TIGER

Journal Articles: 76 results
Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems  Valerio Magnasco
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H2+, H2, He2+, and He2 gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region.
Magnasco, Valerio. J. Chem. Educ. 2008, 85, 1686.
Atomic Properties / Structure |
Computational Chemistry |
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Valence Bond Theory
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
Relativistic Effects and the Chemistry of the Heaviest Main-Group Elements  John S. Thayer
The heaviest main-group elements often show markedly different chemical properties than their lighter counterparts. Most of these differences arise from changes in the relative energies of the outer-shell atomic orbitals that can be explained by application of Einstein's theory of special relativity to electrons in atoms.
Thayer, John S. J. Chem. Educ. 2005, 82, 1721.
Main-Group Elements |
Atomic Properties / Structure |
Metals |
Organometallics |
Periodicity / Periodic Table
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Measurement of the Isotopic Ratio of 10B/11B in NaBH4 by 1H NMR  Murray Zanger and Guillermo Moyna
A simple and remarkably accurate method for estimating the isotopic ratio between 10B and 11B through the use of 1H nuclear magnetic resonance (NMR) spectroscopy is presented. The experiment relies on the splitting caused by 10B (I = 3) and 11B (I = 3/2) on the 1H signal of a proton directly bound to boron, a phenomenon readily observed on an aqueous sample of NaBH4. In combination with a brief lecture or prelaboratory presentation, this laboratory can serve to introduce students to magnetic properties as well as theoretical and experimental aspects of NMR spectroscopy as early as the freshman-level chemistry.
Zanger, Murray; Moyna, Guillermo. J. Chem. Educ. 2005, 82, 1390.
Instrumental Methods |
Magnetic Properties |
NMR Spectroscopy |
Atomic Properties / Structure |
Isotopes
Ionization Energies of Atoms and Atomic Ions  Peter F. Lang and Barry C. Smith
Explanations for the apparently irregular first and second ionization energies of transition and inner transition elements.
Lang, Peter F.; Smith, Barry C. J. Chem. Educ. 2003, 80, 938.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements |
Inner Transition Elements
The Noble Gas Configuration—Not the Driving Force but the Rule of the Game in Chemistry  Roland Schmid
Explains the covalent and ionic bonding behavior of main-group elements in terms of electromagnetic forces rather than the supposed "stability" of noble-gas configurations.
Schmid, Roland. J. Chem. Educ. 2003, 80, 931.
Molecular Modeling |
Periodicity / Periodic Table |
Main-Group Elements |
Atomic Properties / Structure |
Reactions |
Covalent Bonding |
Ionic Bonding
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Response to Lowe's Potential-Energy-Only Models  Lowe, John P.
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Lowe, John P. J. Chem. Educ. 2002, 79, 430.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Lowe's Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 429.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Response to Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Example of buffering power in deviations of the pH of sodium acetate from calculated values.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 29.
Acids / Bases |
Carboxylic Acids |
pH |
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Comments on Kinetic, Potential, and Ionization Energies  John P. Lowe
Despite the importance of kinetic energy changes in ionization processes, it is not necessary to explicitly include them when modeling ionization energies: the virial theorem allows one to use potential-energy-only models. A simple potential-energy-only model calculation of the ionization energies of sulfur illustrates the shell structure of this atom.
Lowe, John P. J. Chem. Educ. 2000, 77, 155.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
The Ubiquitous Metaphors of Chemistry Teaching  Herbert Beall
The understanding and the confusion resulting from any scientific metaphor thus have to be considered when it is used. For example, a common chemical metaphor for the electron distribution about an atom is a cloud. Some of the entailments of this metaphor are apt, such as the diffuse nature of a cloud. Others, such as the ability of a cloud to evaporate, are not appropriate.
Beall, Herbert. J. Chem. Educ. 1999, 76, 366.
Atomic Properties / Structure
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Deducing the Shell Model from Ionization Energies and the Use of Models in Introductory Chemistry  Ronald J. Gillespie, Richard S. Moog, and James N. Spencer
A major objection of Rioux and DeKock is the statement in the authors' earlier paper that electron repulsion is responsible for the relative ionization energies of H and He. The commentators work clearly shows that a quantum mechanical treatment of this problem reveals that kinetic energy considerations play a crucial role in these values. However, although their criticism is appropriate in the context of this more sophisticated QM treatment, it does not in any way invalidate the authors original paper, the goal of which was to provide a model, namely the shell model, for the electronic structure of atoms that is consistent with experimental ionization energies.
