
Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Organic Acids without a Carboxylic Acid Functional Group  G. V. Perez and Alice L. Perez
This paper presents several organic molecules that have been labeled as acids but do not contain a carboxylic acid functional group. Various chemical principles such as pKa, tautomerization, aromaticity, conformation, resonance, and induction are explored.
Perez, G. V.; Perez, Alice L. J. Chem. Educ. 2000, 77, 910.
Acids / Bases |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Phenols |
Carboxylic Acids |
Aromatic Compounds
The R/S System: A New and Simple Approach to Determining Ligand Priority and a Unified Method for the Assignment and Correlation of Stereogenic Center Configuration in Diverse Stereoformulas  Dipak K. Mandal
A new approach providing an "at-a-glance" priority order of ligands attached to a stereogenic center in organic molecules and a unified method for assigning and correlating stereogenic center absolute configuration in diverse stereochemical representations is presented.
Mandal, Dipak Kumar. J. Chem. Educ. 2000, 77, 866.
Molecular Properties / Structure |
Stereochemistry |
Nomenclature / Units / Symbols
News from Online: Learning Communities  Carolyn Sweeney Judd
Summary of a variety of online, chemistry resources.
Judd, Carolyn Sweeney. J. Chem. Educ. 2000, 77, 808.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Sugar Wordsearch  Terry L. Helser
Wordsearch puzzle containing 29 names, terms, prefixes and acronyms that describe sugars and their polymers.
Helser, Terry L. J. Chem. Educ. 2000, 77, 480.
Carbohydrates |
Nomenclature / Units / Symbols
Lipid Wordsearch  Terry L. Helser
Wordsearch puzzle containing 37 names, terms, prefixes and acronyms that describe lipids.
Helser, Terry L. J. Chem. Educ. 2000, 77, 479.
Lipids |
Nomenclature / Units / Symbols
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?  Sam H. Leung
This article provides a brief survey of the origins of the common names of some amino acids, aromatic compounds, and carboxylic acids.
Leung, Sam H. J. Chem. Educ. 2000, 77, 48.
Amino Acids |
Aromatic Compounds |
Nomenclature / Units / Symbols |
Carboxylic Acids
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art  Julio Pellicer, M. Amparo Gilabert, and Ernesto Lopez-Baeza
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day.
Pellicer, Julio; Gilabert, M. Amparo; Lopez-Baeza, Ernesto. J. Chem. Educ. 1999, 76, 911.
Nomenclature / Units / Symbols |
Thermodynamics |
Learning Theories
Letters  
Extending the rule for rounding significant figures of products and quotients.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 897.
Nomenclature / Units / Symbols
Calculating Units with the HP 48G Calculator  Matthew E. Morgan
The HP 48G's units function can make simple calculations, such as converting grams to moles, or more complex unit analysis, such as gas law calculations. Examples and calculator keystrokes for both of these examples are included in this article.
Morgan, Matthew E. J. Chem. Educ. 1999, 76, 631.
Learning Theories |
Nomenclature / Units / Symbols
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
How Thermodynamic Data and Equilibrium Constants Changed When the Standard-State Pressure Became 1 Bar  Richard S. Treptow
In 1982 the IUPAC recommended that the pressure used to define the standard state of a substance be changed from 1 atm to 1 bar. The principal effect of the change is a slight increase in the entropy and a slight decrease in the free energy of any gas.
Treptow, Richard S. J. Chem. Educ. 1999, 76, 212.
Thermodynamics |
Equilibrium |
Gases |
Nomenclature / Units / Symbols
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
A Very Simple Method Way to Convert Haworth Representation to Zigzag Representation  Janine Cossy and Véronique Bellosta
A very simple method to convert Haworth representation of hexoses and pentoses to zigzag representation is proposed
Cossy, Janine; Bellosta, Véronique. J. Chem. Educ. 1998, 75, 1307.
Carbohydrates |
Nomenclature / Units / Symbols |
Stereochemistry |
Molecular Properties / Structure
Oxygen vs Dioxygen: Diatomic/Monatomic Usage  Sharon, Jared B.
Using the name dioxygen for O2.
Sharon, Jared B. J. Chem. Educ. 1998, 75, 1089.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Quantity Calculus: Unambiguous Designation of Values and Units in Graphs and Tables  Mary Anne White
This paper gives some background to quantity calculus and shows examples, suitable for teaching to undergraduate students, of its use to provide unambiguous representations of physical quantities in tables and graphs.
White, Mary Anne. J. Chem. Educ. 1998, 75, 607.
Nomenclature / Units / Symbols |
Mathematics / Symbolic Mathematics
S. M. Tanatar and His Contribution to the Field of Thermal Rearrangements  Ludmila Birladeanu
Thermal rearrangements constitute an important chapter in organic chemistry. Surprisingly, the name of its discoverer remains unknown. The present article is meant to remedy this situation by describing some of the work of the 19th century Russian chemist S. M. Tanatar (1849 - 1917) who, based on the thermochemical data provided by Berthelot, envisaged the possibility of transforming cyclopropane into propene under the influence of heat alone.
Birladeanu, Ludmila. J. Chem. Educ. 1998, 75, 603.
Gases |
Thermodynamics |
Synthesis |
Alkanes / Cycloalkanes |
Alkenes
Incorporating Organic Name Reactions and Minimizing Qualitative Analysis in an Unknown Identification Experiment  Claire Castro and William Karney
The authors have developed a new type of unknown identification experiment for the introductory organic chemistry laboratory. The unknown sample the student is provided with is the product of an organic name reaction. The student is only informed of the starting material and conditions used in the compound's synthesis, and must then: (1) deduce the compound's structure, (2) determine the name reaction and corresponding mechanism that yields the compound, and (3) present his/her results to the class.
Claire Castro and William Karney. J. Chem. Educ. 1998, 75, 472.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions |
Molecular Properties / Structure
On the Disproportionations of Cyclohexene and Related Compounds  Alex Bunjes, Ingo Eilks, Manfred Pahlke, and Bernd Ralle*
The catalytic hydrogenation of liquid hydrocarbons is easy to realize in a simple laboratory experiment using a palladium catalyst. In the case of hydrogenation cyclohexen or cyclohexadiene in addition to the expected finding of cyclohexane among the hydrogenation products, the formation of benzene can be observed. In absence of hydrogen, the disproportionation of both starting materials to cyclohexane and benzene takes place.
Bunjes, Alex; Eilks, Ingo; Pahlke, Manfred; Ralle, Bernd. J. Chem. Educ. 1997, 74, 1323.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Alkenes |
Synthesis
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
Alkanes in Motion (Program for Mac OS-Compatible Computers: J. Chem. Educ. Software Vol. 9C, No. 1)  Jae Hyun Kim
To improve students' understanding of molecular motion, Alkanes in Motion, a collection of clip animations generated from molecular dynamics calculations, was produced. It depicts the molecular motion of hydrocarbons in the gas phase.
Kim, Jae Hyun. J. Chem. Educ. 1997, 74, 1015.
Molecular Modeling |
Alkanes / Cycloalkanes
The Dimensions of Logarithmic Quantities (re J. Chem. Educ. 1991, 68, 467)  Robert D. Freeman
Proposal to introduce logarithms of dimensioned quantities.
Freeman, Robert D. J. Chem. Educ. 1997, 74, 900.
Nomenclature / Units / Symbols
Ionization or Dissociation?  Emeric Schultz
The use of the terms Dissociation and Ionization in the teaching of chemistry is discussed. It is suggested that the term dissociation, and what it suggests in terms of ordinary language, is inappropriate when used in certain contexts. Since an alternate and more physically correct term, specifically ionization, is available for these contexts, it is argued that this term be used consistently in these contexts.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 868.
Equilibrium |
Nomenclature / Units / Symbols
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Exponential Notation  Gavin D Peckham
Suggestion for streamlined typing of exponential notation.
Peckham, Gavin D. J. Chem. Educ. 1997, 74, 64.
Nomenclature / Units / Symbols
Displaying Chemical Formulas in Microsoft Excel  E. Joseph Billo
An Excel macro which automates the entry of subscripts in Excel spreadsheets is described. The macro is assigned to a custom button on Excel's standard toolbar, so that, after typing a text label containing a chemical formula, clicking the button automatically formats the text as a chemical formula.
Billo, E. Joseph. J. Chem. Educ. 1996, 73, A40.
Nomenclature / Units / Symbols
Amyl: A Misunderstood Word  Richard A. Kjonaas
There is much confusion associated with the word amyl. When younger chemists are taught to use the words propyl, butyl, and pentyl in place of n-propyl, n-butyl, and n-pentyl, they then incorrectly assume that this practice also applies to the word amyl.
Kjonaas, Richard A. J. Chem. Educ. 1996, 73, 1127.
Nomenclature / Units / Symbols
Four Programs for Windows: Abstract of Volume 4D, Number 2: Alkanes in Motion  Jae Hyun Kim
Alkanes in Motion depicts the molecular motion of hydrocarbons in the gas phase. Four animations from the collection are presented here. These four animations consist of two animations each of hexane and octadecane, one animation calculated to show translational motion and one to show vibrational motion.
