TIGER

Journal Articles: 652 results
The Electrochemical Synthesis of Transition-Metal Acetylacetonates  S. R. Long, S. R. Browning, and J. J. Lagowski
The electrochemical synthesis of transition-metal acetylacetonates can assist in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but each student has a personal responsibility for the synthesis and characterization of a specific compound.
Long, S. R.; Browning, S. R.; Lagowski, J. J. J. Chem. Educ. 2008, 85, 1429.
Coordination Compounds |
Electrochemistry |
IR Spectroscopy |
Physical Properties |
Synthesis |
Transition Elements |
UV-Vis Spectroscopy
New Observations on the Copper-to-Silver-to-Gold Demonstration  Dorin Bejan, Jeff Hastie, and Nigel J. Bunce
This analysis of the classic copper-to-silver-to-gold demonstration describes the deposition of zinc in the form of the silver-colored alloy ?-brass, the evolution of hydrogen at the copper cathode, and the behavior of the associated electrochemical cell.
Bejan, Dorin; Hastie, Jeff; Bunce, Nigel J. J. Chem. Educ. 2008, 85, 1381.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Oxidation State |
Oxidation / Reduction
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Appreciating Oxygen  Hilton M. Weiss
Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that powers life on earth.
Weiss, Hilton M. J. Chem. Educ. 2008, 85, 1218.
Bioenergetics |
Metabolism |
Oxidation / Reduction |
Photosynthesis |
Thermodynamics
Undergraduates' Understanding of Entropy  Arnd H. Jungermann
Szbilir and Bennett carried out an extensive investigation on undergraduates understanding of entropy. Though I agree in general with their statements that orderdisorder arguments form a misleading entropy concept, I would like to make some comments with regard to a certain part of their online supplement.
Jungermann, Arnd H. J. Chem. Educ. 2008, 85, 1192.
Thermodynamics
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?  João C. M. Paiva, Jorge Gonçalves, and Susana Fonseca
This article examines three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?"
Paiva, João C. M.; Gonçalves, Jorge; Fonseca, Susana. J. Chem. Educ. 2008, 85, 1133.
Equilibrium |
Gases |
Thermodynamics
An Updated Equilibrium Machine  Emeric Schultz
Describes a device that can demonstrate equilibrium and the Le Châtelier principle, as well as kinetic and thermodynamic concepts. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when various air pressures are applied by the blower.
Schultz, Emeric. J. Chem. Educ. 2008, 85, 1131.
Equilibrium |
Kinetics |
Thermodynamics
An Inexpensive Solution Calorimeter  Emma Kavanagh, Sam Mindel, Giles Robertson, and D. E. Peter Hughes
Describes the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element, that has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute.
Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter. J. Chem. Educ. 2008, 85, 1129.
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
Energy  John W. Moore
Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. Slides, text, and streaming audio/video are available at his Web site. There is much in this presentation that could (and should) be incorporated into chemistry pedagogy.
Moore, John W. J. Chem. Educ. 2008, 85, 891.
Thermodynamics
EQVAPSIM: A Vapor–Liquid Equilibria of Binary Systems Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
Reports the results of a program using LabVIEW software to simulate the construction of a phase diagram representing a liquidvapor equilibrium. The program models work in a real laboratory, including mistakes commonly made in this context.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2008, 85, 879.
Equilibrium |
Thermodynamics |
Student-Centered Learning
Prussian Blue: Artists' Pigment and Chemists' Sponge  Mike Ware
The variable composition of Prussian blue tantalized chemists until investigations by X-ray crystallography in the late 20th century explained its many properties and uses.
Ware, Mike. J. Chem. Educ. 2008, 85, 612.
Applications of Chemistry |
Coordination Compounds |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Photochemistry |
Toxicology
Metal Electrodeposition on an Integrated, Screen-Printed Electrode Assembly  Yieu Chyan and Oliver Chyan
Screen-printed, carbon strip electrodes illustrate the essential concepts of electrochemistry and electrodeposition; their light weight facilitates sensitive measurements of electrodeposited metal, allowing for the exploration of Faraday's law and electrodeposition efficiency.
Chyan, Yieu; Chyan, Oliver. J. Chem. Educ. 2008, 85, 565.
Electrochemistry |
Metals |
Oxidation / Reduction |
Quantitative Analysis
Easy-To-Make Cryophoruses  Rubin Battino and Trevor M. Letcher
This article describes some simple and easy-to-make cryophoruses, ideal for demonstrating evaporative cooling to students at all levels.
Battino, Rubin; Letcher, Trevor M. J. Chem. Educ. 2008, 85, 561.
Lipids |
Physical Properties |
Thermodynamics |
Liquids
Yet Another Variation on the Electrolysis of Water at Iron Nails  Mark T. Stauffer and Justin P. Fox
Describes a variation on the electrolysis of water with iron nails in which a sharp contrast in the colors produced effectively demonstrates electrolysis and the diffusion of oxidized and reduced species from the electrodes.
Stauffer, Mark T.; Fox, Justin P. J. Chem. Educ. 2008, 85, 523.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry |
Electrolytic / Galvanic Cells / Potentials
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker  Monica Galleano, Alberto Boveris, and Susana Puntarulo
Describes a laboratory exercise to understand the effect of pressure on phase equilibrium as described by the ClausiusClapeyron equation. The equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and the temperature of the chamber containing the water heated until vaporization.
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana. J. Chem. Educ. 2008, 85, 276.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry
A Lab Experience To Illustrate the Physicochemical Principles of Detergency  J. A. Poce-Fatou, M. Bethencourt-Núñez, C. Moreno, F. J. Moreno-Dorado, and J. J. Pinto-Ganfornina
This article presents a lab to study the role of a surfactant and builder in laundry detergent efficiency as determined through measurements of the diffuse reflectances of polyester samples impregnated with linseed oil.
Poce-Fatou, J. A.; Bethencourt-Núñez, M.; Moreno, C.; Moreno-Dorado, F. J.; Pinto-Ganfornina, J. J. J. Chem. Educ. 2008, 85, 266.
Aqueous Solution Chemistry |
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Micelles |
Surface Science |
Thermodynamics
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics  Frank B. Ellis and David C. Ellis
This article details demonstrations that show how equilibrium changes with temperature, energy, and entropy and involve exothermic and endothermic reactions, the dynamic nature of equilibrium, and Le Châtelier's principle.
Ellis, Frank B.; Ellis, David C. J. Chem. Educ. 2008, 85, 78.
Equilibrium |
Kinetics |
Statistical Mechanics |
Thermodynamics
Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells  Michelle M. Ivey and Eugene T. Smith
Using a battery and a graphite electrode, an electrolytic cell is constructed to generate a layer of tarnish on silverware. Students then determine that the tarnish can be removed by electrochemically converting it back to silver using aluminum foil and baking soda.
Ivey, Michelle M.; Smith, Eugene T. J. Chem. Educ. 2008, 85, 68.
Consumer Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating?   Shui-Ping Yang
This article describes a guided inquiry and problem solving experiment in which students use a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron wires and nails.
Yang, Shui-Ping. J. Chem. Educ. 2007, 84, 1792.
Aqueous Solution Chemistry |
Consumer Chemistry |
Electrochemistry |
Gases |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Rate Law
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
A Fast Coulometric Estimation of Avogadro's Number  Nicholas C. Thomas
Using simple materials found in any high school or college laboratory, an electrochemical method of determining Avogadro's number is presented.
Thomas, Nicholas C. J. Chem. Educ. 2007, 84, 1667.
Electrochemistry |
Gases
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer–Lambert Law  Tina H. Huang, Gail Salter, Sarah L. Kahn, and Yvonne M. Gindt
In this simple experiment, which illustrates the Nernst equation and BeerLambert law, students monitor the reduction of ferricyanide ion to ferrocyanide electrochemically and spectrophoto-metrically upon titration with ascorbic acid. The Nernst equation is used to calculate the standard reduction potential of the redox couple at pH 7 and the number of electrons transferred.
Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M. J. Chem. Educ. 2007, 84, 1461.
Coordination Compounds |
Electrochemistry |
Potentiometry |
Spectroscopy |
UV-Vis Spectroscopy
Mercury Beating Heart: Modifications to the Classical Demonstration  Metodija Najdoski, Valentin Mirceski, Vladimir M. Petruševski, and Sani Demiri
The classic mercury beating heart demonstration is modified with various electrolytes.
Najdoski, Metodija; Mirceski, Valentin; Petruševski, Vladimir M.; Demiri, Sani. J. Chem. Educ. 2007, 84, 1292.
Electrochemistry |
Oxidation / Reduction |
Surface Science
Building a Low-Cost, Six-Electrode Instrument To Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles  Ralph W. Gerber and Maria Oliver-Hoyo
The multimeter testing apparatus described is an inexpensive and easy to construct analogdigital meter that can be used for quantitative measurements of self-assembled gold monolayers.
Gerber, Ralph W.; Oliver-Hoyo, Maria. J. Chem. Educ. 2007, 84, 1177.
Laboratory Equipment / Apparatus |
Nanotechnology |
Surface Science |
Electrochemistry
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
Peer-Developed and Peer-Led Labs in General Chemistry  Lorena Tribe and Kim Kostka
Describes a student-developed and led laboratory curriculum as a model for producing a more student-centered and rich laboratory experience in general chemistry laboratories.
Tribe, Lorena; Kostka, Kim. J. Chem. Educ. 2007, 84, 1031.
Acids / Bases |
Electrochemistry |
Equilibrium |
Kinetics |
Laboratory Management |
Thermodynamics |
Student-Centered Learning
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Textbook Error: Short Circuiting an Electrochemical Cell  Judith M. Bonicamp and Roy W. Clark
Reports a serious error in the electrochemical diagrams in eight, 21st century texts and offers an analogy to electrical potential energy and a diagram to clarify the interrelationships between electromotive force E, reaction quotient Q, and Gibbs free energy G.
Bonicamp, Judith M.; Clark, Roy W. J. Chem. Educ. 2007, 84, 731.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Exploring Faraday's Law of Electrolysis Using Zinc–Air Batteries with Current Regulative Diodes  Masahiro Kamata and Miei Paku
Describes a new educational experiment using low-cost zincair batteries and current regulative diode arrays to quickly confirm Faraday's law of electrolysis.
Kamata, Masahiro; Paku, Miei. J. Chem. Educ. 2007, 84, 674.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Oxidation / Reduction
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
A Lemon Cell Battery for High-Power Applications  Kenneth R. Muske, Christopher W. Nigh, and Randy D. Weinstein
This article discusses the development of a lemon cell battery for high-power applications such as radios, portable cassette or CD players, and battery-powered toys.
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D. J. Chem. Educ. 2007, 84, 635.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
A Simple and Inexpensive Salt Bridge for Demonstrations Involving a Galvanic Cell  Charles A. Liberko
A saturated sponge is a quick, economical, and reliable way to allow ions to transfer between the two half cells in a galvanic cell.
Liberko, Charles A. J. Chem. Educ. 2007, 84, 597.
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
Cp/Cv Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology  Mario Branca and Isabella Soletta
The values ? = Cp /Cv (heat capacity at a constant pressure / heat capacity at constant volume) for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of sound through these gases at room temperature using Calculator-Based Laboratory Technology.
Branca, Mario; Soletta, Isabella. J. Chem. Educ. 2007, 84, 462.
Gases |
Thermodynamics |
Physical Properties
Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (Ksp) of Potassium Hydrogen Phthalate  Frazier W. Nyasulu, William Cusworth III, David Lindquist, and John Mackin
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate. From these data the solubility products, the Gibbs free energies of solution, the standard enthalpy of solution, and the standard entropy of solution are calculated.
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John. J. Chem. Educ. 2007, 84, 456.
Acids / Bases |
Atomic Properties / Structure |
Spectroscopy |
Equilibrium |
Quantitative Analysis |
Thermodynamics |
Titration / Volumetric Analysis |
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Spectroscopy
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons  Ronald DAmelia, Thomas Franks, and William F. Nirode
Differential scanning calorimetry (DSC) is a rugged, easy-to-use instrumental method for thermal analysis determinations. The work described herein discusses the use of DSC in a general chemistry laboratory course to determine thermal properties such as melting points, ?fusionH, ?fusionS, and introduce the concept of polymorphism for organic hydrocarbons.
DAmelia, Ronald; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2007, 84, 453.
Alkanes / Cycloalkanes |
Instrumental Methods |
Physical Properties |
Thermal Analysis |
Thermodynamics |
Calorimetry / Thermochemistry
Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria  Thomas H. Bindel
This activity explores the thermodynamics of simultaneous, consecutive equilibria and is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing) reaction can be caused to happen if it is coupled with a product-favored reaction of sufficient entropy production.
Bindel, Thomas H. J. Chem. Educ. 2007, 84, 449.
Acids / Bases |
Equilibrium |
Thermodynamics
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
An Easy Way to Personalize Your Iron or Stainless Steel Items  Ejaz ur Rehman
Describes a simple and useful method for permanently labeling metallic items by the application of alternating current through a mask.
Rehman, Ejaz ur. J. Chem. Educ. 2007, 84, 40.
Electrochemistry |
Oxidation / Reduction
Effectiveness of Conceptual Change-Oriented Teaching Strategy To Improve Students' Understanding of Galvanic Cells  Ali Riza Özkaya, Musa Üce, Hakan Sariçayir, and Musa Sahin
This article presents efforts to develop a conceptual change-oriented strategy to teaching galvanic cells in electrochemistry. The objective is to assess the effectiveness of conceptual change-oriented instruction relative to conventional instruction using statistical comparisons.
Özkaya, Ali Riza; Üce, Musa; Sariçayir, Hakan; Sahin, Musa. J. Chem. Educ. 2006, 83, 1719.
Electrochemistry |
Equilibrium |
Oxidation / Reduction |
Undergraduate Research
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Teaching Physical Chemistry Experiments with a Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
This article reports on a computer simulation developed with the software LabVIEW of the physical chemistry experiment regarding the vapor pressure measurements of a pure liquid as a function of temperature, as well as a system of data collecting that emphasizes the similarities between the virtual and real experiment.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2006, 83, 1353.
Equilibrium |
Laboratory Computing / Interfacing |
Liquids |
Thermodynamics |
Gases |
Student-Centered Learning
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
The Synthesis of Copper(II) Carboxylates Revisited  Kevin Kushner, Robert E. Spangler, Ralph A. Salazar, Jr., and J. J. Lagowski
Describes an electrochemical synthesis of copper(II) carboxylates for use in the general chemistry laboratory course for chemistry majors.
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J. J. Chem. Educ. 2006, 83, 1042.
Carboxylic Acids |
Coordination Compounds |
Electrochemistry |
Metals |
Solutions / Solvents |
Transition Elements |
Undergraduate Research |
Synthesis
Intermolecular and Intramolecular Forces: A General Chemistry Laboratory Comparison of Hydrogen Bonding in Maleic and Fumaric Acids  Frazier W. Nyasulu and John Macklin
This article presents a simple laboratory experiment that is designed to enhance students' understanding of inter- and intramolecular hydrogen bonding by demonstrating the comparative effect of these phenomena on some chemical and physical properties.
Nyasulu, Frazier W.; Macklin, John. J. Chem. Educ. 2006, 83, 770.
Acids / Bases |
Hydrogen Bonding |
Noncovalent Interactions |
Thermodynamics |
Titration / Volumetric Analysis
Useful Work of a Process  Norman C. Craig
Acknowledgment of a flaw in the article, Lets Drive Driving Force Out of Chemistry.
Craig, Norman C. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Useful Work of a Process  Bruno Lunelli
Clarifies a potentially misleading statement in the article, Lets Drive Driving Force Out of Chemistry.
Lunelli, Bruno. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
No "Driving Forces" in General Chemistry  Evguenii I. Kozliak
A simple and easy-to-remember explanation, that precipitation of a solid and/or formation of water are driving forces of those reactions or drive them to completion, still occurs among instructors.
Kozliak, Evguenii I. J. Chem. Educ. 2006, 83, 702.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Todd P. Silverstein
Offers additional solutions to the cracked watch glass problem associated with an earlier published dehydration of sugar demonstration.
Silverstein, Todd P. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Edward F. Duhr, Allison S. Soult, John G. Maijub, and Fitzgerald B. Bramwell
The procedure for Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom! can lead to watch glass breakage and thereby a fire hazard.
Duhr, Edward F.; Soult, Allison S.; Maijub, John G.; Bramwell, Fitzgerald B. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
Sugar Dehydration without Sulfuric Acid  Edward F. Duhr, Allison S. Soult, John G. Maijub, and Fitzgerald B. Bramwell
The procedure for Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom! can lead to watch glass breakage and thereby a fire hazard.
Duhr, Edward F.; Soult, Allison S.; Maijub, John G.; Bramwell, Fitzgerald B. J. Chem. Educ. 2006, 83, 701.