Gillespie, Ronald J.; Moog, Richard S.; Spencer, James N. J. Chem. Educ. 1998, 75, 539.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
The Crucial Role of Kinetic Energy in Interpreting Ionization Energies  Frank Rioux and Roger L. DeKock
The experimental ratio of the ionization energies of H and He is 1.81. The authors show that it is not correct to interpret this ratio using a classical Coulombic potential energy model. Rather a quantum mechanical model is required in which both kinetic and potential energy play a role.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 1998, 75, 537.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
The Role of Electrostatic Effects in Organic Chemistry  Kenneth B. Wiberg
Electrostatic effects on the properties of organic compounds are reviewed to demonstrate the importance of electronegativity differences between the atoms forming a bond. Bond dissociation energies are generally found to increase as the electronegativity difference increases, and the bonds have increased ionic character.
Wiberg, Kenneth B. J. Chem. Educ. 1996, 73, 1089.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
Three-Dimensional Graphical Visualization of One-Electron Atomic Orbitals  Ramachandran, B.; Kong, P. C.
173. Bits and pieces, 53. Software to produce contour plots of atomic orbitals.
Ramachandran, B.; Kong, P. C. J. Chem. Educ. 1995, 72, 406.
Atomic Properties / Structure
Where the Electrons Are  Barth, Roger
173. Bits and pieces, 53. Software for realistic modeling of electronic orbitals using contour plots of probability densities.
Barth, Roger J. Chem. Educ. 1995, 72, 401.
Atomic Properties / Structure
The Hydride Ion and Its Loosely Bound Outer Electron  Li, Wai-Kee
The author is giving credit for a conclusion on the electron configuration of the hydrogen atom that was incorrectly referenced to him.
Li, Wai-Kee J. Chem. Educ. 1994, 71, 1098.
Atomic Properties / Structure
Instability of Large Nuclides with Respect to Decay by alpha-Particle Emission  Logan, S. R.
Criterion for predicting decay by alpha-particle emission and nuclear binding energy as a function of mass number.
Logan, S. R. J. Chem. Educ. 1994, 71, 888.
Nuclear / Radiochemistry |
Atomic Properties / Structure
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
Electronegativity and atomic charge  Reed, James L.
Because electronegativity is such a fundamental concept, it should be continually developed in sophistication throughout the curriculum; considers the energy function, atomic charges, and chemical reactivities.
Reed, James L. J. Chem. Educ. 1992, 69, 785.
Atomic Properties / Structure
More about the particle-in-a-box system: The confinement of matter and the wave-particle dualism  Volkamer, Klaus; Lerom, Michael W.
Since the particle-in-a-box system (PIB model) is mathematically so simple, it can be used to provide illustrations of many important quantum mechanical concepts without obscuring the principles with mathematical details.
Volkamer, Klaus; Lerom, Michael W. J. Chem. Educ. 1992, 69, 100.
Quantum Chemistry |
Atomic Properties / Structure
Calculating percent boundary surfaces for hydrogenlike s orbitals - An undergraduate computer assignment  Schwartz, Leslie J.
115. Bits and pieces, 44. This article describes a student programming exercise to calculate percent boundary surfaces for s orbitals.
Schwartz, Leslie J. J. Chem. Educ. 1990, 67, 504.
Quantum Chemistry |
Atomic Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
From "electrum" to positronium  Kragh, Helge
The present paper outlines the early history of the positronium concept, roughly from 1934 to the discovery in 1951.
Kragh, Helge J. Chem. Educ. 1990, 67, 196.
Atomic Properties / Structure |
Quantum Chemistry
Teaching the shapes of the hydrogenlike and hybrid atomic orbitals  Allendoerfer, Robert D.
The purpose of this article to show that, in this age of computer graphics, the "difficult to obtain" argument no longer has merit and to give an example of where the standard treatment gives insufficient attention to detail in describing the nodal surfaces of hybrid orbitals.
Allendoerfer, Robert D. J. Chem. Educ. 1990, 67, 37.