Kim, Jae Hyun. J. Chem. Educ. 1996, 73, 1079.
Molecular Modeling |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Gases
Inorganic Nomenclature  ten Hoor, Marten J.
Inorganic naming schemes should be brought in line with IUPAC recommendations.
ten Hoor, Marten J. J. Chem. Educ. 1996, 73, 825.
Nomenclature / Units / Symbols
The Curiously Intertwined Histories of Benzene and Cyclohexane  E. W. Warnhoff
The first reduction of benzene, which was done by means of hydrogen iodide in the middle of the 19th century, led to a saturated hydrocarbon initially thought to be hexane and later to be hexahydrobenzene (cyclohexane).
Warnhoff, E. W. J. Chem. Educ. 1996, 73, 494.
Alkanes / Cycloalkanes |
Aromatic Compounds
An Excel 4.0 Add-in Function to Calculate Molecular Mass  Christian Hauck
185. In this paper, a Microsoft Excel 4.0 add-in function is presented, which consists of a parser to interpret molecular formulas and a database containing three values for the atomic masses for every element: the mass number of the most abundant isotope, the mass of the most abundant isotope, and the atomic weight.
Hauck, Christian. J. Chem. Educ. 1996, 73, 433.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
A Rapid Way of Computing the Number of Rings Present in a Polycyclic Organic Compound  A. Srikrishna
This article discusses how by counting the number of quaternary and tertiary atoms present, the number of rings in a polycyclic organic compound can be deduced.
Srikrishna, A. J. Chem. Educ. 1996, 73, 428.
Alkanes / Cycloalkanes
A Ternary Phase Diagram for a Less Hazardous System  Barbara A. Udale and John D. Wells
Using a n-propanol-n-heptane-water system to generate data for construction of a ternary phase diagram.
Udale, Barbara A.; Wells, John D. J. Chem. Educ. 1995, 72, 1106.
Phases / Phase Transitions / Diagrams |
Aqueous Solution Chemistry |
Alcohols |
Alkanes / Cycloalkanes |
Solutions / Solvents
Dimensions of Logarithmic Quantities (the author replies)  Molyneux, Philip
Reply to Mills' letter.
Molyneux, Philip J. Chem. Educ. 1995, 72, 955.
Nomenclature / Units / Symbols
Letters  
Examples in physical chemistry where it seems that we take the logarithm of quantities that are not dimensionless.
J. Chem. Educ. 1995, 72, 954.
Nomenclature / Units / Symbols
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
The Conformational Behavior of n-Pentane: A Molecular Mechanics and Molecular Dynamics Experiment  Mencarelli, Paolo
174. Use of HyperChem to investigate the conformational behavior of n-pentane.
Mencarelli, Paolo J. Chem. Educ. 1995, 72, 511.
MO Theory |
Chirality / Optical Activity |
Molecular Properties / Structure |
Conformational Analysis |
Alkanes / Cycloalkanes |
Molecular Mechanics / Dynamics |
Molecular Modeling
Determination of the R or S Configuration of Tetrahedral Stereocenters: A Graphical Flowchart Approach  Starkey, Ronald
Using graphical flowcharts to determine R or S configurations through higher shell comparisons for long-chain, highly branched, and cyclic organic structures.
Starkey, Ronald J. Chem. Educ. 1995, 72, 315.
Chirality / Optical Activity |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Which Organic Molecule Should I Pick?  Perkins, Robert
Examples of questions requiring students to demonstrate their understanding of organic structures, nomenclature, isomerism, and chemical reactivity.
Perkins, Robert J. Chem. Educ. 1995, 72, 124.
Molecular Properties / Structure |
Chirality / Optical Activity |
Nomenclature / Units / Symbols |
Enantiomers |
Diastereomers
The Distribution of Cyclohexanone between Cyclohexane and Water  Worley, John D.
A microscale experiment that may be used to demonstrate extraction, spectrophotometric analysis, and the determination of a distribution constant.
Worley, John D. J. Chem. Educ. 1994, 71, A145.
Microscale Lab |
Aqueous Solution Chemistry |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Separation Science |
Spectroscopy
Hydrochlorination of (R)-Carvone  Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L.
This paper describes the hydrochlorination of (R)-carvone that illustrates the concepts of regioselectivity and chemoselectivity.
Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L. J. Chem. Educ. 1994, 71, 1097.
Laboratory Management |
Alkenes |
Alkanes / Cycloalkanes
A Simple and Safe Catalytic Hydrogenation of 4-Vinylbenzoic Acid  De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G.
An alternative procedure to catalytic hydrogenation is catalytic transfer hydrogenation. In this technique, the reduction of an organic compound is achieved with the aid of a donor substance in the presence of a catalyst.
De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G. J. Chem. Educ. 1994, 71, 992.
Catalysis |
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes
Basic Principles of Scale Reading  Peckham, Gavin D.
Steps and basic principles of reading the scales of laboratory instruments.
Peckham, Gavin D. J. Chem. Educ. 1994, 71, 423.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
Grasping the Concepts of Stereochemistry  Barta, Nancy S.; Stille, John R.
An alternative procedure for the determination of R or S configuration for chiral molecules.
Barta, Nancy S.; Stille, John R. J. Chem. Educ. 1994, 71, 20.
Stereochemistry |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Chirality / Optical Activity
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Cyclooctane conformational analysis via mechanical and computational models  Fitzgerald, Jeffrey P.
Description of an exercise in which students use both mechanical and computational models to identify and quantify various types of strains in different conformations of a molecule.
Fitzgerald, Jeffrey P. J. Chem. Educ. 1993, 70, 988.
Molecular Modeling |
Alkanes / Cycloalkanes |
Diastereomers
The enumeration of isomers-With special reference to the stereoisomers of decane  Whyte, J. R. C.; Clugston, M. J.
Structural isomers predicted through algorithms.
Whyte, J. R. C.; Clugston, M. J. J. Chem. Educ. 1993, 70, 874.
Alkanes / Cycloalkanes |
Stereochemistry |
Diastereomers
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
The correct von Baeyer name for (Buckminster)fullerane  Eckroth, David
The goal of this paper is to show the usefulness of a Hamiltonian line in the derivation of the correct von Baeyer name of a bridged hydrocarbon.
Eckroth, David J. Chem. Educ. 1993, 70, 609.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Alkimers  Hiatt, Richard R.
Tutorial and practice program for isomerism and nomenclature.
Hiatt, Richard R. J. Chem. Educ. 1993, 70, 125.
Diastereomers |
Nomenclature / Units / Symbols
A simple and colorful demonstration of light-catalyzed bromination of an alkane  Stevens, Malcolm P.
Light-catalyzed bromination of an alkane.
Stevens, Malcolm P. J. Chem. Educ. 1992, 69, 1028.
Catalysis |
Alkanes / Cycloalkanes |
Photochemistry |
Reactions
An easily constructed model: The boat form of a six-membered ring composed of six distorted tetrahedral penetrating each other  Yamana, Shukichi
Instructions for constructing a model of the boat form of a six-membered ring using six empty envelopes.
Yamana, Shukichi J. Chem. Educ. 1992, 69, 964.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Stereochemistry
The centennial of systematic organic nomenclature  Smith, Homer A., Jr.
This article outlines the development of the Geneva Rules, sketches the history of important modifications over the years, discusses the recent advances under auspices of IUPAC, and speculates about future developments.
Smith, Homer A., Jr. J. Chem. Educ. 1992, 69, 863.
Nomenclature / Units / Symbols
Imprecise numbers and incautious safety procedure mar experiment.  Nelson, Robert N.
Problems with significant figures and safety concerns regarding two published experiments.
Nelson, Robert N. J. Chem. Educ. 1992, 69, 688.
Reactions |
Nomenclature / Units / Symbols
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
Replacing carbon tet: Other alternatives.  Ackermann, Martin N.
Using a mixture of hexanes in the traditional experiment to determine the equilibrium constant for the formation of I3-.
Ackermann, Martin N. J. Chem. Educ. 1992, 69, 602.
Equilibrium |
Alkanes / Cycloalkanes |
Toxicology
Views of nursing professionals on chemistry course content for nursing education  Walhout, Justine S.; Heinschel, Judie.
Analysis of survey conducted of deans of schools of nursing, chairs of nursing departments, and registered nurses regarding courses required of nursing students and the importance of different units of measure and 39 chemistry topics to the nursing profession.
Walhout, Justine S.; Heinschel, Judie. J. Chem. Educ. 1992, 69, 483.
Medicinal Chemistry |
Nomenclature / Units / Symbols
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
Toward the consistent use of regiochemical and stereochemical terms in introductory organic chemistry.  Adams, David L.
Proposes consistency and clarity in the use of definitions for regioselective, stereoselective, and stereospecific in introductory organic chemistry.
Adams, David L. J. Chem. Educ. 1992, 69, 451.