Oxidation / Reduction |
Thermodynamics
New Highlights on Analyzing First-Order Kinetic Data of the Peroxodisulfate–Iodide System at Different Temperatures  J. Yperman and W. J. Guedens
A pseudo-first order kinetic experiment examining the peroxodisulfateiodide system is executed at different temperatures, making it possible to calculate the activation energy of this reaction.
Yperman, J.; Guedens, W. J. J. Chem. Educ. 2006, 83, 641.
Kinetics |
Laboratory Computing / Interfacing |
Oxidation / Reduction |
Rate Law |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Computer Simulations of Salt Solubility  Victor M. S. Gil and João C. M. Paiva
Computer Simulations of Salt Solubility provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution: configurational disorder and thermal disorder.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 173.
Thermodynamics |
Equilibrium |
Solutions / Solvents |
Precipitation / Solubility |
Computational Chemistry
A New Java Animation in Peer-Reviewed JCE WebWare  William F. Coleman and Edward W. Fedosky
Just added to JCE WebWare, Computer Simulations of Salt Solubility uses a Java applet and Web browser to present an animated illustration of differences in the solubility of salts due to differences in the entropy of solvation.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 173.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
Theoretical Insights for Practical Handling of Pressurized Fluids  Alfonso Aranda and María del Prado Rodríguez
Introduces the basic considerations for managing pressurized fluids, mainly liquefied and compressed gases.
Aranda, Alfonso; Rodríguez, María del Prado. J. Chem. Educ. 2006, 83, 93.
Applications of Chemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 7: Microscale Production of Ozone  Jorge G. Ibanez, Rodrigo Mayen-Mondragon, M. T. Moran-Moran, Alejandro Alatorre-Ordaz, Bruce Mattson, and Scot Eskestrand
Ozone, a powerful oxidizing and disinfecting agent, is produced electrochemically in the undergraduate laboratory with simple equipment and under very mild conditions. Tests are given to characterize it, to observe its action in simulated environmental applications, and to measure its rate of production.
Ibanez, Jorge G.; Mayen-Mondragon, Rodrigo; Moran-Moran, M. T.; Alatorre-Ordaz, Alejandro; Mattson, Bruce; Eskestrand, Scot. J. Chem. Educ. 2005, 82, 1546.
Aqueous Solution Chemistry |
Descriptive Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Oxidation / Reduction |
Reactions
Electropolymerized Conducting Polymer as Actuator and Sensor Device: An Undergraduate Electrochemical Laboratory Experiment  María T. Cortés and Juan C. Moreno
A trilayer formed by two conducting polymer films sandwiched around an adhesive polymer layer works as actuator and sensor simultaneously. This device can be bent up to 180 and it can be used as a sensing device of physical chemistry parameters such as cell temperature and electrolyte concentration. In this article, it is shown in a didactic way how to electrochemically synthesize ClO4-doped polypyrrole (PPy) films, how to fabricate a trilayer device, and how to evaluate its actuating and sensing capabilities. The required materials are simple and a complicated setup is not necessary.
Cortés, María T.; Moreno, Juan C. J. Chem. Educ. 2005, 82, 1372.
Electrochemistry |
Materials Science |
Undergraduate Research |
Polymerization |
Applications of Chemistry
A Note on Dalton's Law: Myths, Facts, and Implementation  Ronald W. Missen and William R. Smith
The treatment of Dalton's law for gas mixtures commonly includes the improper designation "Dalton's law of partial pressures", rather than the correct "Dalton's law of additivity of (pure component) pressures". It also identifies the pure component pressure as the partial pressure, although these are only numerically equal for a mixture of ideal gases. The situation is clarified by examination of an appropriate statement of the law and definitions, eventually in operational form with reference to mixtures of nonideal gases.
Missen, Ronald Wi.; Smith, William R. J. Chem. Educ. 2005, 82, 1197.
Thermodynamics |
Gases
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Origins of Positive and Negative in Electricity  William B. Jensen
In response to a reader query, the column traces the origins of the terms "positive" and "negative" in electricity.
Jensen, William B. J. Chem. Educ. 2005, 82, 988.
Electrochemistry
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
JavaScript Programs To Calculate Thermodynamic Properties Using Cubic Equations of State  
Cubic equations of state are widely used by chemists and chemical engineers to predict the thermodynamic properties of both pure substances and mixtures. In particular, these equations enable predictions concerning the temperature and pressure at which vaporliquid equilibrium occurs. These two educational JavaScript programs perform calculations using cubic equations of state and, equally importantly, explain how the calculations are performed.
J. Chem. Educ. 2005, 82, 960.
Enrichment / Review Materials |
Equilibrium |
Thermodynamics
JavaScript Programs To Calculate Thermodynamic Properties Using Cubic Equations of State  Patrick J. Barrie
In this article, two JavaScript programs are described. The first program gives students the choice of five different cubic equations of state and performs calculations for pure substances. The second program predicts vaporliquid equilibrium for binary mixtures using a choice of three modern equations of state and the van der Waals mixing rules.
Barrie, Patrick J. J. Chem. Educ. 2005, 82, 958.
Enrichment / Review Materials |
Thermodynamics |
Equilibrium
The q/T Paradox: Which "Contains More Heat", a Cup of Coffee at 95°C or a Liter of Icewater?  Ed Vitz and Michael J. Schuman
In this demonstration, heat is removed from 10 cm3 of water at ~95C and 42 cm3 of water at ~0C by adding each to a measured sample of liquid nitrogen. The heat removed from the water boils the N2(l), and the quantity of liquid nitrogen that is evaporated by boiling is determined. The quantity of heat that was absorbed is calculated from the heat of vaporization of liquid nitrogen and found to be about 10,000 J in the case of the hot water and 25,000 J in the case of the icewater.
Vitz, Ed; Schuman, Michael J. J. Chem. Educ. 2005, 82, 856.
Calorimetry / Thermochemistry |
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Regarding Entropy Analysis  Thomas H. Bindel
There is a problem with the symbol ?Suniv as it does not indicate whether the reactive system is in standard state or not.
Bindel, Thomas H. J. Chem. Educ. 2005, 82, 839.
Thermodynamics
Regarding Entropy Analysis  Robert M. Hanson
Presents a minor criticism I have regards ?Suniv not involving entropy effects of concentration and pressure.
Hanson, Robert M. J. Chem. Educ. 2005, 82, 839.
Thermodynamics
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode  Fritz Scholz, Tim Steinhardt, Heike Kahlert, Jens R. Pörksen, and Jürgen Behnert
A combination pH electrode that can be assembled by the student is described. It consists of a glass holder and two sensors in the form of rubber stoppers that contain quinhydrone and graphite. The combination electrode is suitable to teach potentiometric measurements, pH measurements, and the interplay of acidbase and redox equilibria. The electrode meets highest safety standards and overcomes the troubles associated with the use of the conventional quinhydrone electrode.
Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Pörksen, Jens R.; Behnert, Jürgen. J. Chem. Educ. 2005, 82, 782.
Acids / Bases |
pH |
Laboratory Equipment / Apparatus |
Electrochemistry
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
A Pedagogical Simulation of Maxwell's Demon Paradox  D. López and C. Criado
Teaching thermodynamics from the microscopic point of view can help students develop an intuitive understanding of its concepts. This program simulates, at the microscopic level, two gas chambers with an opening between them. The program allows students or their instructors to set up simulations that illustrate the thermodynamics and statistical behavior of the system. The user determines the basis for whether the demon permits or denies passage of particles through the opening using information from the microscopic level, such as specific particle velocity. Students can track and analyze how this affects particle distribution, thermal equilibrium, relaxation time, diffusion, and distribution of particle velocities.
López, D.; Criado, C. J. Chem. Educ. 2004, 81, 1679.
Statistical Mechanics |
Thermodynamics
Using Organic Light-Emitting Electrochemical Thin-Film Devices To Teach Materials Science  Hannah Sevian, Sean Müller, Hartmut Rudmann, and Michael F. Rubner
Light-emitting thin films provide an excellent opportunity to learn about principles of electrochemistry, spectroscopy, microscopic structure of the solid state, basic circuits, and engineering design. There is currently strong interest in academic and industrial engineering research centering on developing organic light-emitting devices for applications in flat panel displays. In this educational module, designed for high school or introductory undergraduate courses, students learn how to make a ruthenium-based thin-film device. In the process, they learn about the solid-state electrochemistry at work in the film, as well as the electroluminescence that results when current passes through the device.
Sevian, Hannah; Müller, Sean; Rudmann, Hartmut; Rubner, Michael F. J. Chem. Educ. 2004, 81, 1620.
Electrochemistry |
Photochemistry |
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  Norman C. Craig
I am pleased that Campbells rule for estimating entropy changes in gas-consuming and gas-producing chemical reactions has attracted immediate interest.
Craig, Norman C. J. Chem. Educ. 2004, 81, 1571.
Gases |
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  William B. Jensen
In a recent article Norman Craig has proposed the rule-of-thumb that the approximate value of the entropy of reaction is related to the net moles of gas consumed or generated in the reaction .
Jensen, William B. J. Chem. Educ. 2004, 81, 1570.
Gases |
Thermodynamics
Playing Card Equilibrium  Frank L. Lambert
From experience, I am hypersensitive to the misconceptions of students and instructors that can be caused when playing cards are used in teaching chemistry. The root of such errors lies in overlooking the non-mobile, non-energetically-interacting nature of pieces of cardboard. Only if they are being shuffled can cards serve as some sort of analogy to molecular behavior in chemistry.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 1569.
Equilibrium |
Statistical Mechanics |
Thermodynamics
A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water  Per-Odd Eggen and Lise Kvittingen
This article describes how to construct two simple, inexpensive, and illustrative apparatuses using disposable polyethene pipets and floral wire for electrolysis of water. These apparatuses suit various grades and curricula.
Eggen, Per-Odd; Kvittingen, Lise. J. Chem. Educ. 2004, 81, 1337.
Laboratory Equipment / Apparatus |
Oxidation / Reduction |
Electrochemistry
Entropy and Constraint of Motion  Frank L. Lambert
William Jensen's presentation of entropy increase as solely due to kinetic energy dispersion is stimulating.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 640.
Thermodynamics
Entropy and Constraint of Motion   William B. Jensen
I would like to make several observations supplementing and supporting the article by Frank Lambert on entropy as energy dissipation, since this is an approach that I have also used for many years when teaching a qualitative version of the entropy concept to students of general and introductory inorganic chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 639.
Thermodynamics
The Effective Use of an Interactive Software Program To Reduce Students' Misconceptions about Batteries  E.-M. Yang, T. J. Greenbowe, and T. Andre
In this study, college students enrolled in an introductory chemistry course were asked a series of open-ended questions about electrochemistry, flashlights, and batteries. Misconceptions were identified, analyzed, and used to develop and test an Interactive Software Program (ISP).
Yang, E.-M.; Greenbowe, T. J.; Andre, T. J. Chem. Educ. 2004, 81, 587.
Electrochemistry |
Learning Theories |
Electrolytic / Galvanic Cells / Potentials |
Student-Centered Learning
Isolation of Copper from a 5–Cent Coin. An Example of Electrorefining  Steven G. Sogo
The United States 5cent coin, commonly known as a "nickel", is made of an alloy containing 75% copper and 25% nickel. The experiment is a visually appealing illustration of the process of electrorefining using selective reduction.
Sogo, Steven G. J. Chem. Educ. 2004, 81, 530.
Electrochemistry |
Oxidation / Reduction |
Metals
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Thermodynamics in Context: A Case Study of Contextualized Teaching for Undergraduates  John Holman and Gwen Pilling
Thermodynamics is often considered to be a dry and theoretical area of undergraduate chemistry. To make it more accessible, a contextualized approach to first-year university thermodynamics has been developed, building on the experiences at the high school level of ChemCom in the United States and Salters Advanced Chemistry in the United Kingdom.
Holman, John; Pilling, Gwen. J. Chem. Educ. 2004, 81, 373.
Thermodynamics |
Learning Theories
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Another Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Additional safety considerations and a CO2 rocket car.
Campbell, Dean J. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Another Variation on the "Whoosh Bottle" Theme  Edward G. Senkbeil
Description of a similar demonstration and additional safety considerations.
Senkbeil, Edward G. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Another Variation on the "Whoosh Bottle" Theme  Edward G. Senkbeil
Description of a similar demonstration and additional safety considerations.
Senkbeil, Edward G. J. Chem. Educ. 2004, 81, 31.
Thermodynamics |
Gases
Photogalvanic Cells for Classroom Investigations: A Contribution for Ongoing Curriculum Modernization  Claudia Bohrmann-Linde and Michael W. Tausch
Laboratory experiments examining the fundamental processes in the conversion of light into electrical energy using photogalvanic cells have been developed. These simple cells are suitable for classroom investigations examining the operating principles of photogalvanic cells and the influence of different parameters on their efficiency.
Bohrmann-Linde, Claudia; Tausch, Michael W. J. Chem. Educ. 2003, 80, 1471.
Electrochemistry |
Atomic Properties / Structure |
Photochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory  Susan Hudgins, Yu Qin, Eric Bakker, and Curtis Shannon
Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis.
Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis. J. Chem. Educ. 2003, 80, 1303.
Acids / Bases |
Electrochemistry |
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
pH Titration Simulator   N. Papadopoulos and M. Limniou
Windows software that simulates a pH titration.
Papadopoulos, N.; Limniou, M. J. Chem. Educ. 2003, 80, 709.
Acids / Bases |
Aqueous Solution Chemistry |
Electrochemistry |
Enrichment / Review Materials
Determination of Avogadro's Number by Improved Electroplating  Carlos A. Seiglie
Electroplating procedure to accurately determine Avogadro's number or Faraday's constant.
Seiglie, Carlos A. J. Chem. Educ. 2003, 80, 668.
Electrochemistry |
Metals |
Quantitative Analysis |
Stoichiometry
Simple Recipes for Prebiotic Soup: A High School or Undergraduate Chemistry Laboratory  Marisol Martinez-Meeler, Nika Aljinovic, and Dorothy Swain
Replicating Stanley Miller's prebiotic soup experiment for introductory chemistry; includes experimental apparatus and analysis of the products.
Martinez-Meeler, Marisol; Aljinovic, Nika; Swain, Dorothy. J. Chem. Educ. 2003, 80, 665.
Amino Acids |
Aqueous Solution Chemistry |
Chromatography |
Electrochemistry |
Proteins / Peptides |
Synthesis |
Applications of Chemistry
The Chemical Adventures of Sherlock Holmes: The Blackwater Escape  Thomas G. Waddell and Thomas R. Rybolt
A chemical mystery involving electrochemistry and featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 2003, 80, 401.
Electrochemistry |
Materials Science |
Qualitative Analysis |
Oxidation / Reduction |
Enrichment / Review Materials |
Applications of Chemistry
Incomplete Combustion with Candle Flames: A Guided-Inquiry Experiment in the First-Year Chemistry Lab  Joseph MacNeil and Lisa Volaric
Investigating a burning candle as an introduction to incomplete combustion, thermodynamics, kinetics, and gas chromatography.
MacNeil, Joseph; Volaric, Lisa. J. Chem. Educ. 2003, 80, 302.
Chromatography |
Gases |
Reactions |
Oxidation / Reduction |
Thermodynamics |
Kinetics |
Gas Chromatography
Teaching Chemistry Using From the Earth to the Moon  James G. Goll and Stacie L. Mundinger
Teaching chemistry using From the Earth to the Moon (an HBO original movie series).
Goll, James G.; Mundinger, Stacie L. J. Chem. Educ. 2003, 80, 292.
Electrochemistry |
Chemometrics |
Reactions |
Mechanisms of Reactions |
Applications of Chemistry
"Disorder" in Unstretched Rubber Bands?  Warren Hirsch
Analysis of the thermodynamics of a stretched rubber band.
Hirsch, Warren. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Equilibrium
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
Understanding of Elementary Concepts in Heat and Temperature among College Students and K–12 Teachers  Paul G. Jasien and Graham E. Oberem
Report on a study of the understanding of elementary concepts related to heat and temperature (thermal equilibrium and energy transfer in the form of heat) in undergraduate and post-baccalaurate students as a function of their number of semesters of college-level physical science training.
Jasien, Paul G.; Oberem, Graham E. J. Chem. Educ. 2002, 79, 889.
Thermodynamics |
Equilibrium
Why Do Some Batteries Last Longer Than Others?  Michael J. Smith and Colin A. Vincent
Comparing the energy content of the cathode material of different commercial batteries using a test cell.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2002, 79, 851.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
A Direct Methanol Fuel Cell  Orfeo Zerbinati
Materials and methods for construction of a direct methanol fuel cell.
Zerbinati, Orfeo. J. Chem. Educ. 2002, 79, 829.
Electrochemistry |
Laboratory Equipment / Apparatus |
Electrolytic / Galvanic Cells / Potentials
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter  Irmgard K. Howard
Origin of the word enthalpy.
Howard, Irmgard K. J. Chem. Educ. 2002, 79, 697.