Atomic Properties / Structure
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
Approximation of spherical polyatomic thermochemical radii of general formula MXnz-  Solis Correa, Hugo; Gomez Lara, Jacabo
A method to calculate the approximate thermochemical radii for polyatomic ions of general formula MXnz-.
Solis Correa, Hugo; Gomez Lara, Jacabo J. Chem. Educ. 1987, 64, 942.
Atomic Properties / Structure
Electron spectroscopic methods in teaching  Allan, Michael
Presents several spectra in a format suitable for teaching applications with the intention of promoting the use of electron energy-loss spectroscopy in teaching the electronic structure of atoms and molecules at an elementary level.
Allan, Michael J. Chem. Educ. 1987, 64, 418.
Spectroscopy |
Quantum Chemistry |
Photochemistry |
Atomic Properties / Structure |
Molecular Properties / Structure |
MO Theory
The squeezed-earth problem   Rhodes, Gale
This take-home-exam question promotes a discussion in class and demonstrates the conceptual difficulties in understanding protons and neutrons.
Rhodes, Gale J. Chem. Educ. 1986, 63, 970.
Atomic Properties / Structure |
Solid State Chemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
4s Sometimes is below 3d - the author replies  Pilar, Frank L.
Reply to criticism of original article.
Pilar, Frank L. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
4s Sometimes is below 3d  Carlton, Terry S.
Seeks to correct flaws in cited article.
Carlton, Terry S. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
Theoretical justification of Madelung's rule  Wong, D. Pan
Provides theoretical and physical meaning to the sequence of filling electron shells of neutral atoms in the periodic table dictated by Madelung's rule.
Wong, D. Pan J. Chem. Educ. 1979, 56, 714.
Atomic Properties / Structure |
Periodicity / Periodic Table
Electrons, bonding, orbitals, and light: A unified approach to the teaching of structure and bonding in organic chemistry courses  Lenox, Ronald S.
A suggested list of topics and methods for teaching introductory organic students bonding concepts.
Lenox, Ronald S. J. Chem. Educ. 1979, 56, 298.
Atomic Properties / Structure |
Lewis Structures |
Spectroscopy |
Covalent Bonding
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
The "anomalous" ionization potential of bismuth  Smith, Derek, W.
Draws attention to a less well known anomaly in atomic ionization potentials and offers an explanation, considering particularly the "anomalous" ionization potential of bismuth.
Smith, Derek, W. J. Chem. Educ. 1975, 52, 576.
Atomic Properties / Structure |
Periodicity / Periodic Table
Regularities and relations among ionization potentials of nontransition elements  Liebman, Joel F.
Provides several semiempirical procedures for investigating ionization potentials.
Liebman, Joel F. J. Chem. Educ. 1973, 50, 831.
Atomic Properties / Structure |
Periodicity / Periodic Table
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Transparent 3-D models of electron probability distributions  McClellan, A. L.
The authors describe transparent, three-dimensional models in which regions of high electron probability seem to float in space, without definite boundaries and with the "internal" variations of probability density clearly visible.
McClellan, A. L. J. Chem. Educ. 1970, 47, 761.
Atomic Properties / Structure |
Molecular Modeling
Nuclear overlapping of s electrons  McMillan, J. A.; Halpern, T.
Reviews the basic theory underlying electron configurations and interprets the electronic density at the nucleus of the s orbitals plotted as a function of atomic number.
McMillan, J. A.; Halpern, T. J. Chem. Educ. 1970, 47, 644.
Atomic Properties / Structure |
Periodicity / Periodic Table
Forces and quantum field theory  Brescia, Frank
This article seeks to explain the nature of forces between nucleons in terms of the quantum field theory for the general reader using a simple analogy.
Brescia, Frank J. Chem. Educ. 1970, 47, 642.
Quantum Chemistry |
Atomic Properties / Structure
Role of f electrons in chemical binding  Johnson, O.
Data presented suggests that f electrons, by their ineffective screening of the nuclear charge, exert an indirect effect on the binding strength of actions.
Johnson, O. J. Chem. Educ. 1970, 47, 431.
Atomic Properties / Structure |
Metals |
Transition Elements
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Contour diagrams for relativistic orbitals  Szabo, Attila
The purpose of this article is to amplify an earlier JCE article regarding taking pictorial representations of atomic orbitals too literally.