Stereochemistry |
Nomenclature / Units / Symbols
An expanded Fieser model suitable for a large classroom  Levinson, Alfred S.; Zupan, Rudolph
In organic chemistry, one area in which models are indispensable is in introducing the conformational analysis of cyclopentane and cyclohexane rings.
Levinson, Alfred S.; Zupan, Rudolph J. Chem. Educ. 1992, 69, 369.
Alkanes / Cycloalkanes |
Molecular Modeling |
Molecular Properties / Structure
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
Addition of IBr to fatty acids on the overhead projector   Solomon, Sally; Fulep-Poszmik, Annamaria; Kulp, Gary; Yu, Heung
The interhalogen compound IBr dissolved in CCl4 is added to petroleum ether solutions of fatty acids to test for unsaturation.
Solomon, Sally; Fulep-Poszmik, Annamaria; Kulp, Gary; Yu, Heung J. Chem. Educ. 1992, 69, 66.
Alkanes / Cycloalkanes |
Alkenes
A visual presentation of the relationships between the enthalpies of a reaction and the nature of the transition states  Nyquist, H. LeRoy
An apparatus that illustrates the potential energy diagram for the chlorination of alkanes and another for the bromination of alkanes.
Nyquist, H. LeRoy J. Chem. Educ. 1991, 68, 731.
Thermodynamics |
Alkanes / Cycloalkanes
A projection for bond location in chair cyclohexane and related structures  Woolf, A. A.
Benefits and drawbacks of 2D representations for chair cyclohexane and related structures.
Woolf, A. A. J. Chem. Educ. 1991, 68, 646.
Alkanes / Cycloalkanes |
Diastereomers |
Enantiomers |
Constitutional Isomers
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
Synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct: An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry  Harrison, Ernest A., Jr.
An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry via synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct.
Harrison, Ernest A., Jr. J. Chem. Educ. 1991, 68, 426.
Alkanes / Cycloalkanes |
Synthesis |
Alkenes |
Aromatic Compounds |
NMR Spectroscopy |
Thin Layer Chromatography
Polarity and selectivity of ionic stationary phases used in gas chromatography: Evaluation of commercial detergents containing anionic surfactants as column packings  Furton, Kenneth G.; Mantilla, Adriana
Evaluation of commercial detergents containing anionic surfactants as column packings.
Furton, Kenneth G.; Mantilla, Adriana J. Chem. Educ. 1991, 68, 74.
Consumer Chemistry |
Gas Chromatography |
Physical Properties |
Alkanes / Cycloalkanes |
Quantitative Analysis |
Covalent Bonding |
Solutions / Solvents
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
Terminology: Helping students cope with name reactions in organic chemistry  Ganem, Bruce
Using limericks to help students understand and remember name reactions in organic chemistry.
Ganem, Bruce J. Chem. Educ. 1990, 67, 1009.
Nomenclature / Units / Symbols |
Mechanisms of Reactions
Reaction of bromine with hydrocarbons on the overhead, real or simulated  Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt
A simulation that looks like the addition of bromine to hydrocarbons but is not (the bromine is simulated using a mixture of food colorings).
Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt J. Chem. Educ. 1990, 67, 961.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Addition Reactions
Pop-up units converter  Filby, Gordon; Klusmann, Martin
Program that provides conversion factors and calculations among a variety of units.
Filby, Gordon; Klusmann, Martin J. Chem. Educ. 1990, 67, 770.
Nomenclature / Units / Symbols
Binary representation in carbohydrate nomenclature  McGinn, Clifford J.; Wheatley, William B.
A binary notation is used to indicate the structure of carbohydrates.
McGinn, Clifford J.; Wheatley, William B. J. Chem. Educ. 1990, 67, 747.
Carbohydrates |
Nomenclature / Units / Symbols |
Stereochemistry
Please, no angstrometer!  Gorin, George
Instead of urging the adoption of more prefixes, there is good reason to propose that some of them be eliminated.
Gorin, George J. Chem. Educ. 1990, 67, 277.
Nomenclature / Units / Symbols
Quantities, Units, and Symbols in Physical Chemistry (Mills, Ian; Cvitas, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo)  Freeman, Robert D.
Everything you ever wanted to know about physical quantities, symbols, and units.
Freeman, Robert D. J. Chem. Educ. 1989, 66, A188.
Nomenclature / Units / Symbols
Organic Reaction Chemistry, Review II (Flash, P.; Bendall, V.)  Chipman, Wilmon B.
Six different programs which allow the user to identify functional groups, supply the missing reagent necessary to complete a given reaction, deduce the product of a given reaction, ascertain whether a given reaction will go, search the reaction database for functional group conversions, and search for the utility of a certain reagent.
Chipman, Wilmon B. J. Chem. Educ. 1989, 66, A171.
Enrichment / Review Materials |
Reactions |
Mechanisms of Reactions |
Nomenclature / Units / Symbols
Organic Reaction Chemistry, Review I (Flash, P.; Bendall, V.)  Hargis, J. H.
Six different programs which allow the user to identify functional groups, supply the missing reagent necessary to complete a given reaction, deduce the product of a given reaction, ascertain whether a given reaction will go, search the reaction database for functional group conversions, and search for the utility of a certain reagent.
Hargis, J. H. J. Chem. Educ. 1989, 66, A170.
Reactions |
Enrichment / Review Materials |
Mechanisms of Reactions |
Nomenclature / Units / Symbols
Amending the IUPAC Green Book  Tykodi, R. J.
Suggested amendments to the IUPAC Green Book regarding standardized chemical terminology and units of measure.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1064.
Nomenclature / Units / Symbols
A query on the etymology of the symbols, R and S  Koga, Gen
Confusion regarding the etymology of the stereochemical symbols, R and S.
Koga, Gen J. Chem. Educ. 1989, 66, 534.
Nomenclature / Units / Symbols |
Stereochemistry
Drawing different views of the chair form of substituted cyclohexanes  Richardson, W. S.
A set of rules to instruct students in a method for drawing chair structures of cyclohexane after rotation about the central axis.
Richardson, W. S. J. Chem. Educ. 1989, 66, 478.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Stereochemistry
Different Choices (author response)  Kemp, H.R.
Ronald Rich discusses the use of descriptive units in the problem of calculating the concentration of a 96% sulfuric acid solution of a known density.
Kemp, H.R. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Different Choices  Rich, Ronald L.
Kemp wisely advocates that the values of physical quantities be treated as independent of the units used.
Rich, Ronald L. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Concerning Units (author response)  Wadlinger, Robert
Strobel's additional comments are most welcome, especially his electron-volt argument.
Wadlinger, Robert J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols
Concerning Units  Strobel, Pierre
Wadlinger rightly pointed out a number of traps and misunderstandings resulting from an omission of such descriptive units as atom or wave. Here are some more examples, which any chemist dealing with some physics is likely to encounter.
Strobel, Pierre J. Chem. Educ. 1989, 66, 270.
Nomenclature / Units / Symbols
A classroom demonstration of aliphatic substitution   Perina, Ivo; Mihanovic, Branka
Substitution of an alkane by a halogen can be demonstrated effectively on the stage of an overhead projector using a compartmentalized Petri dish or a transparent Conway dish covered by a glass plate
Perina, Ivo; Mihanovic, Branka J. Chem. Educ. 1989, 66, 257.
Reactions |
Alkanes / Cycloalkanes
Bromination of a hydrocarbon   Deck, Eva; Deck, Charles
The authors have developed a simple one-hour student experiment that demonstrates photochemical halogen substitution in a quantitative way using heptane, bromine, and water.
Deck, Eva; Deck, Charles J. Chem. Educ. 1989, 66, 75.
Reactions |
Photochemistry |
Quantitative Analysis |
Alkanes / Cycloalkanes
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Stereochemistry of cyclic hydrocarbons   Perkins, Robert R.
The topic of stereochemistry always poses great difficulties for many students in introductory organic chemistry. The following problems can be used as a tutorial question after having introduced the various terms associated with stereochemistry. The question requires skills at the applications level in the Bloom taxonomy.
Perkins, Robert R. J. Chem. Educ. 1988, 65, 860.
Alkanes / Cycloalkanes |
Chirality / Optical Activity |
Stereochemistry |
Diastereomers |
Constitutional Isomers
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
Chemical applications of graph theory. Part II. Isomer enumeration  Hansen, Peter J.; Jurs, Peter C.
An in-depth look at the study of isomer enumeration.
Hansen, Peter J.; Jurs, Peter C. J. Chem. Educ. 1988, 65, 661.
Chemometrics |
Constitutional Isomers |
Alkanes / Cycloalkanes
The number of alkanes having n carbons and a longest chain of length d: An application of a theorem of Polya  Balaban, Alexandru T.; Kennedy, John W.; Quintas, Louis
This paper tackles the problem of determining the number of structural isomers of an alkane. The primitive algorithm that is usually taught to students is confusing and generates redundancies.
Balaban, Alexandru T.; Kennedy, John W.; Quintas, Louis J. Chem. Educ. 1988, 65, 304.