Thermodynamics |
Calorimetry / Thermochemistry
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
The Lead-Acid Battery: Its Voltage in Theory and in Practice  Richard S. Treptow
Lead-acid battery fundamentals, cell voltage and the Nernst equation, and an analysis of actual battery performance.
Treptow, Richard S. J. Chem. Educ. 2002, 79, 334.
Electrochemistry |
Oxidation / Reduction |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases |
Applications of Chemistry
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Thermodynamics
Just Breathe: The Oxygen Content of Air   JCE Editorial Staff
Students estimate the percent oxygen (volume) in air using steel wool in a test tube that is inverted in a beaker of water. Oxygen in the trapped air reacts with iron to form rust, and the water level rises inside the test tube; within 30-45 minutes, the majority of oxygen is consumed.
JCE Editorial Staff. J. Chem. Educ. 2001, 78, 512A.
Electrochemistry |
Gases |
Oxidation / Reduction
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
Experiencing and Visualizing the First Law of Thermodynamics: An In-Class Workshop  Pamela Mills, William V. Sweeney, and Waldemar Cieniewicz
A handheld device that illustrates the concepts of heat, work, energy transfer, and thermodynamic path.
Mills, Pamela; Sweeney, William V.; Cieniewicz, Waldemar. J. Chem. Educ. 2001, 78, 1360.
Gases |
Thermodynamics |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
A Simplified Method for Measuring the Entropy Change of Urea Dissolution. An Experiment for the Introductory Chemistry Lab  Charles A. Liberko and Stephanie Terry
Guided inquiry to determine values for changes in enthalpy, Gibb's free energy, and entropy for the dissolution of urea in water.
Liberko, Charles A.; Terry, Stephanie. J. Chem. Educ. 2001, 78, 1087.
Thermodynamics |
Calorimetry / Thermochemistry
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Is Every Transparent Liquid Water?  Muhamad Hugerat and Sobhi Basheer
Comparisons of the properties (polarity, electric conductivity, color change due to the presence of an acid-base indicator, and electrolysis) of three transparent and colorless liquids: water, glycerol, hexane, and ethanol.
Hugerat, Muhamad; Basheer, Sobhi. J. Chem. Educ. 2001, 78, 1041.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Conductivity |
Electrophoresis
An Alcohol Rocket Car--A Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Burning methanol in a wheeled milk jug.
Campbell, Dean J. J. Chem. Educ. 2001, 78, 910.
Gases |
Thermodynamics
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
Laboratory Experiments on Electrochemical Remediation of the Environment. Part 5: Indirect H2S Remediation  J. G. Ibanez
Experiment to introduce students in general chemistry, environmental chemistry, or electrochemistry to the concept of indirect electrolysis, its application in environmental remediation schemes, the role of a mediator, and the application of redox chemistry concepts.
Ibanez, J. G. J. Chem. Educ. 2001, 78, 778.
Electrochemistry |
Gases |
Microscale Lab |
Oxidation / Reduction |
Applications of Chemistry
Structure and Content of Some Primary Batteries  Michael J. Smith and Colin A. Vincent
An experiment that complements electrochemical characterization and allows students to explore the structure of commercial cells and calculate the anode and cathode capacities from the stoichiometry of the cell reaction.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2001, 78, 519.
Consumer Chemistry |
Electrochemistry |
Undergraduate Research |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Electrical Deflection of Polar Liquid Streams: A Misunderstood Demonstration  Maryam Ziaei-Moayyed, Edward Goodman, and Peter Williams
The electrical deflection of polar liquid streams, commonly used as a textbook illustration of the behavior of polar molecules, is shown to be due to the formation of electrically charged droplets in the polar liquid stream, induced by a nearby charged object, rather than any force exerted on molecular dipoles.
Ziaei-Moayyed, Maryam; Goodman, Edward; Williams, Peter. J. Chem. Educ. 2000, 77, 1520.
Electrochemistry
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Thermodynamics of Water Superheated in the Microwave Oven  B. H. Erné
Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. Water stops boiling soon after heating is interrupted, but subsequently added rough particles can still act as nucleation centers for a brief, spectacular burst of steam bubbles. The heat to make those steam bubbles obviously comes from the water itself, so that one can conclude that the boiling water was superheated, which is confirmed with a thermometer.
Erné, B. H. J. Chem. Educ. 2000, 77, 1309.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Liquids
Hell May Be Hotter Than Heaven After All (about J. Chem. Educ. 1999, 76, 503)  M. N. Berberan-Santos
Estimation of temperatures in heaven and hell based on biblical information.
Berberan-Santos, Mário N. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
Potentiometric Determination of CO2 Concentration in the Gaseous Phase: Applications in Different Laboratory Activities  Eduardo Cortón, Santiago Kocmur, Liliana Haim, and Lydia Galagovsky
The first lab comprises the calibration of a CO2 potentiometric detector with gas mixtures. The CO2 and CO2-free air required for the gaseous samples are produced in the lab by an inexpensive and simple apparatus. In the second lab, the CO2 potentiometric device is used to measure CO2 uptake and release during different metabolic processes.
Cortón, Eduardo; Kocmur, Santiago; Haim, Liliana; Galagovsky, Lydia. J. Chem. Educ. 2000, 77, 1188.
Electrochemistry |
Gases |
Quantitative Analysis |
Metabolism
A Visual Aid in Enthalpy Calculations  Sebastian G. Canagaratna
This article discusses the use of enthalpy-temperature diagrams for reactants and products as a visual aid in the teaching of reaction-enthalpy calculations. By the use of such diagrams the division of the process into a part involving a chemical reaction without a temperature change and a part involving only a temperature change is made visually concrete.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 1178.
Thermodynamics |
Calorimetry / Thermochemistry
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Using a Teaching Model to Correct Known Misconceptions in Electrochemistry  P. A. Huddle, Margaret Dawn White, and Fiona Rogers
A concrete teaching model for electrochemistry is presented here. It addresses many common student misconceptions about current flow by demonstrating what is occurring at the microscopic level in an electrochemical cell. Both the scope and limitations of the model are discussed.
Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona. J. Chem. Educ. 2000, 77, 104.
Electrochemistry |
Learning Theories
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Boerhaave on Fire  Damon Diemente
This article offers a selection of passages from Boerhaave's chapter on fire. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas.
Diemente, Damon. J. Chem. Educ. 2000, 77, 42.
Calorimetry / Thermochemistry |
Thermodynamics
Using TOPEX Satellite El Niño Altimetry Data to Introduce Thermal Expansion and Heat Capacity Concepts in Chemistry Courses  Harvey F. Blanck
Warm water is less dense than cool water and will float somewhat like ice, with a portion above the surface of the cooler surrounding water. The height of the bump can be used to estimate the excess thermal energy in the warmer water.
Blanck, Harvey F. J. Chem. Educ. 1999, 76, 1635.
Liquids |
Thermodynamics |
Water / Water Chemistry |
Calorimetry / Thermochemistry
A Simple Experiment for Ion Migration  Karl E. Bessler and Daniel de Oliveira Campos
A simple, versatile, and low-cost version of a qualitative ion migration experiment is presented, which needs a minimum amount of chemicals and can be performed by inexperienced students. In the experiment cations and anions (preferably colorless or faintly colored) migrate toward one another and on combination produce insoluble and strongly colored compounds.
Bessler, Karl E.; Campos, Daniel de O. J. Chem. Educ. 1999, 76, 1516.
Aqueous Solution Chemistry |
Electrochemistry |
Qualitative Analysis |
Electrophoresis
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Visualizing Entropy  Joseph H. Lechner
This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations.
Lechner, Joseph H. J. Chem. Educ. 1999, 76, 1382.
Statistical Mechanics |
Thermodynamics
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
Lemon Cells Revisited  Radhakrishnamurty, P.
Analysis of the reactions and nature of the electrodes in the lemon cell.
Radhakrishnamurty, P. J. Chem. Educ. 1999, 76, 1190.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art  Julio Pellicer, M. Amparo Gilabert, and Ernesto Lopez-Baeza
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day.
Pellicer, Julio; Gilabert, M. Amparo; Lopez-Baeza, Ernesto. J. Chem. Educ. 1999, 76, 911.
Nomenclature / Units / Symbols |
Thermodynamics |
Learning Theories
An Analysis of College Chemistry Textbooks As Sources of Misconceptions and Errors in Electrochemistry  Michael J. Sanger and Thomas J. Greenbowe
The oxidation-reduction and electrochemistry chapters of 10 introductory college chemistry textbooks were reviewed for misleading or erroneous statements, using a list of student misconceptions. As a result of this analysis, we provide suggestions for chemistry instructors and textbook authors.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1999, 76, 853.
Electrochemistry |
Oxidation / Reduction |
Learning Theories
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
Student Construction of a Gel-Filled Ag/AgCl Reference Electrode for Use in a Potentiometric Titration  James M. Thomas
Instructions for the preparation of a Ag/AgCl "reference"-type electrode that uses a gel-type matrix are given. In addition, construction steps are provided for a very sturdy Pt-nichrome "inert" electrode, which can be used many times. Together, these two electrodes, along with a multivoltmeter, have been used successfully to determine the percent of iron in Fe(NH4)2(SO4)2 and in Fe2O2 unknowns purchased commercially.
Thomas, James M. J. Chem. Educ. 1999, 76, 97.
Instrumental Methods |
Electrochemistry |
Quantitative Analysis |
Oxidation / Reduction |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
The Nernst Equation: Determination of Equilibrium Constants for Complex Ions of Silver  Martin L. Thompson and Laura J. Kateley
The experiment requires a voltmeter capable of recording millivolts (or a good pH meter) and inexpensive chemicals. It allows students to check the validity of the Nernst equation and compare their experimental Kform values to reported ones.
Thompson, Martin L.; Kateley, Laura J. J. Chem. Educ. 1999, 76, 95.
Equilibrium |
Coordination Compounds |
Electrochemistry |
Oxidation / Reduction
Developing and Using Conceptual Computer Animations for Chemistry Instruction  K. A. Burke, Thomas J. Greenbowe, and Mark A. Windschitl
This paper discusses several issues surrounding the development and use of instructional conceptual computer animations.
Burke, K. A.; Greenbowe, Thomas J.; Windschitl, Mark A. J. Chem. Educ. 1998, 75, 1658.
Electrochemistry |
Learning Theories
Chromatographic Separation Techniques for Undergraduates  Darwin B. Dahl, John T. Riley, and Thomas K. Green
Over the past several years the Chemistry Department at Western Kentucky University (WKU) has sought to strengthen its undergraduate program departmental through acquisition of FT-NMR, fluorescence, electrochemical, thermal analysis, laser Raman, microscale organic, and polymer laboratory instrumentation; this has enabled the department to build a successful undergraduate program.
Dahl, Darwin B.; Riley, John T.; Green, Thomas K. J. Chem. Educ. 1998, 75, 1209.
Separation Science |
Chromatography |
Fourier Transform Techniques |
NMR Spectroscopy |
Raman Spectroscopy |
Electrochemistry |
Photochemistry |
Thermal Analysis |
Microscale Lab
Automatic Titrators in the Analytical and Physical Chemistry Laboratories  Kathryn R. Williams
In 1995 the University of Florida received an NSF-ILI grant to purchase six automatic titrators, which have now been successfully integrated into the analytical and physical chemistry teaching laboratories. After they have mastered fundamental techniques, students in the introductory analytical laboratory gain experience with automated analyses in three experiments: the iodimetric analysis of ascorbic acid, the determination of polymer molecular weight, and the analysis of chloride by ion selective electrode.
Williams, Kathryn R. J. Chem. Educ. 1998, 75, 1133.
Electrochemistry |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
Vapor Pressure Lowering by Nonvolatile Solutes  Gavin D. Peckham
This short article highlights a fundamental error that is entrenched in introductory chemistry textbooks. It is true that the addition of a nonvolatile solute causes a lowering in the vapor pressure of a solution. The error lies in attributing this vapor pressure lowering to the "blocking" of surface sites by nonvolatile particles. This is a totally fallacious argument for a number of reasons and the true explanation is to be found in the entropy changes that occur as a nonvolatile solute is added to a solution.
Peckham, Gavin D. J. Chem. Educ. 1998, 75, 787.
Gases |
Solutions / Solvents |
Thermodynamics
Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  Greg P. Smestad and Michael Gratzel
A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer.
Smestad, Greg P.; Grtzel, Michael. J. Chem. Educ. 1998, 75, 752.
Photochemistry |
Plant Chemistry |
Electrochemistry |
Atomic Properties / Structure |
Dyes / Pigments |
Nanotechnology |
Separation Science |
Spectroscopy
Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom!  Todd P. Silverstein and Yi Zhang
Our demonstration uses no sulfuric acid, yields relatively little smoke, and produces an exciting and unpredictable growing column of black carbon.
Silverstein, Todd P.; Zhang, Yi. J. Chem. Educ. 1998, 75, 748.
Carbohydrates |
Thermodynamics |
Electrochemistry |
Solid State Chemistry |
Oxidation / Reduction
Slide Projector Corrosion Cell  Silvia Tejada, Estela Guevara, and Esperanza Olivares
The process of corrosion can be demonstrated in a slide projector, since the cell is in the shape of a slide, or on the stage of an overhead projector by setting up a simple galvanic cell. Corrosion occurs as the result of a galvanic cell reaction, in which the corroding metal acts as the anode. Several simple demonstrations relating to corrosion are described here.
Tejada, Silvia; Guevara, Estela; Olivares, Esperanza. J. Chem. Educ. 1998, 75, 747.
Electrochemistry |
Microscale Lab |
Oxidation / Reduction |
Reactions |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Thermodynamics and Spontaneity (the author replies)  Ochs, Raymond S.
The term "spontaneous" is historical baggage.
Ochs, Raymond S. J. Chem. Educ. 1998, 75, 659.
Thermodynamics
Thermodynamics and Spontaneity  Earl, Boyd L.
The term "spontaneous" is worth keeping in the chemistry lexicon.
Earl, Boyd L. J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Letters to the Editor  
The term "spontaneous" is worth keeping in the chemistry lexicon.
J. Chem. Educ. 1998, 75, 658.
Thermodynamics
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
Lemon Cells Revisited - The Lemon-Powered Calculator  Daniel J. Swartling and Charlotte Morgan
Using lemons to create a voltaic cell to run items that students would use in their everyday lives drives home that chemistry plays an integral role in their lives.
Swartling, Daniel J.; Morgan, Charlotte. J. Chem. Educ. 1998, 75, 181.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  Chinhyu Hur, Sally Solomon, and Christy Wetzel
Heat changes can be observed by using a culture dish and a thermometer that is projected onto a screen using an overhead projector.
Hur, Chinhyu; Solomon, Sally; Wetzel, Christy. J. Chem. Educ. 1998, 75, 51.
Calorimetry / Thermochemistry |
Solutions / Solvents |
Thermodynamics |
Laboratory Equipment / Apparatus
The Electromotive Series and Other Non-Absolute Scales  Gavin D. Peckham
Stresses the reference-state approach for students learning the electromotive series and other non-absolute scales.
Peckham, Gavin D. J. Chem. Educ. 1998, 75, 49.
Electrochemistry
Heat Capacity, Body Temperature, and Hypothermia  Doris R. Kimbrough
A finger in and out of water are compared to demonstrate the difference between heat capacities and their effect on body temperature.
Kimbrough, Doris R. J. Chem. Educ. 1998, 75, 48.
Calorimetry / Thermochemistry |
Thermodynamics
ACS National Historic Chemical Landmark: Charles Martin Hall's Discovery of the Electrochemical Process for Aluminum  Norman C. Craig
Oberlin College and the Cleveland Section of the American Chemical Society hosted a celebration in which Charles Martin Hall's discovery of the electrochemical process for extracting aluminum metal from the ore was designated as a National Historic Chemical Landmark by the ACS.
Craig, Norman C. J. Chem. Educ. 1997, 74, 1269.
Electrochemistry
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
A Simple Laboratory Demonstration of Electrochromism  Bertil Forslund
A laboratory exercise in which students are asked to construct an electrochromic cell, consisting of a thin, transparent layer of WO3 on a glass plate with a thin, transparent, and conducting surface coating of doped SnO2.
Forslund, Bertil. J. Chem. Educ. 1997, 74, 962.
Electrochemistry |
Materials Science |
Solid State Chemistry
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement  Mark Muyskens
Application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor.
Muyskens, Mark. J. Chem. Educ. 1997, 74, 850.
Calorimetry / Thermochemistry |
Thermal Analysis |
Thermodynamics |
Laboratory Equipment / Apparatus |
Instrumental Methods
Students' Misconceptions in Electrochemistry Regarding Current Flow in Electrolyte Solutions and the Salt Bridge  Michael J. Sanger and Thomas J. Greenbowe
Several researchers have documented students' misconceptions in electrochemistry. One reason for the interest in studying electrochemistry is that surveys of students and teachers suggest that students find this topic difficult and research confirms that students' beliefs about problem complexity affect their performance and learning.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1997, 74, 819.