Szabo, Attila J. Chem. Educ. 1969, 46, 678.
Atomic Properties / Structure
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
V - Atomic orbitals  Berry, R. Stephen
Examines atomic orders of magnitude and the Bohr atom, matter waves, one- and many-electron systems, and the correlation problem.
Berry, R. Stephen J. Chem. Educ. 1966, 43, 283.
Atomic Properties / Structure |
Quantum Chemistry
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
On the shapes of f orbitals  Ogryzlo, E. A.
Contour plots are a more appropriate representation of an f orbital than polar plots.
Ogryzlo, E. A. J. Chem. Educ. 1965, 42, 150.
Atomic Properties / Structure
Simplified d orbital models assist in teaching coordination concepts  Nicholson, Douglas G.
Presents a three-dimensional model, containing representatives of all lobes of the five d orbitals, prepared for each of the tetrahedral, square planar, and octahedral coordination configurations.
Nicholson, Douglas G. J. Chem. Educ. 1965, 42, 148.
Atomic Properties / Structure |
Coordination Compounds
Shapes of atoms  Johnson, Ronald C.; Rettew, R. R.
Examines the shapes of various atoms as a function of occupied orbitals.
Johnson, Ronald C.; Rettew, R. R. J. Chem. Educ. 1965, 42, 145.
Atomic Properties / Structure
Domain representations of orbitals  Adamson, Arthur W.
Presents orbital domains and physical models to represent them as a more accurate way of visualizing atoms.
Adamson, Arthur W. J. Chem. Educ. 1965, 42, 140.
Atomic Properties / Structure
Behavior of electrons in atoms: Structure, spectra, and photochemistry of atoms (Hochstrasser, Robin M.)  Gregory, N. W.

Gregory, N. W. J. Chem. Educ. 1965, 42, 62.
Atomic Properties / Structure |
Photochemistry |
Spectroscopy |
Quantum Chemistry
Precise atomic and molecular models  Adler, Alan D.; Steele, William J.
Presents designs for skeletal or lattice and space-filling models
Adler, Alan D.; Steele, William J. J. Chem. Educ. 1964, 41, 656.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
The shapes of the f orbitals  Friedman, H. G., Jr.; Choppin, G. R.; Feuerbacher, D. G.
Presents pictures of the f orbitals and discusses their ligand field splitting.
Friedman, H. G., Jr.; Choppin, G. R.; Feuerbacher, D. G. J. Chem. Educ. 1964, 41, 354.
Atomic Properties / Structure |
Crystal Field / Ligand Field Theory
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Electronic configuration of metal oxides  O'Reilly, D. E.
Examines the properties of metal oxides in light of crystal field theory, covalency, catalysis, and energy bands.
O'Reilly, D. E. J. Chem. Educ. 1961, 38, 312.
Atomic Properties / Structure |
Metals |
Transition Elements |
Crystal Field / Ligand Field Theory |
Catalysis
The shape of the 2p and related orbitals  Cohen, Irwin
Some texts mistake graphs of the angular variation of the 2p and related wave functions for actual geometric descriptions of these orbitals.
Cohen, Irwin J. Chem. Educ. 1961, 38, 20.
Atomic Properties / Structure
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
The structure of the nucleus  Flowers, B. H.
Describes the liquid drop, shell, and optical models of the atomic nucleus.
Flowers, B. H. J. Chem. Educ. 1960, 37, 610.
Atomic Properties / Structure
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Atomic and molecular orbital models  Lambert, Frank L.
Describes the design and use of atomic and molecular orbital models made from styrofoam.
Lambert, Frank L. J. Chem. Educ. 1957, 34, 217.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Electronegativities in inorganic chemistry: (II)  Sanderson, R. T.
The purpose of this paper is to demonstrate the application of electronegativity to ions and the estimation of the partial charge on combined atoms.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 2.
Atomic Properties / Structure
Electronegativities in inorganic chemistry  Sanderson, R. T.
This is the first of a series of short papers intended to demonstrate the application of a broadened concept of electronegativity toward explaining chemistry.
Sanderson, R. T. J. Chem. Educ. 1952, 29, 539.
Atomic Properties / Structure