Constitutional Isomers |
Alkanes / Cycloalkanes |
Chemometrics
On the boiling points of the alkyl halides  Correla, John
Most textbooks spend some time discussing the relationship between boiling point and molecular structure, however, their reasons behind this relationship differ. This variation among textbooks warrants further investigation and discussion in order to uncover which of the factors are the major contributors to the variation of boiling point.
Correla, John J. Chem. Educ. 1988, 65, 62.
Alkanes / Cycloalkanes |
Physical Properties |
Noncovalent Interactions |
Molecular Properties / Structure
Mnemonic for Z and E nomenclature  Thomas, C. W.
A visual reminder that makes it unnecessary to memorize the German terms.
Thomas, C. W. J. Chem. Educ. 1988, 65, 44.
Diastereomers |
Alkenes |
Nomenclature / Units / Symbols
A very brief, rapid, simple, and unified method for estimating carbon-13 NMR chemical shifts: The BS method  Shoulders, Hen; Welch, Steven C.
The "BS" method is so brief and simple that students can memorize and use it to interpret 13C NMR spectra with ease.
Shoulders, Hen; Welch, Steven C. J. Chem. Educ. 1987, 64, 915.
NMR Spectroscopy |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Instrumental Methods
"Correct" methods for naming inorganic compounds  Fernelius, W. Conard
Summary of nomenclature rules and their historical development.
Fernelius, W. Conard J. Chem. Educ. 1987, 64, 901.
Nomenclature / Units / Symbols
Naming inorganic compounds  Lancashire, Robert J.
Textbook survey regarding inconsistencies in systems for the order of naming ligands when using prefixes.
Lancashire, Robert J. J. Chem. Educ. 1987, 64, 900.
Nomenclature / Units / Symbols
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
From shadows to three dimensions: Stereographic images using Dreiding models and the Macintosh  Strauss, Michael J.; Gribble, Gordon
Printing stereographic images using ChemDraw.
Strauss, Michael J.; Gribble, Gordon J. Chem. Educ. 1987, 64, 850.
Alkanes / Cycloalkanes |
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure
Questionable word usage in analytical chemistry  Mellon, M. G.
The use of imprecise, uninformative, inappropriate or even wrong terms; and the lack of clarity in imprecise or uninformative names for methods of chemical analysis.
Mellon, M. G. J. Chem. Educ. 1987, 64, 735.
Nomenclature / Units / Symbols
One more view on assigning absolute configurations  Todd, David
Etymology of the R, S convention.
Todd, David J. Chem. Educ. 1987, 64, 732.
Nomenclature / Units / Symbols
The many chemical names for H2O  Treptow, Richard S.
"Inventing" names for water to illustrate the limitations of any naming system.
Treptow, Richard S. J. Chem. Educ. 1987, 64, 697.
Nomenclature / Units / Symbols
Counting halomethanes  Namhi, Parthasarathy
Asking the question "How many halomethanes are there?" illustrates the range of molecular species that can be derived by substituting the hydrogens of an alkane by halogens.
Namhi, Parthasarathy J. Chem. Educ. 1987, 64, 678.
Alkanes / Cycloalkanes
The chemists' delta  Craig, Norman C.
Thermodynamic quantities such as ?G and ?S are intensive functions and derivatives that depend on instantaneous values of the partial molar forms of various thermodynamic properties of reactions and products; they are not simple finite differences.
Craig, Norman C. J. Chem. Educ. 1987, 64, 668.
Thermodynamics |
Nomenclature / Units / Symbols
Molecular structure: Property relationships  Seybold, Paul G.; May, Michael; Bagal, Ujjvala A.
How molecular structure can be represented mathematically and how this can lead to a better understanding of the connection between molecular structures and properties.
Seybold, Paul G.; May, Michael; Bagal, Ujjvala A. J. Chem. Educ. 1987, 64, 575.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alcohols
Use of polar maps in conformational analysis  Ounsworth, James P.; Weller, Larry
A relatively simple procedure to identify different or similar conformations of large ring structures (generating polar maps of torsional angles).
Ounsworth, James P.; Weller, Larry J. Chem. Educ. 1987, 64, 568.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
A simple formula for the number of rings in a cyclic molecule  Reddy, P. Anantha
A simple formula that determines the number of rings from the number of ring atoms and bonds present in a cyclic system.
Reddy, P. Anantha J. Chem. Educ. 1987, 64, 400.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The official rules for organic chemical nomenclature: Emergence, evolution, emphasis, and errors  Traynham, James G.
Historical development of the official rules for organic chemical nomenclature.
Traynham, James G. J. Chem. Educ. 1987, 64, 325.
Nomenclature / Units / Symbols
The nomenclature of relative stereochemistry: Choosing between likes and preferences  Brook, Michael A.
The commonly used descriptors for relative stereochemistry are introduced and compared.
Brook, Michael A. J. Chem. Educ. 1987, 64, 218.
Nomenclature / Units / Symbols |
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity
Comparison of chemical oxidation of alkanes, alkenes, and alcohols on the overhead projector  Kolb, Kenneth E.
This overhead projector demonstration utilizes two classical oxidants, permanganates and dichromate, to distinguish between alkanes, alkenes, and primary, secondary, and tertiary alcohols.
Kolb, Kenneth E. J. Chem. Educ. 1986, 63, 977.
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Oxidation / Reduction |
Qualitative Analysis
Illustrating Newman projection formulas in large classes  Elakovich, Stella D.
An overhead projector demonstration can help students better understand Newman projections.
Elakovich, Stella D. J. Chem. Educ. 1986, 63, 570.
Nomenclature / Units / Symbols |
Molecular Modeling
Stress the twofold axis of the threo isomer  Tavernier, D.
The author weighs in on the the controversy of the threo and erythro nomenclature.
Tavernier, D. J. Chem. Educ. 1986, 63, 511.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers
Reduction of cyclohexanone with sodium borohydride in aqueous alkaline solution: a beginning organic chemistry experiment  Hudak, Norman J.; Sholes, Anne H.
A beginning organic chemistry experiment that involves the reduction of cyclohexanone with sodium borohydride in aqueous alkaline solution.
Hudak, Norman J.; Sholes, Anne H. J. Chem. Educ. 1986, 63, 161.
Alkanes / Cycloalkanes |
Aqueous Solution Chemistry |
Acids / Bases |
Alcohols
Identification of the stable conformer of cyclohexane by vibrational spectroscopy  Garcia, M. V.; Redondo, M. I.
A laboratory experiment that uses group theory to help interpret infrared and Raman spectra of cyclohexane.
Garcia, M. V.; Redondo, M. I. J. Chem. Educ. 1985, 62, 887.
Alkanes / Cycloalkanes |
Spectroscopy |
Stereochemistry |
IR Spectroscopy |
Raman Spectroscopy |
Conformational Analysis |
Molecular Properties / Structure |
Group Theory / Symmetry
Chemical properties of commonly available hydrocarbons  Perina, Ivo
Studying the properties of saturated hydrocarbons using natural gas.
Perina, Ivo J. Chem. Educ. 1985, 62, 864.
Alkanes / Cycloalkanes
Elemental etymology: What's in a name?  Ball, David W.
Summarizes patterns to be found among the origins of the names of the elements.
Ball, David W. J. Chem. Educ. 1985, 62, 787.
Nomenclature / Units / Symbols
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
An introduction to conformational analysis of ethane and butane  Flash, Patrick J.
60. Bits and pieces, 23. Introduces students to some conventions for drawing molecules and provides a brief tutorial and extensive drill work on the conformations of ethane and butane.
Flash, Patrick J. J. Chem. Educ. 1985, 62, 412.
Conformational Analysis |
Alkanes / Cycloalkanes |
Enrichment / Review Materials
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
Some improper terms in coordination chemistry  Syamal, A.
A listing of terms recommended to replace those employing "complex" in coordination chemistry.
Syamal, A. J. Chem. Educ. 1985, 62, 143.
Coordination Compounds |
Nomenclature / Units / Symbols
A new meaning of the terms acid and base hydrolysis  Milic, Nikola B.
Suggestions for distinguishing between solvation, hydration, and solvolysis, and hydrolysis reactions that produce hydroxo and protonated complexes.
Milic, Nikola B. J. Chem. Educ. 1984, 61, 1066.
Acids / Bases |
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
A method for drawing cyclohexane chairs  Cheer, Clair J.
A method for drawing cyclohexane chairs.
Cheer, Clair J. J. Chem. Educ. 1984, 61, 947.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The emergence of stochastic theories: What are they and why are they special?  Freeman, Gordon R.
Examines the word stochastic and its opposite, deterministic, and points out why stochastic models are receiving new emphasis of late.
Freeman, Gordon R. J. Chem. Educ. 1984, 61, 944.
Kinetics |
Nomenclature / Units / Symbols
Preparation of 2-bromopentane  Howell, B. A.; Kohrman, R. E.
The conversion of 2-pentanol to 2-bromopentane offers a good illustration of the problems associated with substitution in secondary systems.