Learning Theories |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
A Low-Cost and High-Performance Conductivity Meter  Rogerio T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
A two-electrode conductivimeter is described, which keep good performance in spite of its low cost.
da Rocha, Rogerio T. ; Gutz, Ivano G.R. ; do Lago, Claudimir L. J. Chem. Educ. 1997, 74, 572.
Instrumental Methods |
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
The Thermodynamics of Drunk Driving  Robert Q. Thompson
Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC.
Thompson, Robert Q. J. Chem. Educ. 1997, 74, 532.
Thermodynamics |
Nonmajor Courses |
Forensic Chemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry
Synthesis and Characterization of a Conduction Polymer: An Electrochemical Experiment for General Chemistry  Roger K. Bunting, Karsten Swarat, DaJing Yan, Duane Finello
The electrochemical synthesis of a free-standing film of polypyrrole, using commonly available equipment and materials, is described at a level suitable to application in a general chemistry laboratory. Also described are methods to quantitatively assess the doping level and to characterize the polymer film in terms of its conductivity as a function of temperature.
Bunting, Roger K.; Swarat, Karsten; Yan, DaJing; Finello, Duane. J. Chem. Educ. 1997, 74, 421.
Electrochemistry |
Conductivity
Heat Flow vs. Cash Flow: A Banking Analogy  Charles M. Wynn, Sr.
An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction.
Wynn, Charles M. Sr. J. Chem. Educ. 1997, 74, 397.
Thermodynamics |
Calorimetry / Thermochemistry
Elasticity to Measure Thermodynamic Properties  Jonathan Mitschele
Repetition of original experiment.
Mitschele, Jonathan. J. Chem. Educ. 1997, 74, 368.
Thermodynamics
A Brief History of Thermodynamics Notation  Rubin Battino, Laurence E. Strong, Scott E. Wood
This paper gives a brief history of thermodynamic notation for the energy, E, enthalpy, H, entropy, S, Gibbs energy, G, Helmholtz energy, A, work, W, heat, Q, pressure, P, volume, V, and temperature, T. In particular, the paper answers the question, "Where did the symbol S for entropy come from?"
Battino, Rubin; Strong Laurence E.; Wood, Scott E. J. Chem. Educ. 1997, 74, 304.
Thermodynamics
In Defense of Thermodynamics - An Animate Analogy  Sture Nordholm
In order to illustrate the deepest roots of thermodynamics and its great power and generality, it is applied by way of analogy to human behavior from an economic point of view.
Nordholm, Sture. J. Chem. Educ. 1997, 74, 273.
Thermodynamics
Chemical Equilibrium (the author replies)  Banerjee, Anil
Item 7 deserves a fuller answer than was provided.
Banerjee, Anil J. Chem. Educ. 1996, 73, A262.
Equilibrium |
Thermodynamics
Chemical Equilibrium  Logan, S. R.
Item 7 deserves a fuller answer than was provided.
Logan, S. R. J. Chem. Educ. 1996, 73, A261.
Equilibrium |
Thermodynamics
Small Scale Electrolytic Cells  Anderson, Guy E.
A method is given for a quantitative electrolysis experiment that does not require specialized equipment.
Anderson, Guy E. J. Chem. Educ. 1996, 73, A172.
Electrolytic / Galvanic Cells / Potentials |
Microscale Lab |
Quantitative Analysis |
Electrochemistry
Electrode Processes and Aspects Relating to Cell EMF, Current, and Cell Components in Operating Electrochemical Cells: Precollege and College Student Interpretation  N. A. Ogude and J. D. Bradleu
Four areas that present difficulty among high school pupils and tertiary level students in relation to the processes that take place in operating electrochemical cells were identified, including conduction in the electrolyte, electrical neutrality, electrode processes and terminology, and aspects relating to cell emf, current, and cell components. A 20-item questionnaire was designed to determine how widespread misconceptions in these areas were.
Ogude, N. A.; Bradley, J. D. J. Chem. Educ. 1996, 73, 1145.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The Chemical and Educational Appeal of the Orange Juice Clock  Paul B. Kelter, James D. Carr, Tanya Johnson, and Carlos Mauricio Castro-Acuña
The Orange Juice Clock, in which a galvanic cell is made from the combination of a magnesium strip, a copper strip, and juice in a beaker, has been a popular classroom, conference, and workshop demonstration for nearly 10 years. The discussion that follows considers the recent history, chemistry, and educational uses of the demonstration.
Kelter, Paul B.; Carr, James D.; Johnson, Tanya; Castro-Acuña, Carlos Mauricio. J. Chem. Educ. 1996, 73, 1123.
Electrochemistry
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells  Xavier LeRoux, Gerry A. Ottewill, and Frank C. Walsh
An experimental program designed to convey, to students aged 16 through undergraduate, the principles of battery electrochemistry through a comparative study of two different systems, the lead acid cell and aluminum air cell, is described.
LeRoux, Xavier; Ottewill, Gerry A.; Walsh, Frank C. J. Chem. Educ. 1996, 73, 811.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Using Physics Principles in the Teaching of Chemistry  Warren Gulden
Chemistry and physics may be separate subjects, but that should not prohibit the use of physics in a chemistry course. When this is done, students can use traditional physics principles or laws for the purpose of understanding chemistry better.
Gulden, Warren. J. Chem. Educ. 1996, 73, 771.
Ionic Bonding |
Physical Properties |
Electrochemistry |
Hydrogen Bonding
Interactive Computer Visualization in the Introductory Chemistry Curriculum  Victoria M. Bragin
This project explores the use of technological innovations to facilitate learning in introductory chemistry courses by those with a poor academic background, while also challenging those prepared to master the curriculum.
Bragin, Victoria M. J. Chem. Educ. 1996, 73, 747.
Gases |
Rate Law |
Kinetic-Molecular Theory |
Titration / Volumetric Analysis |
Periodicity / Periodic Table |
Electrochemistry
SIRS: Simulations and Interactive Resources, III  Martin, John S.
Simulations and Interactive Resources (SIRs) are designed to support interactive lectures in introductory chemistry. This third issue of SIRs includes five new SIRs as well as updated and final versions of all previously published SIRs.
Martin, John S. J. Chem. Educ. 1996, 73, 722.
Periodicity / Periodic Table |
Equilibrium |
Gases |
Thermodynamics |
Reactions |
Electrochemistry |
Kinetics
Constant-Current Coulometric Titration of Hydrochloric Acid  James Swim, Edward Earps, Laura M. Reed, and David Paul
In this experiment we have combined the titration of a strong acid with a strong base and the electrolysis of water into one complete laboratory experience.
James Swim, Edward Earps, Laura M. Reed, and David Paul. J. Chem. Educ. 1996, 73, 679.
Titration / Volumetric Analysis |
Acids / Bases |
Water / Water Chemistry |
Electrochemistry |
Oxidation / Reduction
An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
An alternative to the conventional method of calculating enthalpies of reaction is presented, using enthalpies of atomization in place of enthalpies of formation. This allows the student to see directly that the reaction enthalpies are determined by the difference in bond strengths in the reactants and products.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 631.
Calorimetry / Thermochemistry |
Thermodynamics |
Equilibrium |
Reactions |
Atomic Properties / Structure |
Stoichiometry
The Incredible "Glowing" Pickle and Onion and Potato and...  Rubin Battino and Peter M. Weimer
There are many demonstrations about electrical conductivity that are illuminating, but the incredible glowing pickle is the most dramatic and eye-catching. In this paper we describe how to achieve the same effect with an onion, a potato, a head of cabbage, and a grapefruit, as well as a simple and safe device to hold these foods.
Weimer, Peter M.; Battino, Rubin. J. Chem. Educ. 1996, 73, 456.
Food Science |
Electrochemistry |
Laboratory Equipment / Apparatus
Which E^o Is It? The Story of a Student Discovery  Ron C. Cooke and Grover C. Willis
A homework problem called for the computation of the E^o for the reaction 2Cu+ --> Cu+2 + Cu. Two students independently worked on this problem and calculated answers of +0.359 V and +0.181 V respectively, using E^o for the half reactions from a table in the book.
Cooke, Ron C.; Willis, Grover C. J. Chem. Educ. 1996, 73, 450.
Electrochemistry
Solubility and Thermodynamics: An Introductory Experiment  Robert G. Silberman
This article describes a laboratory experiment suitable for high school or freshman chemistry students in which the solubility of potassium nitrate is determined at several different temperatures.
Silberman, Robert G. J. Chem. Educ. 1996, 73, 426.
Precipitation / Solubility |
Thermodynamics |
Equilibrium
Work Done by a Chemical Reaction  Henry Brouwer
The use of the "hot dog clock" has been the focus of discussions in a number of areas of electrochemistry. Included in these have been oxidation-reduction potentials, battery construction, salt bridges, electrolytes, and the concentration of ions in certain foods.
Brouwer, Henry. J. Chem. Educ. 1996, 73, 354.
Electrochemistry |
Food Science |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
A Novel Approach to Teaching Electrochemical Principles  Paul Krause and Jerry Manion
To demonstrate that work may be done by a chemical reaction, a reaction producing a gas is carried out in a large, closed syringe. As the gas is generated, the syringe plunger is forced out.
Krause, Paul; Manion, Jerry. J. Chem. Educ. 1996, 73, 354.
Reactions |
Gases |
Thermodynamics
CAI for Chemistry  Lesile Glasser, John D. Bradley, George Brink, and Pam van Zyl
These six programs provide an opportunity for interactive practice of general chemistry material.
Glasser, L.; Bradley, J. D.; Brink, G.; van Zyl, P. . J. Chem. Educ. 1996, 73, 323.
Nuclear / Radiochemistry |
Precipitation / Solubility |
Electrochemistry |
Periodicity / Periodic Table
Small-Scale Potentiometry and Silver One-Pot Reactions  David W. Brooks, Dianne Epp, and Helen B. Brooks
Apparatus and method for construction and application of a silver reference electrode in silver one-pot reactions.
Brooks, David W.; Epp, Dianne; Brooks, Helen B. J. Chem. Educ. 1995, 72, A162.
Electrochemistry |
Laboratory Equipment / Apparatus |
Potentiometry |
Ion Selective Electrodes |
Microscale Lab
From Christmas Ornament to Glass Electrode  Rogério T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
Instructions and use of a homemade glass electrode for pH measurements/titrations.
Da Rocha, Rogerio T.; Gutz, Ivano G. R.; do Lago, Claudimir L. J. Chem. Educ. 1995, 72, 1135.
Laboratory Equipment / Apparatus |
Electrochemistry |
Titration / Volumetric Analysis |
Ion Selective Electrodes |
Aqueous Solution Chemistry |
Acids / Bases |
Laboratory Management |
pH
Photosynthesis: Why Does It Occur?  J. J. MacDonald
Explanation of why photosynthesis occurs; stating that it is merely the reverse of respiration is misleading.
MacDonald, J. J. J. Chem. Educ. 1995, 72, 1113.
Plant Chemistry |
Reactions |
Thermodynamics |
Photochemistry |
Electrochemistry
What Does It Mean?: Reflections on Concentration, Activity, and Electrode Potential  Pietro Lanza
Explanation of electrode potential and the mechanism of the electrode process for determining concentration.
Lanza, Pietro. J. Chem. Educ. 1995, 72, 1009.
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Ion Selective Electrodes |
Electrochemistry
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
A New Low-Cost Apparatus for Electrolysis of Water   Chieko Suzuki
Low-cost alternative to the Hofmann apparatus for the electrolysis of water.
Suzuki, Chieko. J. Chem. Educ. 1995, 72, 912.
Electrochemistry |
Water / Water Chemistry |
Laboratory Equipment / Apparatus
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory  Stephen DeMeo
Procedure for synthesizing and then decomposing zinc iodide in introductory chemistry that offers advantages over traditional synthesis/decomposition species (e.g. copper sulfide and magnesium oxide).
DeMeo, Stephen. J. Chem. Educ. 1995, 72, 836.
Synthesis |
Thermodynamics |
Reactions
Osmotic Pressure and Electrochemical Potential--A Parallel   Rainer Bausch
Comparison of osmotic pressure and electrochemical potential.
Bausch, Rainer. J. Chem. Educ. 1995, 72, 713.
Electrochemistry |
Solutions / Solvents |
Membranes |
Transport Properties
Resistance Measurement as a Tool for Corrosion Studies  Singh, N. P.; Gupta, S. C.; Sood, B. R.
Procedure for determining the rate of corrosion by measuring changes in the resistance of a thin wire or strip of metal; sample data and analysis included.
Singh, N. P.; Gupta, S. C.; Sood, B. R. J. Chem. Educ. 1995, 72, 465.
Oxidation / Reduction |
Metals |
Rate Law |
Reactions |
Electrochemistry
The "Golden Penny" Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration.  Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz
An explanation and simpler/safer design for the classical "gold penny" demonstration.
Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz J. Chem. Educ. 1995, 72, 386.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory  Creager, Stephen E.; Lawrence, Kyle D.; Tibbets, Craig R.
Construction and use of a salicylate-ion-selective electrode; includes a calibration curve.
Creager, Stephen E.; Lawrence, Kyle D.; Tibbets, Craig R. J. Chem. Educ. 1995, 72, 274.
Laboratory Equipment / Apparatus |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Electrochemistry |
Ion Selective Electrodes
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
Use of Electrochemical Concentration Cells to Demonstrate the Dimeric Nature of Mercury(I) in Aqueous Media  Bhattacharya, Deepta; Peters, Dennis G.
Experimental procedure for demonstrating that divalent mercury is monovalent in aqueous solution; includes data and analysis.
Bhattacharya, Deepta; Peters, Dennis G. J. Chem. Educ. 1995, 72, 64.
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Augmenting a classical electrochemical demonstration  Yochum, Susan M.; Luoma, John R.
Substituting magnesium for zinc in the copper/zinc electrochemical cell to enhance student understanding of electrochemistry; includes data and analysis.
Yochum, Susan M.; Luoma, John R. J. Chem. Educ. 1995, 72, 55.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Solution-Phase Thermodynamics: A "Spontaneity" Activity  Bindel, Thomas H.
Experimental procedure for verifying the concept of spontaneity using solution chemistry; includes data and analysis.
Bindel, Thomas H. J. Chem. Educ. 1995, 72, 34.
Aqueous Solution Chemistry |
Thermodynamics
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
An Electrochemistry Experiment: Hydrogen Evolution Reaction on Different Electrodes   Marin, D.; Medicuti, F.; Teijeiro, C.
This paper presents a simple laboratory experiment designed to acquaint the student with overvoltage in the hydrogen evolution reaction.
Marin, D.; Medicuti, F.; Teijeiro, C. J. Chem. Educ. 1994, 71, A277.
Electrochemistry |
Ion Selective Electrodes
Determination of Ionic Mobilities by Thin-Layer Electrodeposition   Kuhn, Alexander; Argoul, Francoise
The authors describe a new method for the determination of ionic mobilities. An advantage of the measurement described is that it allows its demonstration within the framework of the student's practical training in ionic conductivity.
Kuhn, Alexander; Argoul, Francoise J. Chem. Educ. 1994, 71, A273.
Electrochemistry |
Ion Selective Electrodes |
Metals
Salt Bridge Using Soil Moist  Brooks, David W.; Brooks, Helen B.
Using Soil Moist in the stem of a plastic transfer pipet as an effective salt bridge for small scale electrochemical experiments.
Brooks, David W.; Brooks, Helen B. J. Chem. Educ. 1994, 71, A62.
Microscale Lab |
Laboratory Equipment / Apparatus |
Electrochemistry
A Chemistree  Murov, Steven
The electrocuted pickle demonstration has an new twist in which a Christmas tree was formed using fluorescing pickles.
Murov, Steven J. Chem. Educ. 1994, 71, 1082.
Electrochemistry
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamics
Not So Late Night Chemistry with USD  Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R.
Through the program, college students enhance their knowledge and expertise on a chemical topic and gain experience in scientific presentations. They also serve as role models to the high school students who can relate to college students more easily than the chemistry faculty members and their high school students.
Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R. J. Chem. Educ. 1994, 71, 929.
Forensic Chemistry |
Polymerization |
Electrochemistry |
Isotopes |
Acids / Bases
An Interactive Multimedia Software Program for Exploring Electrochemical Cells  Greenbowe, Thomas J.
The "Electrochemical Workbench" is one component of a software package that allows students and faculty to explore building and testing electrochemical cells by simulating a chemistry laboratory in which students can perform experiments.
Greenbowe, Thomas J. J. Chem. Educ. 1994, 71, 555.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Rubber Elasticity: A Simple Method for Measurement of Thermodynamic Properties  Byrne, John P.
A modified triple-beam balance that uses an optical lever to detect small changes in the length of a stretched rubber band.
Byrne, John P. J. Chem. Educ. 1994, 71, 531.