Howell, B. A.; Kohrman, R. E. J. Chem. Educ. 1984, 61, 932.
Synthesis |
Alkanes / Cycloalkanes
Metallo complexes: An experiment for the undergraduate laboratory  Kauffman, George B.; Karbassi, Mohammad; Bergerhoff, Gunter
Theory, nomenclature, structure, and preparative methods of metallic complexes; the experiment prepares several metallo complexes according to procedures modified from the literature and their properties are observed.
Kauffman, George B.; Karbassi, Mohammad; Bergerhoff, Gunter J. Chem. Educ. 1984, 61, 729.
Coordination Compounds |
Metals |
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Synthesis
Use of the world "eager" instead of "spontaneous" for the description of exergonic reactions  Hamori, Eugene; Muldrey, James E.
Difficulties with the word spontaneous and why eager is a better term.
Hamori, Eugene; Muldrey, James E. J. Chem. Educ. 1984, 61, 710.
Nomenclature / Units / Symbols |
Thermodynamics
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
To space or not to space- that is the question  Hurd, Charles D.
The use of spaces in the words "chloro acids" and "keto esters".
Hurd, Charles D. J. Chem. Educ. 1984, 61, 667.
Nomenclature / Units / Symbols |
Acids / Bases |
Esters
The evaluation of strain and stabilization in molecules using isodesmic reactions  Fuchs, Richard
The stabilities of cyclic hydrocarbons are analyzed using isodesmic and metathetical isodesmic reactions.
Fuchs, Richard J. Chem. Educ. 1984, 61, 133.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Free radical chlorination of methane: A demonstration  Conklin, Alfred R.; Kramme, Alan
Free radical reactions are very important and often discussed in chemistry. One of the first such reactions encountered by students of organic chemistry is the free radical chlorination of methane. This reaction serves to introduce the student to free radical reactions and chain reaction. In spite of its common occurrence, demonstrations of this reaction are uncommon.
Conklin, Alfred R.; Kramme, Alan J. Chem. Educ. 1983, 60, 597.
Alkanes / Cycloalkanes |
Free Radicals
Organic nomenclature: Making it a more exciting teaching and learning experience  Hambly, Gordon F.
The author shares a game that he has used with great success to help students understand organic nomenclature.
Hambly, Gordon F. J. Chem. Educ. 1983, 60, 553.
Nomenclature / Units / Symbols
Correct representation of conformational equilibria  Fulop, F.; Bernath, G.; Szabo, J. A.; Dombi, Gy
This article draws attention to a recurring error in representations of conformations of carbocyclic compounds in the literature.
Fulop, F.; Bernath, G.; Szabo, J. A.; Dombi, Gy J. Chem. Educ. 1983, 60, 95.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Degas' dancers: an illustration for rotational isomers  Hargittai, Istvan
Two drawings by Degas provide an opportunity to introduce the concepts of staggered and eclipsed conformations of A2B-BC2 molecules in a concrete, interesting, and aesthetic way.
Hargittai, Istvan J. Chem. Educ. 1983, 60, 94.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Constitutional Isomers |
Diastereomers
Lecture experiment in gas-liquid chromatography with a simple gas chromatograph at room temperature  Wollrah, Adalbert
Apparatus and method for separating mixtures of pentane / hexane and methyl chloride / carbon tetrachloride.
Wollrah, Adalbert J. Chem. Educ. 1982, 59, 1042.
Chromatography |
Separation Science |
Alkanes / Cycloalkanes
Numbers in chemical names  Fernelius, W. Conard
Discusses the various ways that numbers are used in the formulas and names of chemical compounds.
Fernelius, W. Conard J. Chem. Educ. 1982, 59, 964.
Nomenclature / Units / Symbols |
Oxidation State
An easily conducted free radical substitution for organic chemistry courses  Pavlis, Robert R.
The photobromination of 1,2-diphenylethane into its dibromo derivative, (2R) (3S) 1,2-dibromo-1,2-diphenylethane.
Pavlis, Robert R. J. Chem. Educ. 1982, 59, 658.
Free Radicals |
Reactions |
Molecular Properties / Structure |
Stereochemistry |
Diastereomers |
Photochemistry |
Alkanes / Cycloalkanes |
Aromatic Compounds
Introduction to infrared spectroscopy: A simple undergraduate experiment  Reeder, Deborah M.; Sridharan, Srinivasa
The objective is to obtain two IR spectra, one on an aliphatic compound and the other on an aromatic compound in a first-semester organic laboratory.
Reeder, Deborah M.; Sridharan, Srinivasa J. Chem. Educ. 1982, 59, 503.
Spectroscopy |
IR Spectroscopy |
Alkanes / Cycloalkanes |
Aromatic Compounds |
Molecular Properties / Structure
The separation and identification of straight chain hydrocarbons: An experiment using gas-liquid chromatography  Benson, G. A.
Gas liquid chromatography used to separate and identify a mixture of C5 to C10 straight chain hydrocarbons.
Benson, G. A. J. Chem. Educ. 1982, 59, 344.
Separation Science |
Qualitative Analysis |
Alkanes / Cycloalkanes |
Chromatography
How much cholesterol is in your body?  Chamizo G., Jose Antonio
Calculations involving the size and proportion of the body consisting of cholesterol.
Chamizo G., Jose Antonio J. Chem. Educ. 1982, 59, 151.
Nomenclature / Units / Symbols |
Lipids
The extinction coefficient: S.I. and the dilemma of its units-six options  Wigfield, Donald C.
Six options for dealing with units in regards to the extinction coefficient.
Wigfield, Donald C. J. Chem. Educ. 1982, 59, 27.
Nomenclature / Units / Symbols
An early laboratory introduction to IR spectroscopy: Gaseous deuteroalkanes  Braun, Loren L.; Law, Raymond L.
The authors have found that the preparation of deuterated gaseous alkanes is a simple experiment that is a less hazardous experiment than the popular alternatives.
Braun, Loren L.; Law, Raymond L. J. Chem. Educ. 1981, 58, 79.
Isotopes |
Alkanes / Cycloalkanes |
Grignard Reagents |
Gases
Groups and subgroups in the periodic table of the elements: A proposal of modification in the nomenclature  Araneo, Antonio
A proposal to eliminate the "A" and "B" designations of subgroups and replace them with letters referring directly to the electronic structures of atoms.
Araneo, Antonio J. Chem. Educ. 1980, 57, 784.
Periodicity / Periodic Table |
Nomenclature / Units / Symbols |
Atomic Properties / Structure
An applied exam in coordination chemistry  Pantaleo, Daniel C.
Students draw from a pool of stock chemicals and answer questions based on its formula and observed properties.
Pantaleo, Daniel C. J. Chem. Educ. 1980, 57, 669.
Coordination Compounds |
Nomenclature / Units / Symbols
Confusion over D and L Nomenclature  Yuan, Sun-Shine
The use of the (R,S) convention will eliminate (D,L) confusion.
Yuan, Sun-Shine J. Chem. Educ. 1980, 57, 528.
Amino Acids |
Stereochemistry |
Nomenclature / Units / Symbols
The effect of free radical stability on the rate of bromination of hydrocarbons  Doheny, Anthony J.; Loudon, G. Marc
The effect of alkyl free radical stability on the rate of free radical halogenation of hydrocarbons can be convincingly demonstrated by the comparative photobromination of the arenes toluene, ethylbenzene, and cumene.
Doheny, Anthony J.; Loudon, G. Marc J. Chem. Educ. 1980, 57, 507.
Free Radicals |
Reactions |
Alkanes / Cycloalkanes |
Photochemistry |
Molecular Properties / Structure
Response to Comments on "SI Units? A Camel is a Camel"  Adamson, Arthur W.
Comments on an earlier article regarding SI units.
Adamson, Arthur W. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Dingledy, David
Comments on an earlier article regarding SI units.
Dingledy, David J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Heslop, R. B.
Comments on an earlier article regarding SI units.
Heslop, R. B. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
An apologia for accepting at least an approximation to SI  Wright, P. G.
Comments on earlier articles regarding SI units.
Wright, P. G. J. Chem. Educ. 1979, 56, 663.
Nomenclature / Units / Symbols
On finding a middle ground for SI  Nelson, Robert A.
Comments on an earlier article regarding SI units.
Nelson, Robert A. J. Chem. Educ. 1979, 56, 661.
Nomenclature / Units / Symbols
Optical illusions in drawings of cyclohexane derivatives  Feldman, Martin R.
An optical illusion in the representation of chair cyclohexanes.
Feldman, Martin R. J. Chem. Educ. 1979, 56, 659.
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers |
Alkanes / Cycloalkanes
The perturbational MO method for saturated systems  Herndon, William C.
Outlines a molecular orbital approach to the problem of predicting and correlating bond dissociation energies in saturated hydrocarbons.
Herndon, William C. J. Chem. Educ. 1979, 56, 448.
MO Theory |
Alkanes / Cycloalkanes |
Free Radicals |
Mechanisms of Reactions
Conformations of substituted ethanes  Kingsbury, Charles A.
Provides a state-of-the-art view of conformational analysis, with an emphasis on sp3 hybridized acyclic molecules.
Kingsbury, Charles A. J. Chem. Educ. 1979, 56, 431.
Molecular Properties / Structure |
Conformational Analysis |
Alkanes / Cycloalkanes |
Diastereomers
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
Hey, watch your language!  Herron, J. Dudley
If we do not use our words with care, we introduce and reinforce confusion.
Herron, J. Dudley J. Chem. Educ. 1979, 56, 330.
Nomenclature / Units / Symbols
The ambit of chemistry  Vitz, Edward W.
Proposal to revise the standard definition of chemistry to one that focusses on atoms and molecules rather than simply matter.
Vitz, Edward W. J. Chem. Educ. 1979, 56, 327.
Nomenclature / Units / Symbols
Computer-assisted instruction in stereochemical configuration analysis  Bishop, Marvin; Nowak, Maria

Bishop, Marvin; Nowak, Maria J. Chem. Educ. 1979, 56, 318.
Molecular Properties / Structure |
Stereochemistry |
Conformational Analysis |
Nomenclature / Units / Symbols
Use of hand models for assigning configurational nomenclature  Garrett, James M.
A subject which often produces consternation in a beginning student in organic chemistry is that of sequential nomenclature involving chiral centers. After having studied the Cahn-Ingold-Prelog rules of nomenclature a student may be asked to examine a structure as shown in this article.
Garrett, James M. J. Chem. Educ. 1978, 55, 493.
Nomenclature / Units / Symbols |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Basic organic nomenclature  Breneman, G. L.
A series of three computer programs have been developed in the Basic Language to give students practice in naming branched alkanes, compounds with various functional groups, and benzene derivatives.
Breneman, G. L. J. Chem. Educ. 1978, 55, 224.
Nomenclature / Units / Symbols
Derivatives of oxo acids III. Functional derivatives  Fernelius, W. C.; Loening, Kurt; Adams, Roy
The authors consider some general aspects of nomenclature for the so-called functional derivatives of the inorganic oxo acids.
Fernelius, W. C.; Loening, Kurt; Adams, Roy J. Chem. Educ. 1978, 55, 30.
Acids / Bases |
Nomenclature / Units / Symbols
Selectivity and specificity in organic reactions  Ault, Addison
Distinguishes between various forms of selectivity and specificity (e.g. the us of and differences between stereoselective and stereospecific).
Ault, Addison J. Chem. Educ. 1977, 54, 614.
Reactions |
Stereochemistry |
Diastereomers |
Enantiomers |
Nomenclature / Units / Symbols
Why did Adolf Baeyer propose a planar, strained cyclohexane ring?  Ramsay, O. Bertrand
Considers the question "Why did Adolf Baeyer propose a planar, strained cyclohexane ring?"
Ramsay, O. Bertrand J. Chem. Educ. 1977, 54, 563.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Equations of electromagnetism from CGS to SI  Cvitas, T.; Kallay, N.
A general procedure for changing any CGS formula into SI.
Cvitas, T.; Kallay, N. J. Chem. Educ. 1977, 54, 530.
Nomenclature / Units / Symbols
A convenient notation for powers of ten and logarithms  Oesterreicher, H.
A convenient notation for powers of ten and logarithms that does not require superscripts.
Oesterreicher, H. J. Chem. Educ. 1977, 54, 367.
Nomenclature / Units / Symbols
Organic derivatives of oxo acids. Part I. Acids, salts, and esters of group VIA elements / Knowledge is ready cash  Fernelius, W. C.; Loening, Kurt; Adams, Roy
Nomenclature of organic derivatives of oxo acids and their salts and esters that are derived from the polybasic acids of the nonmetallic elements of Group IIIA through Group VIA.
Fernelius, W. C.; Loening, Kurt; Adams, Roy J. Chem. Educ. 1977, 54, 299.
Nomenclature / Units / Symbols |
Acids / Bases |
Esters
A Dramatic and relevant demonstration of ring strain  Kelly, T. Ross
Addition of the cyclobutane alpha-pinene to crystalline iodine results in an exceptionally exothermic reaction.
Kelly, T. Ross J. Chem. Educ. 1977, 54, 228.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Reactions
Lower valent oxo acids of phosphorus and sulfur  Fernelius, W. C.; Loening, Kurt; Adams, Roy
Reviews current practice and some of the problems with partial solutions.
Fernelius, W. C.; Loening, Kurt; Adams, Roy J. Chem. Educ. 1977, 54, 30.
Nomenclature / Units / Symbols
Isomerism about a double bond: Use of cis and trans   Fernelius, W. Conard; Loening, Kurt; Adams, Roy M.
Limitations of the cis and trans nomenclature.
Fernelius, W. Conard; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1976, 53, 727.
Diastereomers |
Nomenclature / Units / Symbols
Hydrocarbons in ambient air: A laboratory experiment  DiNardi, Salvatore R.; Briggs, Elaine S.
Students calibrate and the n use a gas chromatograph to analyze ambient air for hydrocarbons.
DiNardi, Salvatore R.; Briggs, Elaine S. J. Chem. Educ. 1975, 52, 811.
Alkanes / Cycloalkanes |
Quantitative Analysis |
Atmospheric Chemistry |
Gas Chromatography
Some reflections on the topological structure of covalent molecules  Rouvray, D. H.
Presents a method that involves a description of the possible topological structures a chemical species may adopt, subject to the constraints imposed by the valence.
Rouvray, D. H. J. Chem. Educ. 1975, 52, 768.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Names for elements  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
System for naming new, heavy elements.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1975, 52, 583.
Nomenclature / Units / Symbols
Demonstration of solubility of "immiscible" fluids  Koob, R. D.; Tallman, D. E.
Demonstrating that hexane is miscible in water.
Koob, R. D.; Tallman, D. E. J. Chem. Educ. 1973, 50, 724.
Solutions / Solvents |
Precipitation / Solubility |
Water / Water Chemistry |
Alkanes / Cycloalkanes
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
What mean these words?  Mellon, M. Guy
Examines inconsistent and questionable usage of terms and names in analytical chemistry.
Mellon, M. Guy J. Chem. Educ. 1973, 50, 690.
Nomenclature / Units / Symbols
The boat form of cyclohexane as viewed by Midwestern sailors (the author replies)  Hart, Harold
Possible confusion regarding the boat analogy in describing the positions of hydrogens in cyclohexane.
Hart, Harold J. Chem. Educ. 1973, 50, 656.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The boat form of cyclohexane as viewed by Midwestern sailors  Lyle, Gloria; Lyle, Robert E.
Possible confusion regarding the boat analogy in describing the positions of hydrogens in cyclohexane.
Lyle, Gloria; Lyle, Robert E. J. Chem. Educ. 1973, 50, 655.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Nomenclature / Units / Symbols
Structures containing cationic carbon  Dermer, O. C.; Traynham, James C.
Reviews nomenclature conventions for structures containing cationic carbon.
Dermer, O. C.; Traynham, James C. J. Chem. Educ. 1973, 50, 545.
Nomenclature / Units / Symbols |
Carbocations
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Derivatives of oxo acids. IUPAC Publications on Nomenclature. Other International Reports. SI Units  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes the nomenclature of oxo acid derivatives.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 341.
Nomenclature / Units / Symbols |
Acids / Bases
Demonstrating the nomenclature for absolute configurations in octahedral complexes  Alexander, M. Dale
Using cardboard octahedral and transparent cylinders to help students visualize the nomenclature for absolute configurations in octahedral complexes.
Alexander, M. Dale J. Chem. Educ. 1973, 50, 125.
Nomenclature / Units / Symbols |
Coordination Compounds |
Molecular Properties / Structure |
Molecular Modeling
Oxoacids and their salts  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Reviews the conventions for naming oxoacids and their salts.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 123.
Acids / Bases |
Nomenclature / Units / Symbols
Positive ions and binary compounds  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Guidelines for the names of positive ions and binary compounds; also errata from past articles in this series.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 844.
Nomenclature / Units / Symbols
How Should Abbreviations be Used? / The Second Edition of the "Red Book"  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Presents IUPAC rules regarding the use of abbreviations. New IUPAC publication.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 488.
Nomenclature / Units / Symbols
Use Of Punctuation Marks and Spaces. Order of Constituents  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes how punctuation marks and spaces are used in nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 333.
Nomenclature / Units / Symbols
Use of enclosing marks and letters  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes how parentheses, brackets, braces, and letters are used in nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 253.
Nomenclature / Units / Symbols
Magnetochemistry in SI units  Quickenden, Terence I.; Marshall, Robert C.
Explains the conversion of magnetochemical formulas from the frequently used CGS-EMU system to the International System of Units (SI).
Quickenden, Terence I.; Marshall, Robert C. J. Chem. Educ. 1972, 49, 114.
Magnetic Properties |
Nomenclature / Units / Symbols
Numbers in nomenclature  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Examines how multiplying affixes are used, particularly in inorganic nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 49.