Thermodynamics |
Laboratory Equipment / Apparatus |
Physical Properties
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
Using the Biological Cell in Teaching Electrochemistry  Merkel, Eva Gankiewicz
How electricity is produced in a simple cell is correlated with how commercial batteries work; this concept can then be related to how living cells send electrical impulses.
Merkel, Eva Gankiewicz J. Chem. Educ. 1994, 71, 240.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Classroom Demonstration of Fluid Flow as a Result of an Ionic Current in a Magnetic Field  Ritchie, Ian M.; Power, Gregory P.
Using corroding zinc to observe fluid flow in the presence of a magnetic field.
Ritchie, Ian M.; Power, Gregory P. J. Chem. Educ. 1994, 71, 158.
Electrochemistry
Patriotic Electrolysis of Water  DuPre, Donald B.
Producing reversible red, white and blue in a single Petri dish.
DuPre, Donald B. J. Chem. Educ. 1994, 71, 70.
Electrochemistry |
Oxidation / Reduction
Cryophori, Hot Molecules, and Frozen Nitrogen  Hunter, Paul W. W.; Knoespel, Sheldon L.
Freezing water and nitrogen at low atmospheric pressure.
Hunter, Paul W. W.; Knoespel, Sheldon L. J. Chem. Educ. 1994, 71, 67.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Ionic Conduction and Electrical Neutrality in Operating Electrochemical Cells: Pre-College and College Student Interpretations  Ogude, A. N.; Bradley, J. D.
Results of an investigation on pre-college and college student difficulties regarding the qualitative interpretation of the microscopic processes that take place in operating chemical cells.
Ogude, A. N.; Bradley, J. D. J. Chem. Educ. 1994, 71, 29.
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
An expanded silver ion equilibria demonstration: Including use of the Nernst equation and calculation of nine equilibrium constants   Anderson, Robert Hunt
A modification of a demonstration that yields a quantitative measure of ions.
Anderson, Robert Hunt J. Chem. Educ. 1993, 70, 940.
Electrochemistry |
Ion Exchange
A high school adventure  Cullen, Schuyler; Pardini, Aaron; Vang, Yeng; Wasinger, Erik; Ball, Jenelle; Cooke, Ron; Willis, Grover
Prompted by their students discovery an error in a popular lab activity, these authors encourage readers of the Journal to think about the meaning and importance of inquiry in science education.
Cullen, Schuyler; Pardini, Aaron; Vang, Yeng; Wasinger, Erik; Ball, Jenelle; Cooke, Ron; Willis, Grover J. Chem. Educ. 1993, 70, 823.
Electrochemistry
The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry  Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T.
Further applications of the multimeter in chemistry laboratories are discussed in this paper: potentiometry, reduction potentials and cell EMF, the Nerst equations, pH measurements, titration, conductimetry, and conduction of solutions.
Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T. J. Chem. Educ. 1993, 70, 580.
Acids / Bases |
Solutions / Solvents |
Titration / Volumetric Analysis |
Electrochemistry |
Laboratory Equipment / Apparatus |
Potentiometry
Electronegativity and bond type: I. Tripartate separation  Sproul, Gordon D.
As a unifying concept of bonding, electronegativity has been widely applied but gets only a limited treatment in most general chemistry texts.
Sproul, Gordon D. J. Chem. Educ. 1993, 70, 531.
Ionic Bonding |
Covalent Bonding |
Electrochemistry
The aluminum can as electrochemical energy source  Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E.
A high-current electrochemical cell made from aluminum cans and scraps of copper wire that illustrates important electrochemical principles.
Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E. J. Chem. Educ. 1993, 70, 495.
Electrochemistry
Gallium beating heart   Ealy, James L., Jr.
Oscillating gallium in a Petri dish offers an exciting demonstration.
Ealy, James L., Jr. J. Chem. Educ. 1993, 70, 491.
Electrochemistry |
Metals
Suggestions for truly evaluating texts   Gordon, Glen E.
Suggestions for improvement in evaluating and publishing the analysis of textbooks in this Journal.
Gordon, Glen E. J. Chem. Educ. 1993, 70, 346.
Thermodynamics
Coloring titanium and related metals by electrochemical oxidation  Gaul, Emily
Procedure for anodizing metals as a companion experiment to electroplating. The activity is very appealing to students in visual arts.
Gaul, Emily J. Chem. Educ. 1993, 70, 176.
Metals |
Electrochemistry |
Nonmajor Courses
Heat and Work are Not "Forms of Energy"   Peckham, Gavin D.; McNaught, Ian J.
Heat and work are processes by which the internal energy of a system is changed. The title reflects a common misconception used by students and instructors.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 103.
Thermodynamics |
Enrichment / Review Materials
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume 4 (Shakhashiri, Bassam Z.)  Kauffman, George B.
78 procedures grouped into two chapters, one on clock reactions, the other on electrochemistry, batteries, electrolytic cells, and plating.
Kauffman, George B. J. Chem. Educ. 1992, 69, A187.
Reactions |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Intensive and extensive: Underused concepts  Canagaratna, Sebastian G.
Methods for teaching intensive and extensive properties.
Canagaratna, Sebastian G. J. Chem. Educ. 1992, 69, 957.
Physical Properties |
Thermodynamics
Determining the thermal expansion coefficient of gases  Lehmann, Jochen K.
The authors improved the design of the apparatus and extended the experimental task on a recently published experiment for determining the zero point of the absolute temperature scale.
Lehmann, Jochen K. J. Chem. Educ. 1992, 69, 943.
Thermodynamics |
Gases |
Laboratory Equipment / Apparatus
Fractal structures for the overhead projector   Silverman, L. Phillip
One of the most interesting electrochemistry demonstrations is the production of dendritic silver fractals via electrodeposition onto water. The demonstration can be adapted easily for use on an overhead projector.
Silverman, L. Phillip J. Chem. Educ. 1992, 69, 928.
Electrochemistry
Helping students to develop an hypothesis about electrochemistry: A demonstration with a lab report and supplemental worksheet   VanderZee, Chester
Author shares a successful electrochemistry demonstration with calculations and assessment.
VanderZee, Chester J. Chem. Educ. 1992, 69, 924.
Electrochemistry |
Metals
Putting some snap into work.  Mitschele, Jonathan.
Suggestions for improving the instructional value of the demonstration presented.
Mitschele, Jonathan. J. Chem. Educ. 1992, 69, 687.
Thermodynamics
Electricity/electronic experiments for the chemistry laboratory.  Braun, Robert D.
Experiments that permit students to observe the behavior of simple electrical circuits, including a DC constant current source, voltage divider, diodes, logic gates, flip-flops, and the seven-segment display.
Braun, Robert D. J. Chem. Educ. 1992, 69, 671.
Electrochemistry |
Instrumental Methods
The thermodynamics of home-made ice cream.  Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen.
Using the production of ice cream to teach heat capacity, viscosity, and freezing-point reduction.
Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen. J. Chem. Educ. 1992, 69, 658.
Thermodynamics |
Water / Water Chemistry |
Applications of Chemistry
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
Gravimetric-gasometric determination of zinc on galvanized nails.  Burgstahler, Albert W.
A simple acid-dissolution method for a combined gravimetric-gasometric determination of the amount of zinc coating galvanized nails through reaction with HCl.
Burgstahler, Albert W. J. Chem. Educ. 1992, 69, 575.
Gravimetric Analysis |
Qualitative Analysis |
Stoichiometry |
Electrochemistry
Applications of Maxwell-Boltzmann distribution diagrams.  Peckham, Gavin D.; McNaught, Ian J.
Although Maxwell-Boltzmann distribution diagrams are intuitively appealing, care must be taken to avoid several common errors and misconceptions.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1992, 69, 554.
Thermodynamics |
Rate Law |
Catalysis
Boiling and freezing simultaneously - with a feeble vacuum pump!   Ellison, Mike
The author uses this demonstration of freezing and boiling at reduced pressure to reinforce concepts about energy effects in phase changes.
Ellison, Mike J. Chem. Educ. 1992, 69, 325.
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Thermodynamics
The world's largest human salt bridge  Silverman, L. Phillip; Bunn, Barbara B.
On a beautiful April afternoon, the 1500 students had fun and learned something about electrochemistry, and they helped set a world's record for the "Longest Human Salt Bridge".
Silverman, L. Phillip; Bunn, Barbara B. J. Chem. Educ. 1992, 69, 309.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The use of equilibrium notation in listings of standard potentials.  Donkersloot, Maarten C. A.
The difficulty in equilibrium notation of standard electrode potentials is due to the convention that half-reactions must be written as reductions if the given potential is to be called a (standard) electrode potential.
Donkersloot, Maarten C. A. J. Chem. Educ. 1992, 69, 256.
Equilibrium |
Electrochemistry
Cyclic indicator color change by titrant electrogeneration.  Stock, John T.
A simple but striking demonstration of coulometric titration.
Stock, John T. J. Chem. Educ. 1992, 69, 253.
Electrochemistry |
Acids / Bases |
Titration / Volumetric Analysis
A lemon-powered clock   Letcher, Trevor M.; Sonemann, Aubrey W.
Because a watch or crystal-quartz clock use very small batteries they can be powered with a number of "homemade" power sources.
Letcher, Trevor M.; Sonemann, Aubrey W. J. Chem. Educ. 1992, 69, 157.
Electrochemistry |
Food Science
Microstate  York, Richard
Microstate allows experimentation with a simulated crystal that is viewed as a set of loosely coupled harmonic oscillators.
York, Richard J. Chem. Educ. 1992, 69, 130.
Crystals / Crystallography |
Thermodynamics
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Electrochemical measurements in general chemistry lab using a student-constructed Ag-AgCl reference electrode  Ahn, M. K.; Reuland, D. J.; Chadd, K. D.
This paper describes a simple method of making a reproducible and durable reference electrode for use by freshmen chemistry students.
Ahn, M. K.; Reuland, D. J.; Chadd, K. D. J. Chem. Educ. 1992, 69, 74.
Electrochemistry |
Laboratory Equipment / Apparatus
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
Small-scale thermochemistry experiment   Brouwer, Henry
An inexpensive calorimeter that uses approximately 1/10 of the reagents required for the foam coffee cup.
Brouwer, Henry J. Chem. Educ. 1991, 68, A178.
Heat Capacity |
Thermodynamics |
Microscale Lab
The reusable heat pack   McAfee, Lyle V.; Jumper, Charles F.
A commercial product that can be used to demonstrate thermodynamic principles.
McAfee, Lyle V.; Jumper, Charles F. J. Chem. Educ. 1991, 68, 780.
Thermodynamics
The Voltaic pile: A stimulating general chemistry experiment   Scharlin, Pirketta; Battino, Rubin
An inexpensive, simple, and fun way to illustrate many of the principles in electrochemistry.
Scharlin, Pirketta; Battino, Rubin J. Chem. Educ. 1991, 68, 665.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
A low-cost, portable, and safe apparatus for lecture hall conductivity demonstration  Mercer, Gary D.
This article describes an easily constructed apparatus for the measurement of conductivity that overcomes current restrictions and avoids bare wires.
Mercer, Gary D. J. Chem. Educ. 1991, 68, 619.
Electrochemistry |
Conductivity
Recovery of silver from and some uses for waste silver chloride  Murphy, J. A.; Ackerman, A. H.; Heeren, J. K.
Procedures for conversion to silver nitrate, using waste AgCl as an oxidizing agent, and electrodepositon experiments.
Murphy, J. A.; Ackerman, A. H.; Heeren, J. K. J. Chem. Educ. 1991, 68, 602.
Reactions |
Oxidation / Reduction |
Electrochemistry
A call for simplification   Schomaker, Verner; Waser, Jurg
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Schomaker, Verner; Waser, Jurg J. Chem. Educ. 1991, 68, 443.
Thermodynamics
A call for simplification   Peterson, Donald
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Peterson, Donald J. Chem. Educ. 1991, 68, 443.
Thermodynamics |
Reactions
Teaching photometry with overhead projector experiments   Gutz, Ivano G. R.; Angnes, Lucio; Pedrotti, Jairo J.
Description of a photometry demonstration with an overhead projector.
Gutz, Ivano G. R.; Angnes, Lucio; Pedrotti, Jairo J. J. Chem. Educ. 1991, 68, 325.
Potentiometry |
Acids / Bases |
Oxidation / Reduction |
Electrochemistry
The temperature and pressure dependence of the equilibrium properties of a system: Introducing thermodynamics in the classroom  Solomon, Theodros
Introducing thermodynamics in the classroom in a manner that allows students to gain hints at the methods or approaches to be adopted.
Solomon, Theodros J. Chem. Educ. 1991, 68, 294.
Thermodynamics
Half cell reactions: Do students ever see them?   Ciparick, Joseph D.
This demonstration shows more clearly that there are two real half reactions.
Ciparick, Joseph D. J. Chem. Educ. 1991, 68, 247.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
Reactivity of nickel  Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri
A series of experiments which lead to observations about the reactivity of nickel. [Debut]
Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri J. Chem. Educ. 1991, 68, 48.
Reactions |
Quantitative Analysis |
Coordination Compounds |
Oxidation State |
Electrochemistry
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics
A simple demonstration of ion migration  Little, John G.
The migration of copper(II) and chromate ions is illustrated using a simple apparatus.
Little, John G. J. Chem. Educ. 1990, 67, 1063.
Electrochemistry
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (1)  Freeman, Robert D.
There is no convincing evidence of confusion regarding electrochemical conventions and the author's proposed solutions are unacceptable.
Freeman, Robert D. J. Chem. Educ. 1990, 67, 990.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Membrane material for a galvanic cell  Eggleton, Gordon L; Williamson, John J.; Johnson, Donna K.
The tubes for each electrode are prepared from a disposable polystyrene serological pipet.
Eggleton, Gordon L; Williamson, John J.; Johnson, Donna K. J. Chem. Educ. 1990, 67, 527.
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry
Experiments with "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.

Paris, Michel R.; Aymes, Daniel J. J. Chem. Educ. 1990, 67, 510.
Laboratory Equipment / Apparatus |
Thermodynamics |
Calorimetry / Thermochemistry
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
Redox reactions and the electropotential axis   Vella, Alfred J.
An introductory discussion should not get bogged down with the problems of representing cells by standard cell diagrams and notations and instead should concentrate on the chemistry of galvanic cells and the use of these cells in describing the concepts of redox chemistry.
Vella, Alfred J. J. Chem. Educ. 1990, 67, 479.
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Construction and evaluation of an inexpensive reference electrode with internal electrolyte in agar matrix  Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A.
In this paper the authors show how to construct a reference electrode of Ag/AgCl with an internal electrolyte in agar matrix.
Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A. J. Chem. Educ. 1990, 67, 179.
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry |
Laboratory Equipment / Apparatus
The construction and use of commercial voltaic cell displays in freshman chemistry   Shearer, Edmund C.
This contribution reports two displays in electrochemistry which serve to increase student interest, show a practical application, and illustrate how chemistry and technology work together.
Shearer, Edmund C. J. Chem. Educ. 1990, 67, 158.
Electrochemistry
The human salt bridge   Scharlin, Pirketta; Battino, Rubin
In this paper the authors describe a simple device designed for use on an overhead projector to illustrate the "human salt bridge".
Scharlin, Pirketta; Battino, Rubin J. Chem. Educ. 1990, 67, 156.
Electrochemistry
Calculating entropy changes at different extents of reaction  Brosnan, Tim
The Revised Nuffield Chemistry course uses a simple statistical approach to entropy a a unifying idea in its treatment of thermodynamics. It was for these students that the author developed this method of calculating entropy changes at different extents of reaction which are listed here.
Brosnan, Tim J. Chem. Educ. 1990, 67, 48.
Thermodynamics
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
Current efficiency in electrolysis  Bricker, Clark E.
Demonstration apparatus that can be used to show the effect of various variables on the current efficiency for the deposition of copper.
Bricker, Clark E. J. Chem. Educ. 1989, 66, 954.
Electrochemistry
Alleviating the common confusion caused by polarity in electrochemistry  Moran, P. J.; Gileadi, E.
The issue of polarity encountered in electrochemistry and relevant to a variety of electrochemical concepts often confuses students and is an unnecessary deterrent to the study of electrochemistry.
Moran, P. J.; Gileadi, E. J. Chem. Educ. 1989, 66, 912.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemistry of the zinc-silver oxide system. Part 2. Practical measurements of energy conversion using commercial miniature cells  Smith, Michael J.; Vincent, Colin A.
Experiments in which "button cells" are discharged and charged under controlled conditions so that practical energy conversions and a number of other parameters may be studied.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 1989, 66, 683.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Confusion over electrochemical conventions: A proposed solution  Al-Soudi, Helen
The present teaching of electrochemistry in U.S. texts leads to confusion.
Al-Soudi, Helen J. Chem. Educ. 1989, 66, 630.
Electrochemistry
A versatile compact reference electrode  Kusuda, Kousuke
Construction of a compact saturated calomel electrode.
Kusuda, Kousuke J. Chem. Educ. 1989, 66, 531.