Nomenclature / Units / Symbols
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
Inductive effects in the chlorination of 1-chlorobutane. An organic laboratory experiment  Reeves, Perry C.
The present paper describes the quantitative study of the directive effect of chlorine already present in the molecule on the orientation of incoming chlorine in the free radical halogenation of 1-chlorobutane.
Reeves, Perry C. J. Chem. Educ. 1971, 48, 636.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Conversions from cyclohexanol. An undergraduate laboratory project  Hanna, Samir B.; Wrobleski, James T.; Bohanon, Joseph T.; Peace, Bab W.
A procedure for a laboratory in conversions from cyclohexanol.
Hanna, Samir B.; Wrobleski, James T.; Bohanon, Joseph T.; Peace, Bab W. J. Chem. Educ. 1971, 48, 556.
Alkanes / Cycloalkanes |
Alcohols
The stereospecific synthesis of trans-1,4-disubstituted cyclohexanes. An organic chemistry laboratory experiment  Monson, Richard S.
The authors present a synthetic experiment suitable for the introductory organic chemistry laboratory which the introductory organic chemistry laboratory which allows for the unambiguous preparation of trans-1,4-disubstituted cyclohexane derivatives from readily available starting materials.
Monson, Richard S. J. Chem. Educ. 1971, 48, 197.
Alkanes / Cycloalkanes |
Stereochemistry |
Reactions
Organic nomenclature, I  Liotta, Charles
It is the purpose of this article to call attention to errors and misconceptions in the application of IUPAC Rules of Organic Nomenclature.
Liotta, Charles J. Chem. Educ. 1970, 47, 471.
Nomenclature / Units / Symbols |
Alkanes / Cycloalkanes |
Alcohols |
Heterocycles
Chlorination of 2,3-dimethylbutane: A quantitative organic chemistry experiment  Markgraf, J. Hodge
This paper describes the quantitative study of a free radical chlorination in which the student determines the relative reactivity of selected hydrogens.
Markgraf, J. Hodge J. Chem. Educ. 1969, 46, 610.
Quantitative Analysis |
Alkylation |
Alkanes / Cycloalkanes |
Free Radicals
Mole fraction versus molality  Creak, G. Alan
Mole fractions are not always unambiguous when used in the context of ionic solutions.
Creak, G. Alan J. Chem. Educ. 1968, 45, 622.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
Significant figures and correlation of parameters  DeTar, DeLos F.
Examines the two quite different meanings for the term significant figures as applied to the parameters of an equation.
DeTar, DeLos F. J. Chem. Educ. 1967, 44, 759.
Nomenclature / Units / Symbols
The preparation of naphthalene-alpha-d: An experiment in organic chemistry  Ziegler, Gene R.
This procedure involves the preparation of a hydrocarbon via the Grignard reagent from the corresponding bromide.
Ziegler, Gene R. J. Chem. Educ. 1967, 44, 609.
Synthesis |
Grignard Reagents |
Alkanes / Cycloalkanes
Organic nomenclature: A programmed introduction (Traynham, James G.)  Hiatt, Richard

Hiatt, Richard J. Chem. Educ. 1967, 44, 309.
Nomenclature / Units / Symbols
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
The Hofmann Rule  Freedman, Leon D.
The statement that the decomposition of tert-butyldimethyltethylammonium hydroxide yields predominantly ethylene is mistaken.
Freedman, Leon D. J. Chem. Educ. 1966, 43, 662.
Alkanes / Cycloalkanes
Calculation of molecular geometry by vector analysis: Application to six-membered alicyclic rings  Henshall, T.
Demonstrates the calculation of molecular geometry by vector analysis through an application to cyclohexane.
Henshall, T. J. Chem. Educ. 1966, 43, 600.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The MKS temperature scale  Georgian, John C.
A temperature scale to fit into the MKS system of units is proposed.
Georgian, John C. J. Chem. Educ. 1966, 43, 414.
Nomenclature / Units / Symbols
Letter to the editor  Onwood, D. P.
Discusses variations in the usage of the terms "acid" and "base," including Lowry-Bronsted and Lewis systems.
Onwood, D. P. J. Chem. Educ. 1966, 43, 335.
Acids / Bases |
Lewis Acids / Bases |
Nomenclature / Units / Symbols
Bromination of alkanes: Experiment illustrating relative reactivities and synthetic utility  Warkentin, J.
The radical halogenation of alkanes lend themselves well to the teaching of basic material such as bond dissociation energies, potential energy profiles, enthalpy of reaction, activation energy, and reaction rate.
Warkentin, J. J. Chem. Educ. 1966, 43, 331.
Electrochemistry |
Alkanes / Cycloalkanes |
Rate Law |
Kinetics |
Synthesis |
Alkenes |
Mechanisms of Reactions |
Free Radicals
Molecules versus moles  Guggenheim, E. A.
Now that the mass of molecules is known with great accuracy, there is nothing to be gained in continuing to use moles.
Guggenheim, E. A. J. Chem. Educ. 1966, 43, 250.
Stoichiometry |
Nomenclature / Units / Symbols
The bromination of anthracene  Wright, Oscar L.; Mura, Lawrence E.
This reaction illustrates the property of anthracene of adding the halogen molecule and later losing the elements of HBr to form the monobrominated hydrocarbon.
Wright, Oscar L.; Mura, Lawrence E. J. Chem. Educ. 1966, 43, 150.
Alkanes / Cycloalkanes
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
An introduction to chemical nomenclature (Cahn, R. S.)  Hurd, Charles D.

Hurd, Charles D. J. Chem. Educ. 1965, 42, 234.
Nomenclature / Units / Symbols
An MKS system of units for chemists  Strong, Frederick C.
It would be worth investigating whether the MKS system would be useful in chemistry.
Strong, Frederick C. J. Chem. Educ. 1964, 41, 621.
Nomenclature / Units / Symbols
Systematic names for the tartaric acids  Baxter, J. N.
Examines the use of the small capital letters D and L in naming tartaric acids.
Baxter, J. N. J. Chem. Educ. 1964, 41, 619.
Nomenclature / Units / Symbols |
Acids / Bases |
Carbohydrates |
Chirality / Optical Activity |
Enantiomers
Lexicon of international and national units (Clason, W. E.)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1964, 41, 519.
Nomenclature / Units / Symbols
Signs of tensions in electrochemistry  Van Rysselberghe, Pierre
Discusses conventions and definitions for electrochemical terms and relationships.
Van Rysselberghe, Pierre J. Chem. Educ. 1964, 41, 486.
Electrochemistry |
Nomenclature / Units / Symbols |
Oxidation / Reduction
An introduction to the sequence rule: A system for the specification of absolute configuration  Cahn, R. S.
This paper describes the relatively simple methods that suffice for specifying the absolute configuration of the majority of optically active organic compounds - those containing asymmetric carbon atoms.
Cahn, R. S. J. Chem. Educ. 1964, 41, 116.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nomenclature / Units / Symbols
Chromatographic glossary  Lewin, S. Z.
Presents thin layer and gas chromatography terms in English, German, French, and Spanish.
Lewin, S. Z. J. Chem. Educ. 1963, 40, A167.
Chromatography |
Separation Science |
Nomenclature / Units / Symbols |
Thin Layer Chromatography |
Gas Chromatography
Cyclobutane chemistry. 1. Structure and strain energy  Wilson, Armin; Goldhamer, David
Examines the various conformations that have been proposed for particular four-membered rings.
Wilson, Armin; Goldhamer, David J. Chem. Educ. 1963, 40, 504.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
The decarboxylation of organic acid  March, Jerry
Simple aliphatic acids (except for acetic) do not give good yields of the corresponding alkanes through decarboxylation, although many organic chemistry textbooks cite this as a general method for the preparation of alkanes.
March, Jerry J. Chem. Educ. 1963, 40, 212.
Acids / Bases |
Reactions |
Synthesis |
Alkanes / Cycloalkanes |
Carboxylic Acids
Models illustrating rotational isomerism in aliphatic chains  Hayman, H. J. G.
Describes a simple modification to Fisher-Hirschfelder-Taylor models which, without abolishing the possibility of rotation, gives additional stability to the staggered configurations of aliphatic chains.
Hayman, H. J. G. J. Chem. Educ. 1963, 40, 208.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
A versatile molecular model of cyclobutane  Wilson, Armin
Describes a versatile molecular model of cyclobutane constructed from brass tubing and used to illustrate ring strain.
Wilson, Armin J. Chem. Educ. 1962, 39, 649.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Lecture demonstration models of cycloalkanes  Schultz, Harry P.
Describes large, sturdy, lecture demonstration models of cycloalkanes.
Schultz, Harry P. J. Chem. Educ. 1962, 39, 648.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
The mole in quantitative chemistry  Copley, George Novello
The purpose of this paper is to show how the mole concept can be applied more consistently and efficiently to all aspects of quantitative chemistry.
Copley, George Novello J. Chem. Educ. 1961, 38, 551.