Laboratory Equipment / Apparatus |
Electrochemistry
Using a projecting voltmeter to introduce voltaic cells  Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony
Using a transparent "projecting" voltmeter and assembling a zinc versus copper cell one component at a time allows students to develop a more concrete notion of the nature of a voltaic cell and the potential it produces.
Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony J. Chem. Educ. 1989, 66, 510.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Transformation of old two-electrode polarographs into three-electrode systems  Papadopoulos, N.; Linardis, P.
In this work a simple circuit is proposed that can transform a two-electrode polarograph into a three-electrode system.
Papadopoulos, N.; Linardis, P. J. Chem. Educ. 1989, 66, 419.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus
Chemical generation and visualization of hydrodynamic instability: An extremely simple demonstration of self-organization  Bowers, Peter G.; Soltzberg, Leonard J.
The chemical convection system described here is the pattern formation seen when an acidic vapor comes into contact with the surface of an aqueous solution containing indicator.
Bowers, Peter G.; Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 210.
Thermodynamics |
Aqueous Solution Chemistry |
Acids / Bases
A simple explanation of the salt water oscillator  Noyes, Richard M.
Yoshikawa et al. have described a simple device that undergoes repeated oscillations and that can also illustrate some of the principles essential to the oscillators driven by chemical reactions.
Noyes, Richard M. J. Chem. Educ. 1989, 66, 207.
Laboratory Equipment / Apparatus |
Thermodynamics |
Equilibrium
Amusement with a salt-water oscillator  Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi
Rhythmic oscillations of water flow are generated when a vertically oriented hypodermic syringe, with the plunger removed, is filled with salt water and partially submerged in a beaker of pure water.
Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi J. Chem. Educ. 1989, 66, 205.
Thermodynamics |
Equilibrium |
Laboratory Equipment / Apparatus
Some models of chemical oscillators   Noyes, Richard M.
This review concentrates on models of chemical oscillations, which constitute the self-organization of a system in time without any accompanying organization in space.
Noyes, Richard M. J. Chem. Educ. 1989, 66, 190.
Thermodynamics
Self-organization in chemistry: The larger context   Soltzberg, Leonard J.
The following three papers in this symposium will serve the reader as a good introduction to self-organization in chemical systems.
Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 187.
Thermodynamics
Electrolytic migration of ions  Llorens-Molina, Juan A.
This demonstration uses a thin layer of gelatin in place of the usual filter paper so that the migration can be viewed using an overhead projector.
Llorens-Molina, Juan A. J. Chem. Educ. 1988, 65, 1090.
Noncovalent Interactions |
Ion Exchange |
Electrochemistry |
Thin Layer Chromatography
Two multipurpose thermochemical experiments for general chemistry  Wentworth, R. A. D.
Two multipurpose thermochemical experiments are described in this paper.
Wentworth, R. A. D. J. Chem. Educ. 1988, 65, 1022.
Thermodynamics
Experimental work with tin(II) chloride in a high school   Sanchez, Manuela Martin
The author describes a final-project performed by students that integrates concepts of hydrolysis, Le Chatelier's principle, and electrolysis. Students seek answers to questions such as: "What reactions were involved; why is an aqueous solution of SnCl2 acidic; how can elemental tin be recovered from the system?"
Sanchez, Manuela Martin J. Chem. Educ. 1988, 65, 898.
Separation Science |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium |
Oxidation / Reduction
The Australian Academy of Science School Chemistry Project: A new-generation secondary school chemistry course  Bucat, R. B.; Cole, A. R. H.
The purpose of this paper is to summarize the philosophies behind the courses described in this paper and the consequent design decisions regarding the selection and sequence of the chemistry content.
Bucat, R. B.; Cole, A. R. H. J. Chem. Educ. 1988, 65, 777.
Atmospheric Chemistry |
Metabolism |
Thermodynamics
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen-oxygen fuel cell  Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen
Presentation of a simple apparatus that allows an instructor to perform the electrolysis of water and the back conversion of the products to water while overcoming some typical drawbacks encountered in this process.
Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 725.
Water / Water Chemistry |
Electrochemistry
Soap bubbles and precipitate membranes: Two historical semipermeability experiments adapted for teaching purposes  Nicolini, Nicoletta; Pentella, Antonio
These demonstrations are based on the historical experiments that established our understanding of semipermeability and osmosis.
Nicolini, Nicoletta; Pentella, Antonio J. Chem. Educ. 1988, 65, 614.
Gases |
Surface Science |
Transport Properties |
Electrochemistry
Acid pickling with amines: an experiment in applied chemistry for high school or freshman chemistry   Spears, Steven G.; Spears, Larry G.; Spears, Joycelyn C.
A brief description of the removal of corrosion products and millscale from the surface of ferrous metals by acid pickling.
Spears, Steven G.; Spears, Larry G.; Spears, Joycelyn C. J. Chem. Educ. 1988, 65, 457.
Oxidation / Reduction |
Acids / Bases |
Amines / Ammonium Compounds |
Electrochemistry
Electrochemical cells using sodium silicate   Rapp, Bernard, FSC
A procedure of assembly and execution of a demonstration of an electrochemical cell using sodium silicate.
Rapp, Bernard, FSC J. Chem. Educ. 1988, 65, 358.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
The endothermic dissolution of ammonium nitrate   Kauffman, George B.; Ferguson, Craig A.
A brief procedure for demonstrating the endothermic dissolution of ammonium nitrate.
Kauffman, George B.; Ferguson, Craig A. J. Chem. Educ. 1988, 65, 267.
Thermodynamics
A homemade lemon battery  Worley, John D.; Fournier, James
A brief note about how two instructors worked on and built a successful lemon battery.
Worley, John D.; Fournier, James J. Chem. Educ. 1988, 65, 158.
Electrochemistry
Thermodynamics should be built on energy-not on heat and work  Barrow, Gordon M.
This author looks closely at the concepts of heat, work, energy, and the laws of thermodynamics to back up his title argument.
Barrow, Gordon M. J. Chem. Educ. 1988, 65, 122.
Thermodynamics
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Correct equilibrium constants for water (the authors reply)  Starkey, Ronald; Norman, Jack; Hinitze, Mark
Water and hydronium ion Ka values are special cases.
Starkey, Ronald; Norman, Jack; Hinitze, Mark J. Chem. Educ. 1987, 64, 1068.
Equilibrium |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Acids / Bases |
Thermodynamics
Fractal structures obtained by electrodeposition of silver at an air-water interface  Ligon, Woodfin V., Jr.
Growing dendritic crystals of silver
Ligon, Woodfin V., Jr. J. Chem. Educ. 1987, 64, 1053.
Electrochemistry |
Crystals / Crystallography
Electrochemistry demonstrations with an overhead projector  Ward, Charles R.; Greenbowe, Thomas J.
A template designed to fit on the surface of an overhead projector and demonstrate electrochemical phenomena.
Ward, Charles R.; Greenbowe, Thomas J. J. Chem. Educ. 1987, 64, 1021.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
More electrolysis experiments for the overhead projector  Kolb, Kenneth E.
Electrolytic cell made up of two 9-V batteries and suggestions for the electrolysis of several different materials.
Kolb, Kenneth E. J. Chem. Educ. 1987, 64, 891.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Converting sunlight to mechanical energy: A polymer example of entropy  Mathias, Lon J.
Demonstrating entropy using an elastomer and a virtual foolproof "light engine".
Mathias, Lon J. J. Chem. Educ. 1987, 64, 889.
Thermodynamics
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Thermodynamics
Safe and reliable electrode storage  Williams, Howard P.
A container that prevents evaporation and keeps electrodes ready for use.
Williams, Howard P. J. Chem. Educ. 1987, 64, 556.
Laboratory Equipment / Apparatus |
Laboratory Management |
Electrochemistry |
Ion Selective Electrodes
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
Thermodynamics of the rhodamine B lactone zwitterion equilibrium: An undergraduate laboratory experiment  Hinckley, Daniel A.; Seybold, Paul G.
An experiment to derive thermodynamic values from a thermochromic equilibrium that uses a commercially available dye, attains equilibrium rapidly, and employs a simple, single-beam spectrophotometer.
Hinckley, Daniel A.; Seybold, Paul G. J. Chem. Educ. 1987, 64, 362.
Thermodynamics |
Dyes / Pigments |
Spectroscopy |
Equilibrium
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
Demonstration of the pH changes during the electrolysis of water  Habich, A.; Hausermann, H. R.
Demonstration of the pH changes around the anode and cathode during the electrolysis of water.
Habich, A.; Hausermann, H. R. J. Chem. Educ. 1987, 64, 171.
Electrochemistry |
pH
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Stretched elastomers: A case of decreasing length upon heating  Clough, S. B.
Demonstrating and explaining the decrease in length of a heated rubber band.
Clough, S. B. J. Chem. Educ. 1987, 64, 42.
Thermodynamics |
Molecular Properties / Structure
Fire walking, temperature, and heat   DeLorenzo, Ronald
Student interest piques when chemistry concepts are applied to this popular "trick".
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 976.
Thermodynamics
A new road to reactions: Part III. Teaching the heat effect of reactions  de Vos, Wobbe; Verdonk, Adri H.
This series of work summarizes the authors' work on the concept of chemical reactions as a teaching and learning problem.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1986, 63, 972.
Thermodynamics |
Reactions |
Solutions / Solvents |
Acids / Bases
The electrolysis of water: An improved demonstration procedure   Heideman, Stephen
The usual use of sulfuric acid as the electrolyte in the demonstration of the electrolysis of water does not allow students to observe the accompanying pH changes at the electrodes.
Heideman, Stephen J. Chem. Educ. 1986, 63, 809.
Water / Water Chemistry |
pH |
Electrochemistry
Electrodeposition of nickel on copper  Manjkow, Joseph; Levine, Dana
In the classroom, one can demonstrate electroplating by the simple, fast, inexpensive, and visually interesting reaction between nickel ions and copper metal.
Manjkow, Joseph; Levine, Dana J. Chem. Educ. 1986, 63, 809.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction
A useful balloon demonstration: Pressure difference behavior  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
The authors contribute an interesting variant on the 'crushed can' experiment. [typo: first author's middle initial should be E.]
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1986, 63, 629.
Gases |
Thermodynamics
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Goals in teaching electrochemistry  Maloy, J. T.
Important concepts regarding the subject of electrochemistry.
Maloy, J. T. J. Chem. Educ. 1985, 62, 1018.
Electrochemistry
Electrochemistry  Perkins, Ronald I.
Why electrochemistry is important.
Perkins, Ronald I. J. Chem. Educ. 1985, 62, 1018.
Electrochemistry
An individualized Nernst equation experiment  Hambly, Gordon F.
Each student is assigned a target voltage for a copper / silver voltaic cell.
Hambly, Gordon F. J. Chem. Educ. 1985, 62, 875.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Quick conductivity cell  Williams, Howard P.
A simple cell for indicating the relative conductivity of electrolytes, nonelectrolytes, and weak electrolytes.
Williams, Howard P. J. Chem. Educ. 1985, 62, 799.
Electrochemistry |
Conductivity |
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Estimating the one electron reduction potential for vanadium (V) by chemical techniques: An experiment for general chemistry  Wentworth, R. A. D.
Procedure requires no electrochemical equipment because the method depends solely upon observations of the spontaneity of the reactions of V(V) with a series of potential reducing agents and V(IV) with a series of potential oxidizing agents.
Wentworth, R. A. D. J. Chem. Educ. 1985, 62, 440.
Oxidation State |
Oxidation / Reduction |
Electrochemistry
Electrochemical errors  DeLorenzo, Ron
Ten examples of the unexpected consequences that have resulted from ignorance regarding electrochemistry.
DeLorenzo, Ron J. Chem. Educ. 1985, 62, 424.
Electrochemistry |
Consumer Chemistry |
Applications of Chemistry |
Oxidation / Reduction
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Le Châtelier's principle, temperature effects, and entropy  Campbell, J. Arthur
A useful extension of Le Chatelier's Principle to predict concentration, pressure, and temperature effects solely from the equation for the net reaction.
Campbell, J. Arthur J. Chem. Educ. 1985, 62, 231.
Equilibrium |
Thermodynamics
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Thermodynamics
Water electrolysis-A surprising experiment  Kelsh, Dennis J.
Using aluminum wire for the cathode will produce "too much" hydrogen.
Kelsh, Dennis J. J. Chem. Educ. 1985, 62, 154.
Water / Water Chemistry |
Electrochemistry
Thermo in the general chemistry course (the author replies)  Schaffrath, Robert E.
A conceptual approach to thermodynamics is appropriate for general chemistry.
Schaffrath, Robert E. J. Chem. Educ. 1984, 61, 936.
Thermodynamics
Thermo in the general chemistry course  Kimmell, Howard
A conceptual approach to thermodynamics is appropriate for general chemistry.
Kimmell, Howard J. Chem. Educ. 1984, 61, 936.
Thermodynamics
An inexpensive, very high impedance digital voltmeter for selective electrodes  Caceci, Marco S.
Design and construction of an instrument that exceeds in accuracy and input impedance most expensive commercial pH meters and potentiometers.
Caceci, Marco S. J. Chem. Educ. 1984, 61, 935.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
An easily constructed secondary battery  Yamana, Shukichi; Murakami, Mitsuhiro
Constructing a very simple secondary battery from an aqueous solution of sodium chloride and other household materials
Yamana, Shukichi; Murakami, Mitsuhiro J. Chem. Educ. 1984, 61, 713.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry
Error in the minimum free energy curve  Willis, Grover; Ball, David
Correction to the minimum free energy curve shown in some general chemistry texts.
Willis, Grover; Ball, David J. Chem. Educ. 1984, 61, 173.
Thermodynamics
A demonstration to aid in differentiating the concepts of heat and temperature  Stevens, George H.
An easy, effective, "real world" demonstration on the distinction between heat and temperature. From "Using 'Real World' Examples in the Teaching of Chemistry - A Symposium", 7th BCCE, Stillwater OK, 1982.
Stevens, George H. J. Chem. Educ. 1983, 60, 1035.
Thermodynamics
Metal-ligand complexes-a calculation challenge  Ramette, R. W.
The purpose of this paper is to illustrate one of the most important experimental methods for studying complex equilibria and to present synthetic data as a challenge to the many sophisticated calculation procedure that enjoy various degrees of loyalty around the world.
Ramette, R. W. J. Chem. Educ. 1983, 60, 946.
Equilibrium |
Metals |
Electrochemistry |
Oxidation / Reduction |
Coordination Compounds
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
THERMPRO - A thermodynamics program   Joshi, Bhairav D.
44. Bits and pieces, 16. THERMPRO is an interactive screen-oriented computer program written in BASICA for an IBM-PC with a graphics capability. It represents a general method of calculating standard thermodynamic properties of chemical reactions from heat capacity data for reactants and products.
Joshi, Bhairav D. J. Chem. Educ. 1983, 60, 733.
Thermodynamics
A simple and dramatic demonstration of overvoltage  Bradford, John L.; Davis, Alvie L.
This demonstration is easily visualized only for small groups, but can be displayed for a large audience by using an overhead projector.
Bradford, John L.; Davis, Alvie L. J. Chem. Educ. 1983, 60, 674.
Potentiometry |
Electrochemistry |
Metals
Convenient relations for the estimation of bond ionicity in A-B type compounds  Barbe, Jacques
Calculating the electronegative differences between atoms does not always give an accurate prediction of bond strength.
Barbe, Jacques J. Chem. Educ. 1983, 60, 640.
Noncovalent Interactions |
Metals |
Electrochemistry
A visual analogy for metallic deposition  Hartwig, Dcio R.; Filho, Romeu C. Rocha
Metallic deposition stoichiometry problems are difficult for students to visualize. A clever visual tool is explained in this article.
Hartwig, Dcio R.; Filho, Romeu C. Rocha J. Chem. Educ. 1983, 60, 591.
Metals |
Electrochemistry |
Stoichiometry
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
A convenient salt bridge for electrochemical experiments in the general chemistry laboratory  Howell, B. A.; Cobb, V. S.; Haaksma, R. A.
These authors share some advice for a setting up a salt bridge.
Howell, B. A.; Cobb, V. S.; Haaksma, R. A. J. Chem. Educ. 1983, 60, 273.
Electrochemistry
Understanding electrochemistry: Some distinctive concepts  Faulkner, Larry R.
This article addresses a few basic ideas about electrochemical systems that cause confusion among novice students. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Faulkner, Larry R. J. Chem. Educ. 1983, 60, 262.
Electrochemistry
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Solar energy experiment for beginning chemistry  Davis, Clyde E.
This article introduces an experiment that incorporates chemical applications of solar energy into the curriculum.
Davis, Clyde E. J. Chem. Educ. 1983, 60, 158.
Thermodynamics |
Applications of Chemistry
Solar energy: Hydrogen and oxygen  Farrell, John J.
Demonstrating the electrolysis of water with solar energy.
Farrell, John J. J. Chem. Educ. 1982, 59, 925.