Stoichiometry |
Nomenclature / Units / Symbols |
Quantitative Analysis
Letters  Laughton, P. M.
A short discussion on the meaning of empirical formula.
Laughton, P. M. J. Chem. Educ. 1961, 38, 378.
Nomenclature / Units / Symbols
The general philosophy of organic nomenclature  Hurd, Charles D.
A discussion of the underlying principles of nomenclature that are basic to all systems of organic nomenclature.
Hurd, Charles D. J. Chem. Educ. 1961, 38, 43.
Nomenclature / Units / Symbols
Hydrocarbons in petroleum  Rossini, Frederick D.
Examines research and industrial processes involving the separation of petroleum into its constituent components.
Rossini, Frederick D. J. Chem. Educ. 1960, 37, 554.
Industrial Chemistry |
Applications of Chemistry |
Alkanes / Cycloalkanes |
Separation Science |
Natural Products
MolonA new concentration unit  Gillespie, R. J.; Solomons, C.
Suggests the use of the molon, defined as moles of solute per kilogram of solution.
Gillespie, R. J.; Solomons, C. J. Chem. Educ. 1960, 37, 202.
Nomenclature / Units / Symbols |
Solutions / Solvents
Conformational analysis in mobile systems  Eliel, Ernest L.
A review of conformational analysis and its application to mobile systems.
Eliel, Ernest L. J. Chem. Educ. 1960, 37, 126.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
New Prefixes for Units  
Outlines new recommendations for standardized metric prefixes.
J. Chem. Educ. 1960, 37, 85.
Nomenclature / Units / Symbols
Representation of polycyclic aromatic compounds  Bieber, Theodore I.
Reviews the representation of polycyclic aromatic compounds and the matter of pi-electron sharing by adjacent sextets.
Bieber, Theodore I. J. Chem. Educ. 1958, 35, 235.
Aromatic Compounds |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Letters  Fisher, D. Jerome
A spirited discussion regarding terminology for crystal classes.
Fisher, D. Jerome J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Letters  Donohue, Jerry
A spirited discussion regarding terminology for crystal classes.
Donohue, Jerry J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Nomenclature of phase transition  McDonald, James E.
Discusses the curious situation in which the terminology of chemistry and physics has only five words to describe the six possible transitions between three states of matter.
McDonald, James E. J. Chem. Educ. 1958, 35, 205.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Letters  Pokras, Lewis
The author proposes the term "senacule" as analagous to molecule and to be used to refer to ionic species.
Pokras, Lewis J. Chem. Educ. 1958, 35, 159.
Nomenclature / Units / Symbols
Ciphered formulas in carbohydrate chemistry  Difini, Alvaro; Neto, Jose Difini
Describes the use of schematic formulas as an aid to rapidly representing configurations for monosaccharides.
Difini, Alvaro; Neto, Jose Difini J. Chem. Educ. 1958, 35, 38.
Carbohydrates |
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Chirality / Optical Activity
Letters  Fisher, D. Jerome
The author responds to criticism of his suggestions for naming classes of crystals.
Fisher, D. Jerome J. Chem. Educ. 1957, 34, 458.
Crystals / Crystallography |
Solids |
Nomenclature / Units / Symbols
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Letters to the editor  Freedman, Jules
Commentary on the D and L convention as applied to tartaric acid.
Freedman, Jules J. Chem. Educ. 1957, 34, 362.
Acids / Bases |
Stereochemistry |
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Enrichment / Review Materials |
Chirality / Optical Activity
Letters to the editor  Pickering, Roger A.
Commentary on the D and L convention as applied to tartaric acid.
Pickering, Roger A. J. Chem. Educ. 1957, 34, 362.
Stereochemistry |
Nomenclature / Units / Symbols |
Acids / Bases |
Molecular Properties / Structure |
Enantiomers |
Chirality / Optical Activity
Assignment of D and L prefixes to the tartaric acids  Vickery, Hubert Bradford
Discusses conventions regarding the assignment of D and L prefixes to the tartaric acids.
Vickery, Hubert Bradford J. Chem. Educ. 1957, 34, 339.
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Nomenclature / Units / Symbols
Letters to the editor  Donohue, Jerry
Commentary of the terminology of crystal classes.
Donohue, Jerry J. Chem. Educ. 1957, 34, 310.
Solids |
Crystals / Crystallography |
Nomenclature / Units / Symbols
Assignment of D and L prefixes to the tartaric acids: The Wohl conventions  Abernethy, John Leo
Examines the Wohl system for designating dextro- and levorotatory tartaric acids.
Abernethy, John Leo J. Chem. Educ. 1957, 34, 150.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Acids / Bases
Assignment of D and L prefixes to the tartaric acids: An unsettled stereochemical question  Nenitzescu, Costin D.
Examines the Wohl and Freudenberg systems of designating dextro- and levorotatory tartaric acids.
Nenitzescu, Costin D. J. Chem. Educ. 1957, 34, 147.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Acids / Bases |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Letters to the editor  Gorin, George
Amplifies the discussion of proper configurational prefixes for the tartaric acids.
Gorin, George J. Chem. Educ. 1956, 33, 478.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Letters to the editor  Foster, Laurence S.
Thanks a reader for pointing out a misstatement in an earlier article involving atomic mass units and avograms.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Letters to the editor  Mayper, Stuart A.
Points out a misstatement in an earlier article involving atomic mass units and avograms.
Mayper, Stuart A. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Some difficulties and common errors related to the designation of sugar configurations  Abernethy, John Leo
Examines some difficulties and common errors related to the designation of sugar configurations.
Abernethy, John Leo J. Chem. Educ. 1956, 33, 88.
Carbohydrates |
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Letters to the editor  Weiner, Samuel
Discusses some of the semantic confusions that plague teaching in chemistry.
Weiner, Samuel J. Chem. Educ. 1955, 32, 646.
Nomenclature / Units / Symbols
A mnemonic for dicarboxylic acids  Cox, Gerald J.
This short note provides a mnemonic for the names of the dicarboxylic acids.
Cox, Gerald J. J. Chem. Educ. 1955, 32, 363.
Acids / Bases |
Nomenclature / Units / Symbols |
Carboxylic Acids
A notation for the study of certain stereochemical problems  Newman, Melvin S.
Newman introduces the projections of compounds containing two adjacent asymmetric carbons that would later bear his name.
Newman, Melvin S. J. Chem. Educ. 1955, 32, 344.
Nomenclature / Units / Symbols |
Stereochemistry |
Molecular Properties / Structure |
Conformational Analysis |
Chirality / Optical Activity
Trends in chemical education  Currier, Arnold J.
Topics examined include chemical nomenclature, the organization of subject matter in chemistry, carbon chemistry versus qualitative analysis, the laboratory versus the textbook, and supplies in chemistry teachers.
Currier, Arnold J. J. Chem. Educ. 1955, 32, 286.
Nomenclature / Units / Symbols |
Qualitative Analysis
A mnemonic acid for aldoses  Deloach, Will S.; Brandon, Ann
Presents a mnemonic aid for remembering the D-aldoses (through the hexoses).
Deloach, Will S.; Brandon, Ann J. Chem. Educ. 1955, 32, 136.
Nomenclature / Units / Symbols |
Carbohydrates
Letters to the editor  Steinhardt, Ralph G., Jr.
The author replies to a commentary on his earlier article regarding the definition of "spectrum."
Steinhardt, Ralph G., Jr. J. Chem. Educ. 1954, 31, 217.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Rosenbaum, E. J.
Commentary on an earlier article regarding the definition of "spectrum."
Rosenbaum, E. J. J. Chem. Educ. 1954, 31, 216.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
The organization of subject matter in elementary organic chemistry  MacKenzie, Charles A.
Describes a curricular approach in which aliphatic and aromatic compounds are treated simultaneously rather than separately.
MacKenzie, Charles A. J. Chem. Educ. 1953, 30, 243.
Aromatic Compounds |
Alkanes / Cycloalkanes
Aspects of isomerism and mesomerism. I. (a) Formulas and their meaning (b) Mesomerism  Bent, Richard L.
Examines molecular, empirical, structural, configurational, and projection formulas, as well as mesomerism (electronic isomers) and various types of resonance.
Bent, Richard L. J. Chem. Educ. 1953, 30, 220.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Letters  Azcuenaga-Chacon, J. V.
The author suggests that valence electrons be called "valentrons."
Azcuenaga-Chacon, J. V. J. Chem. Educ. 1953, 30, 155.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The mechanisms of the reactions of aliphatic hydrocarbons  Schmerling, Louis
Examines the formation of carbonium ions and free radicals, the polymerization of olefins, hydrogen-halogen exchange, the condensation of haloalkanes with alkenes, the alkylation of paraffins, the condensation of paraffins with chloroolefins, the cracking of paraffins and olefins, and the isomerization of paraffins.
Schmerling, Louis J. Chem. Educ. 1951, 28, 562.
Mechanisms of Reactions |
Alkanes / Cycloalkanes |
Free Radicals |
Polymerization