Electrochemistry |
Applications of Chemistry
Reduction potentials and hydrogen overvoltage: An overhead projector demonstration  Ramette, Richard W.
Relates the scale of standard reduction potentials to the observed behavior of metals in their reactions with hydrogen ion to produce hydrogen gas.
Ramette, Richard W. J. Chem. Educ. 1982, 59, 866.
Electrochemistry |
Metals |
Oxidation / Reduction
Chemical energy: A learning package  Cohen, Ita; Ben-Zvi, Ruth
Problems associated with the teaching of chemical energy and an instructional package designed to overcome those difficulties.
Cohen, Ita; Ben-Zvi, Ruth J. Chem. Educ. 1982, 59, 656.
Thermodynamics |
Calorimetry / Thermochemistry
Entropy and its relation to work  Richardson, W. S.
The relationship of entropy to the disorder of a system can be explained using a deck of playing cards.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Thermodynamics
Demonstration of electrochemical cell properties by a simple, colorful oxidation-reduction experiment  Hendricks, Lloyd J.; Williams, John T.
The color of a solution close to an electrode is changed from that of the bulk solution to either of two contrasting colors, depending on whether the electrode reaction is a reduction or oxidation.
Hendricks, Lloyd J.; Williams, John T. J. Chem. Educ. 1982, 59, 586.
Electrochemistry |
Oxidation / Reduction
Potential uses for broken or worn-out glass or combination electrodes  Boring, Wayne C.; Winchell, Deborah L.
When a glass or combination electrode is no longer useful for pH measurements, it can be used in at least two ways.
Boring, Wayne C.; Winchell, Deborah L. J. Chem. Educ. 1982, 59, 425.
Laboratory Equipment / Apparatus |
Laboratory Management |
Electrochemistry
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Weight-loss diets and the law of conservation of energy   Hill, John W.
The law of conservation of mass is has real-life relevance to those who diet to lose weight.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Metabolism |
Thermodynamics
Entropy rules in my class too!  White, Alvan D.
A simple analogy that will help students understand entropy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Thermodynamics
Be a millionaire - Get with the action!  White, Alvan D.
When talking about the distribution of molecular velocities, we can use money as an analogy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Reactions |
Thermodynamics
Theory and practical use of an hydrogen electrode in aqueous-organic media  Letellier, P.; Millot, F.; Baffier, N.; Combes, R.
These authors make a case for a greater use of hydrogen electrodes for acidity measurements in student laboratory courses.
Letellier, P.; Millot, F.; Baffier, N.; Combes, R. J. Chem. Educ. 1981, 58, 576.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction
An illustration of applied calorimetry - Dieting students  Perkins, Robert R.
The author shares a question that catches student interest and exemplifies the theoretical concepts of calorimetry.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 548.
Calorimetry / Thermochemistry |
Thermodynamics |
Applications of Chemistry
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
Entropy as a driving force  Salzsieder, John C.
An inexpensive demonstration that requires virtually no setup time (and always works!) can be used to illustrate the driving force of entropy.
Salzsieder, John C. J. Chem. Educ. 1981, 58, 280.
Thermodynamics
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Synthesis and decomposition of ZnI2  Walker, Noojin
Illustrates direct combination, decomposition, the effect of a catalyst, recrystallization of sublimed I2, and electrolysis.
Walker, Noojin J. Chem. Educ. 1980, 57, 738.
Synthesis |
Reactions |
Catalysis |
Electrochemistry
An approximate determination of Avogadro's constant  Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel
An experiment to determine a value for Avogadro's number by determining the relationship between the number of electrons flowing through an acidified solution of water and the number of moles of electrons which reduce hydrogen ions to produce hydrogen gas.
Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel J. Chem. Educ. 1980, 57, 735.
Stoichiometry |
Electrochemistry |
Aqueous Solution Chemistry
Stormy weather  Taylor, Thomas E.
Question regarding the formation of rain clouds and the exothermic process of condensation.
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 732.
Thermodynamics |
Atmospheric Chemistry |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Electroforming: An improvised experiment on electroplating  Gorodetsky, Malka; Singerman, Ammon
The difference between electroplating and electroforming, and an experiment in the latter.
Gorodetsky, Malka; Singerman, Ammon J. Chem. Educ. 1980, 57, 514.
Electrochemistry |
Industrial Chemistry
Artifacts and the Electromotive Series  Mickey, Charles D.
The chemistry of metals and its application to archeology.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 275.
Electrochemistry |
Metals |
Applications of Chemistry |
Metallurgy |
Reactions
Electrical energy from cells - A corridor demonstration  Gilbert, George L.
A display that demonstrates the charge and discharge of a solar cell, fuel cell, and storage cell.
Gilbert, George L. J. Chem. Educ. 1980, 57, 216.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
The failed experiment as a teaching aid  Frugoni, Juan A Coch; Figueira, Alvaro Rocha
Intentionally using faulty experiments to increase student interest and participation; and example of a failed experiment regarding Faraday's laws of electrolysis is offered.
Frugoni, Juan A Coch; Figueira, Alvaro Rocha J. Chem. Educ. 1980, 57, 179.
Electrochemistry
A substitute for mercury electrode contacts  Bradford, John L.
Substituting steel wool or copper turnings for mercury as electrode contacts.
Bradford, John L. J. Chem. Educ. 1980, 57, 159.
Laboratory Equipment / Apparatus |
Electrochemistry
Paradigms and paradoxes  Campbell, J. A.
Examines the commonly held tenets "systems tend to a minimum potential energy," "the entropy of a shuffled deck of cards is greater than that of a new deck," and "energy is the ability to do work."
Campbell, J. A. J. Chem. Educ. 1980, 57, 41.
Thermodynamics
A copper mirror: Electroless plating of copper  Hill, John W.; Foss, Dennis L.; Scott, Lawrence W.
An experiment or demonstration of the electroless plating of copper in a watch glass.
Hill, John W.; Foss, Dennis L.; Scott, Lawrence W. J. Chem. Educ. 1979, 56, 752.
Electrochemistry
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
Comments on the criterion of spontaneity  Senozan, N. M.
Draws attention to the incomplete or misleading presentations sometimes made in connection with the criteria for spontaneous reactions.
Senozan, N. M. J. Chem. Educ. 1979, 56, 381.
Thermodynamics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
The electrophoresis of indicators: An analogy to isoenzyme separation  Daugherty, N. A.; Lavallee, D. K.
A lecture demonstration that illustrates the principles involved in the separation of isoenzymes but avoids the problems inherent in isoenzyme separations.
Daugherty, N. A.; Lavallee, D. K. J. Chem. Educ. 1979, 56, 353.
Electrochemistry |
Electrophoresis |
Dyes / Pigments |
Enzymes |
Separation Science
A simple and inexpensive solar energy experiment  Evans, J. H.; Pedersen, L. G.
Uses solid state technology to demonstrate the direct generation of electricity and the electrochemical generation of hydrogen.
Evans, J. H.; Pedersen, L. G. J. Chem. Educ. 1979, 56, 339.
Solid State Chemistry |
Semiconductors |
Electrochemistry
A freshman chemistry thermodynamics experiment: The cyclic rule revisited  Dezube, Bruce
A verification of the cyclic rule through measurements of a stretched rubber band.
Dezube, Bruce J. Chem. Educ. 1979, 56, 313.
Thermodynamics
Thermodynamics and solubilities of salts of dipositive ions  Riley, Gary F.; Eberhardt, William H.
Used to illustrate the application of the principle that a decrease in free energy is a criterion for the spontaneity of a chemical reaction.
Riley, Gary F.; Eberhardt, William H. J. Chem. Educ. 1979, 56, 206.
Thermodynamics |
Precipitation / Solubility |
Physical Properties |
Reactions
I. How much work can a person do?  Bent, Henry A.
This article relates concepts of work and energy by walking through a calculation of how much work is produced during exercise. [Debut]
Bent, Henry A. J. Chem. Educ. 1978, 55, 456.
Thermodynamics |
Biophysical Chemistry
A Demonstration of burning magnesium and dry ice  Driscoll, Jerry A.
This demonstration is a new, exciting approach to an older demonstration.
Driscoll, Jerry A. J. Chem. Educ. 1978, 55, 450.
Thermodynamics |
Kinetics |
Reactions
Hammond's postulate and the slinky  Macomber, Roger S.
The transition state of a one-step chemical reaction is one of the most fundamental concepts in chemistry. The author shares an in-class analogy that can be used to help students understand this concept better.
Macomber, Roger S. J. Chem. Educ. 1978, 55, 449.
Thermodynamics
Variation of radioactive decay rates  Wolsey, Wayne C.
133. It is stated frequently in introductory chemistry texts that radioactive decay rates are invariant. Students are led to the impression, implicitly, if not explicitly, that changes in chemical form, temperature, pressure, etc. have no effect upon the half-lives of unstable nuclei. This constancy of decay is perhaps true for some particular modes of decay, but by no means is it true for all.
Wolsey, Wayne C. J. Chem. Educ. 1978, 55, 302.
Nuclear / Radiochemistry |
Thermodynamics
Collision theory  Myers, Richard S.
The question presented here can be employed in general or physical chemistry courses.
Myers, Richard S. J. Chem. Educ. 1978, 55, 243.
Chemometrics |
Thermodynamics |
Kinetics
Electroplating of polyethylene  Gorodetsky, Malka
In the process of reorganizing a first-year chemistry laboratory for engineering students the authors have developed experiments that reproduce the approach in solving industrial chemical problems.
Gorodetsky, Malka J. Chem. Educ. 1978, 55, 66.
Industrial Chemistry |
Electrochemistry |
Oxidation / Reduction |
Metals
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Le Chtelier's principle demonstrated with a rubber band  Smith, Douglas D.
Heating a rubber band causes it to contract and stretching it causes it to become warmer.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 701.
Equilibrium |
Thermodynamics
Questions [and] Answers  Campbell, J. A.
330-333. Four questions and their answers; includes comments made by readers on earlier questions 130, 153, 154, 171, 172, 181.
Campbell, J. A. J. Chem. Educ. 1977, 54, 678.
Enrichment / Review Materials |
Atmospheric Chemistry |
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals |
pH
Electrochemical demonstration: Motor driven by a simple galvanic cell  Skinner, J. F.
A Zn / Zn 2+ Cu 2+ / Cu (Daniel) cell operates a small motor.
Skinner, J. F. J. Chem. Educ. 1977, 54, 619.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Lecture demonstration digital multimeter  Myers, Gardiner H.; Dugan, Robert J.
Plans for a Lecture Demonstration Digital Multimeter used to measure and display electric potential, current, temperature, pressure, and pH.
Myers, Gardiner H.; Dugan, Robert J. J. Chem. Educ. 1977, 54, 495.
Laboratory Equipment / Apparatus |
pH |
Electrochemistry
Using oxidation state diagrams to teach thermodynamics and inorganic chemistry  Friedel, A.; Murray, R.
Using oxidation state diagrams is suggested as a means of solving some of the problems associated with the teaching of thermodynamics and inorganic group chemistry.
Friedel, A.; Murray, R. J. Chem. Educ. 1977, 54, 485.
Thermodynamics |
Oxidation State
The Electrolysis of water - Fuel cell reactions  Feinstein, H. I.; Gale, Vernon
Design and operation of a fuel cell that operates an LED or small electric motor.
Feinstein, H. I.; Gale, Vernon J. Chem. Educ. 1977, 54, 432.
Electrochemistry
Free energy surfaces and transition state theory  Cruickshank, F. R.; Hyde, A. J.; Pugh, D.
130/131. Unless free energy diagrams are very precisely labeled and explained they are seriously misleading and often incorporate a major error of principle. [Note: This should be #130 in the series, as shown in the table of contents. But p. 288 shows #131. The error was not caught, so the next one in the series is #132. The present article is both #130 and #131.]
Cruickshank, F. R.; Hyde, A. J.; Pugh, D. J. Chem. Educ. 1977, 54, 288.
Thermodynamics
A simple lab demonstrating energy transformation  Miller, Daniel W.
Building and investigating a sulfuric acid / lead electrolytic cell.
Miller, Daniel W. J. Chem. Educ. 1977, 54, 245.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Thermodynamics
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Remembering the sign conventions for q and w in ?E = q - w  Gasparro, Francis P.
The author developed a quasi-historical rationalization to help students remember the mathematical statement of the First Law of Thermodynamics.
Gasparro, Francis P. J. Chem. Educ. 1976, 53, 389.
Thermodynamics
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Footnote to the drinking duck exemplum  Plumb, Robert C.; Cross, Judson B.; Keil, Robert G.
Variations on the drinking bird demonstration.
Plumb, Robert C.; Cross, Judson B.; Keil, Robert G. J. Chem. Educ. 1975, 52, 728.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Questions [and] Answers  Campbell, J. A.
203-205. Three chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 587.
Enrichment / Review Materials |
Thermodynamics |
Calorimetry / Thermochemistry
Deflection of falling solvents by an electric field  Brindle, I. D.; Tomlinson, R. H.
Using the deflection of a falling liquid by an electrically charged rod to demonstrate the polarity of molecules is misleading at best.
Brindle, I. D.; Tomlinson, R. H. J. Chem. Educ. 1975, 52, 382.
Molecular Properties / Structure |
Electrochemistry
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
P-Chem crossword puzzle  Snead, Claybourne C.
A physical chemistry crossword puzzle. The answer from p. 174 is reproduced in this PDF.
Snead, Claybourne C. J. Chem. Educ. 1975, 52, 158.
Thermodynamics
A lab to motivate weak students  Loveridge, Glen
A lab activity on the electrolysis of water. [Debut]
Loveridge, Glen J. Chem. Educ. 1975, 52, 102.
Electrochemistry
A lab to motivate weak students  Loveridge, Glen
A lab activity on the electrolysis of water. [Debut]
Loveridge, Glen J. Chem. Educ. 1975, 52, 102.
Electrochemistry
Electrochemistry in organisms. Electron flow and power output  Chirpich, Thomas P.
Electrochemical calculations at an elementary level can be readily applied to living organisms and generate further student interest in electrochemistry.
Chirpich, Thomas P. J. Chem. Educ. 1975, 52, 99.
Electrochemistry |
Bioenergetics
Thermodynamics, folk culture, and poetry  Smith, Wayne L.
The principles of the first, second, and third laws of thermodynamics are illustrated in songs and poems.
Smith, Wayne L. J. Chem. Educ. 1975, 52, 97.
Thermodynamics
A vigorous, spontaneous endothermic reaction   Hawkins, Malcolm D.

Hawkins, Malcolm D. J. Chem. Educ. 1974, 51, A178.
Thermodynamics
An endothermic reaction   Burt, Norman E.

Burt, Norman E. J. Chem. Educ. 1974, 51, A178.
Thermodynamics
Goal-oriented teaching of thermodynamics in general chemistry  Canham, G. W. Rayner
Thermodynamics can be more interesting if biological applications are emphasized.
Canham, G. W. Rayner J. Chem. Educ. 1974, 51, 600.
Biophysical Chemistry |
Thermodynamics
Corrosion  Slabaugh, W. H.
The topic of corrosion extends several basic concepts of electrochemistry with which students can relate. This article outlines: standard electrochemical potentials; corrosion of iron' corrosion of aluminum; application of electrochemical concepts; and ideas for some experiments.
Slabaugh, W. H. J. Chem. Educ. 1974, 51, 218.
Oxidation / Reduction |
Consumer Chemistry |
Electrochemistry
Reference electrodes  Caton, Roy D., Jr.
Examines reference electrodes, including both aqueous and nonaqueous reference electrodes.
Caton, Roy D., Jr. J. Chem. Educ. 1973, 50, A571.
Electrochemistry |
Instrumental Methods
Racing car batteries  Plumb, Robert C.; Combs, R. E.; Connelly, J. M.
Illustrating the Nernst equation and Faraday's laws using the example of the silver-zinc batteries used in racing cars.
Plumb, Robert C.; Combs, R. E.; Connelly, J. M. J. Chem. Educ. 1973, 50, 857.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Questions [and] Answers  Campbell, J. A.
Six questions that can be answered with the application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1973, 50, 847.
Enrichment / Review Materials |
Metals |
Plant Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
A semimicro salt bridge  McCullough, Thomas, C. S. C.
Using capillary U-tubes as semimicro salt bridges.
McCullough, Thomas, C. S. C. J. Chem. Educ. 1973, 50, 781.
Electrochemistry |
Microscale Lab |
Laboratory Equipment / Apparatus
Computer-enhanced laboratory experience. An example of a totally integrated approach  Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J.
A gas law experiment (Boyle's Law) adapted to make use of computer assisted instruction.
Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J. J. Chem. Educ. 1973, 50, 711.
Gases |
Thermodynamics
A stabilized linear direct reading conductance apparatus. The solvolysis of t-butyl chloride  Cyr, T.; Prudhomme, J.; Zador, M.
A simple ac conductivity apparatus for experiments in chemical kinetics is described; the instrument is sufficiently reliable that it can be used by first year students and assembled in a few hours.
Cyr, T.; Prudhomme, J.; Zador, M. J. Chem. Educ. 1973, 50, 572.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Electrochemistry |
Kinetics
A practical energy experiment or lecture demonstration  Garin, David L.
Presents two demonstrations: one involves heating different volumes of water on the same heater and measuring their temperatures; the other involves heating different volumes of water on the same heater and calculating the heat of vaporization.
Garin, David L. J. Chem. Educ. 1973, 50, 497.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Charge and mass of the electron. An introductory experiment  Thompson, C. C.
Procedure for the electrolytic determination of the charge and mass of the electron requiring only the use of a balance and the careful recording of data.
Thompson, C. C. J. Chem. Educ. 1973, 50, 435.
Atomic Properties / Structure |
Electrochemistry |
Metals
Scuba diving and the gas laws  Cooke, E. D.; Baranowski, Conrad
Three illustrations of physical-chemical principles drawn from scuba diving.
Cooke, E. D.; Baranowski, Conrad J. Chem. Educ. 1973, 50, 425.
Gases |
Applications of Chemistry |
Thermodynamics
Footnote to the house heating exemplum  Plumb, Robert C.; Campbell, J. A.
Offers a simple proof regarding an earlier column.
Plumb, Robert C.; Campbell, J. A. J. Chem. Educ. 1973, 50, 365.
Thermodynamics |
Gases
The first law. For scientists, citizens, poets and philosophers  Bent, Henry A.
Practical experiences and phenomena that serve to illustrate the first law of thermodynamics.
Bent, Henry A. J. Chem. Educ. 1973, 50, 323.
Thermodynamics
Questions [and] Answers  Campbell, J. A.
Six questions requiring an application of chemical principles.
Campbell, J. A. J. Chem. Educ. 1973, 50, 281.
Enrichment / Review Materials |
Lipids |
Gases |
Electrochemistry
Syphon and the potential energy diagrams  Sarbolouki, M. N.
An analogy between the operation of a syphon and potential energy diagrams.
Sarbolouki, M. N. J. Chem. Educ. 1973, 50, 245.
Reactions |
Thermodynamics
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
LeChatelier's principle and a rubber band  DeLorenzo, Ronald
The cited demonstration can also be sued to illustrate LeChatelier's principle .
DeLorenzo, Ronald J. Chem. Educ. 1973, 50, 124.
Equilibrium |
Thermodynamics
Free energies of formation measurements on solid-state electrochemical cells  Rollino, J. A.; Aronson, S.
This experiment demonstrates in a direct fashion the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell.
Rollino, J. A.; Aronson, S. J. Chem. Educ. 1972, 49, 825.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Solid State Chemistry |
Organometallics
Questions [and] Answers  Campbell, J. A.
Seven questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 769.
Enrichment / Review Materials |
Applications of Chemistry |
Thermodynamics |
Gases |
Astrochemistry
A simple method for testing the adhesion of electrodeposits  Ajuria-Garza, Sergio
A simple test that can be used with low-adhesion electrodeposits involves attempting to peel off the deposit with a pressure-sensitive adhesive tape.
Ajuria-Garza, Sergio J. Chem. Educ. 1972, 49, 706.
Electrochemistry
A simple method for testing the adhesion of electrodeposits  Ajuria-Garza, Sergio
A simple test that can be used with low-adhesion electrodeposits involves attempting to peel off the deposit with a pressure-sensitive adhesive tape.
Ajuria-Garza, Sergio J. Chem. Educ. 1972, 49, 706.
Electrochemistry
Definition of standard states  Lukens, David C.
A suggested sequence of definitions for the standard state.
Lukens, David C. J. Chem. Educ. 1972, 49, 654.
Thermodynamics |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Solutions / Solvents
Edison's chemical meter  Vanderbilt, Byron M.
Thomas Edison invented the chemical meter to measure the rate at which electricity was being used.
Vanderbilt, Byron M. J. Chem. Educ. 1972, 49, 626.
Applications of Chemistry |
Electrochemistry
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells  Kozawa, Akiya; Powers, R. A.
The purpose of this article is to make a simplified, but current presentation of the electrochemical reactions in batteries, particularly those of the manganese dioxide cathode of dry cells.
Kozawa, Akiya; Powers, R. A. J. Chem. Educ. 1972, 49, 587.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Questions [and] Answers  Campbell, J. A.
Six questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 538.
Enrichment / Review Materials |
Applications of Chemistry |
Electrochemistry |
Astrochemistry |
Stoichiometry |
Metals
Freezing curves for Salol  Laswick, Patty Hall
The convenient freezing temperature of salol (40-43 C) means that students can easily and safely melt the material using warm water
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 537.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Nonmajor Courses |
Kinetic-Molecular Theory
The presentation of electrode potentials using an energy level diagram  Pinfold, T. A.
The tabular form in which standard electrode potentials are usually presented often leads to confusion that can be diminished by representing the electrochemical series on an energy diagram like that provided.
Pinfold, T. A. J. Chem. Educ. 1972, 49, 506.
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
When You Heat Your House Does the Thermal Energy Content Increase?  Bilkadi, Zayn; Bridgman, Wilbur B.
Whether or not the total energy content of the air increases or decreases cannot be answered unambiguously.
Bilkadi, Zayn; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 493.
Thermodynamics
Entropy and a rubber band  Laswick, Patty Hall
A temperature change is noted when a rubber band held against the cheek is stretched and then released.
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 469.
Thermodynamics
An inexpensive DC ohmmeter  Getzin, Donald R.
Design for an inexpensive DC ohmmeter.
Getzin, Donald R. J. Chem. Educ. 1972, 49, 442.
Laboratory Equipment / Apparatus |
Electrochemistry
Biogalvanic cells  Plumb, Robert C.; Hobey, W. D.
Explains the chemistry behind the potential development of an electrochemical cell that generates electricity using inert electrodes implanted in bodily fluids.
Plumb, Robert C.; Hobey, W. D. J. Chem. Educ. 1972, 49, 413.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 328.
Enrichment / Review Materials |
Applications of Chemistry |
Nuclear / Radiochemistry |
Thermodynamics |
Mass Spectrometry |
Isotopes
Electrographic analysis of the iron triad. A general chemistry experiment  Feinstein, H. I.
Electrochemical tests for iron, cobalt, and nickel.
Feinstein, H. I. J. Chem. Educ. 1972, 49, 268.
Electrochemistry |
Qualitative Analysis
A general chemistry experiment for the blind  Hiemenz, Paul C.; Pfeiffer, EIizabeth
Presents a method for weighing and a conductometric titration that relies on an audio signal.
Hiemenz, Paul C.; Pfeiffer, EIizabeth J. Chem. Educ. 1972, 49, 263.
Minorities in Chemistry |
Titration / Volumetric Analysis |
Electrochemistry
Computer evaluation of titrations by Gran's method. An analytical chemistry experiment  MacDonald, Timothy J.; Barker, Barbara J.; Caruso, Joseph A.
A computer program has been developed for the evaluation of potentiometric redox titration data by Gran's method.
MacDonald, Timothy J.; Barker, Barbara J.; Caruso, Joseph A. J. Chem. Educ. 1972, 49, 200.
Titration / Volumetric Analysis |
Quantitative Analysis |
Oxidation / Reduction |
Electrochemistry |
Acids / Bases
The effervescence of ocean surf  Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B.
A pure liquid will not foam, but all true solutions will, as dictated by the fundamental concepts of surface thermodynamics enunciated by Gibbs.
Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 29.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Solutions / Solvents |
Thermodynamics
When your car rusts out  Knockemus, Ward
Explains the rusting of a car by considering electrochemical corrosion and the Nernst equation.
Knockemus, Ward J. Chem. Educ. 1972, 49, 29.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Reactions
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents
Tire Inflation Thermodynamics  Plumb, Robert C.; Connors, John J.
Explains why inflating a tire with a hand pump heats the air being pumped into the tire.
Plumb, Robert C.; Connors, John J. J. Chem. Educ. 1971, 48, 837.
Gases |
Thermodynamics |
Applications of Chemistry
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
Heat of hydration  Dannhauser, Walter
A commonly published experiment can be expanded so that students may obtain the enthalpy of the reaction between anhydrous salts and water.
Dannhauser, Walter J. Chem. Educ. 1971, 48, 329.
Thermodynamics |
Crystals / Crystallography |
Water / Water Chemistry |
Noncovalent Interactions
Le Chtelier's principles - Conductivity of solutions  Kasimer, Philip
Observing conductivity of a dilute solution of glacial acetic acid before and after the addition of a magnesium ribbon.
Kasimer, Philip J. Chem. Educ. 1970, 47, A439.
Equilibrium |
Electrochemistry |
Aqueous Solution Chemistry
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
So-called zeroth law of thermodynamics  Redlich, Otto
The "zeroth law of thermodynamics" elucidates the difference between the axiomatic and the epistemological method; it is neither a law nor a statement of fact but a guideline for checking our description of nature.
Redlich, Otto J. Chem. Educ. 1970, 47, 740.
Thermodynamics
General chemistry experiments: Six short, inexpensive procedures  Heit, M. L.; Dauphinee, G. A.
These simple experiments involve conductivity comparisons of derivatives of the acetate ion, paper chromatography, sublimation, the effect of temperature on equilibrium, the detection of I-, and an example of an equilibrium shift.
Heit, M. L.; Dauphinee, G. A. J. Chem. Educ. 1970, 47, 532.
Electrochemistry |
Chromatography |
Phases / Phase Transitions / Diagrams |
Equilibrium |
Oxidation / Reduction
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
Culture and the conservation laws  Bent, Henry A.
There are no consumers of mass or energy, only converters.
Bent, Henry A. J. Chem. Educ. 1970, 47, 518.
Thermodynamics
Car Won't Start?  Nash, Leonard K.; Plumb, Robert C.
Examines the questions, "Does the voltage of a battery drop with temperature" and "Does the ability of a battery to deliver current decrease with temperature?"
Nash, Leonard K.; Plumb, Robert C. J. Chem. Educ. 1970, 47, 382.
Electrochemistry |
Thin Layer Chromatography |
Applications of Chemistry |
Consumer Chemistry |
Electrolytic / Galvanic Cells / Potentials
An alternative to free energy for undergraduate instruction  Strong, Laurence E.; Halliwell, H. Frank
It is the purpose of this paper to question the usefulness of the Gibbs function for the student and to propose an alternative based on the use of entropy functions that help the student to focus more sharply on the features of a system that relate to its capacity to change.
Strong, Laurence E.; Halliwell, H. Frank J. Chem. Educ. 1970, 47, 347.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Cloud Caps on High Mountains  Stevenson, Philip E.
The formation of cloud caps on high mountains illustrates cooling in an adiabatic expansion and the change in vapor pressure of a liquid with temperature.
Stevenson, Philip E. J. Chem. Educ. 1970, 47, 272.
Atmospheric Chemistry |
Gases |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The Methanol Lighter  Bailar, John C., Jr.
The methanol lighter illustrates the roles that thermodynamics, kinetics, and catalysis play in determining if a reaction will take place.
Bailar, John C., Jr. J. Chem. Educ. 1970, 47, 272.
Thermodynamics |
Kinetics |
Catalysis |
Consumer Chemistry |
Applications of Chemistry
A bridge-rectifier-milliammeter instrument for conductance studies  Nordmann, J.; Steinberg, Edwin
Modification of an earlier described instrument.
Nordmann, J.; Steinberg, Edwin J. Chem. Educ. 1970, 47, 241.
Electrochemistry |
Laboratory Equipment / Apparatus |
Instrumental Methods
Isopoly and heteropoly compounds: A general chemistry laboratory experiment  Kauffman, George B.; Vartanian, Paul F.
This procedure involves the preparation of isopoly and heteropoly salts and introduces the beginning student to liquid-liquid extraction, titration, ion exchange, conductance, and a variety of synthetic and analytical techniques.
Kauffman, George B.; Vartanian, Paul F. J. Chem. Educ. 1970, 47, 212.
Synthesis |
Acids / Bases |
Electrochemistry
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
Transistorized power sources for constant current coulometric titration  Stock, John T.
This coulometric titrator uses a complementary pair of transistors to minimize heating affects and improve stability with respect to temperature; an example of experimental use for the apparatus is included.
Stock, John T. J. Chem. Educ. 1969, 46, 858.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Quantitative Analysis |
Instrumental Methods |
Electrochemistry
Potentiometric determination of solubility product constants: A laboratory experiment  Tackett, Stanford L.
This paper describes an experiment in which measured potentials and calculated activity coefficients are used to obtain the solubility product constants of silver halides.
Tackett, Stanford L. J. Chem. Educ. 1969, 46, 857.
Instrumental Methods |
Electrochemistry |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents
The standard electrode potential of the silver-silver bromide electrode  Venable, R. L.; Roach, D. V.
Calculations of the standard electrode potential of the silver-silver bromide electrode indicate that many values listed in textbooks are incorrect.
Venable, R. L.; Roach, D. V. J. Chem. Educ. 1969, 46, 741.
Electrochemistry |
Aqueous Solution Chemistry |
Quantitative Analysis
Volkswagen versus the hummingbird  Nebbia, Giorgio
Questions the cited (046-07-0455) thermodynamic calculations.
Nebbia, Giorgio J. Chem. Educ. 1969, 46, 701.
Thermodynamics |
Calorimetry / Thermochemistry |
Chemometrics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
A simple amperostat for coulometric titration  Vincent, Colin A.; Ward, J. G.
Describes the circuit, assembly, and performance of a simple amperostat for coulometric titration.
Vincent, Colin A.; Ward, J. G. J. Chem. Educ. 1969, 46, 613.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Quantitative Analysis |
Oxidation / Reduction |
Electrochemistry
A distribution experiment  Campbell, J. A.; Nelson, Douglas; Rudesill, John
An experiment to determine the distribution coefficient of an acid between an aqueous and nonaqueous phase.
Campbell, J. A.; Nelson, Douglas; Rudesill, John J. Chem. Educ. 1969, 46, 454.
Acids / Bases |
Aqueous Solution Chemistry |
Thermodynamics |
Equilibrium |
Titration / Volumetric Analysis
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Indirect calorimetry by computer in the general chemistry course  DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel
Describes the use of a Fortran IV program to stimulate student interest in the applications and potential of computer techniques in chemistry.
DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1969, 46, 398.
Calorimetry / Thermochemistry |
Thermodynamics
A computer program for the analysis of the N2O4 dissociation equilibrium  Erickson, Luther E.
Describes a Fortran IV program for the analysis of empirical data collected for the N2O4 dissociation equilibrium.
Erickson, Luther E. J. Chem. Educ. 1969, 46, 383.
Equilibrium |
Thermodynamics
Quantities of work in thermodynamic equations  Wright, P. G.
Examines distinctions to be made between work done by forces exerted by external bodies and acting on a system with work done by forces exerted by the system on external bodies.
Wright, P. G. J. Chem. Educ. 1969, 46, 380.
Thermodynamics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P.
(1) Why different potential for copper/zinc cells when using nitrates vs. sulfates? Why is neither cell potential as large as predicted by Nerst equation? (2) Do elements in the zinc subgroup belong to the transition series? - answer by Quagliano. (3) How can the 2,4,5-trichloro derivative of phenoxyacetic acid be prepared? - answer by Danehy.
Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P. J. Chem. Educ. 1969, 46, 227.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Periodicity / Periodic Table |
Metals |
Synthesis |
Aromatic Compounds
Disc electrophoresis  Brewer, John M.; Ashworth, Raymond B.
Describes the procedures involved in separating proteins or nucleic acids through disc electrophoresis.
Brewer, John M.; Ashworth, Raymond B. J. Chem. Educ. 1969, 46, 41.
Electrochemistry |
Electrophoresis |
Proteins / Peptides |
Separation Science
Avogadro's number by four methods  Slabaugh, W. H.
Describes a project by two general chemistry students to compare four methods for finding Avogadro's number; this article focusses on the electroplating method.
Slabaugh, W. H. J. Chem. Educ. 1969, 46, 40.
Stoichiometry |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
The cell potential and the distance between electrodes  Lauren, Paul M.
This demonstration illustrates the importance of the role played by ion diffusion in determining the magnitude of the emf of a primary cell.
Lauren, Paul M. J. Chem. Educ. 1968, 45, A691.
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Oxidation of copper by hydrochloric acid  Walker, Noojin; George, Donald L.
Demonstrates the oxidation of copper by hydrochloric acid.
Walker, Noojin; George, Donald L. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Acids / Bases |
Electrochemistry
A dual range direct current power supply for student use  Mowery, Dwight F., Jr.
Presents a design for and the performance of a dual range direct current power supply for student use.
Mowery, Dwight F., Jr. J. Chem. Educ. 1968, 45, 739.
Laboratory Equipment / Apparatus |
Electrochemistry
Verification of the form of the Nernst equation: An experiment for introductory chemistry  Evans, James S.
In this experiment, students record data for the concentration dependence of the ferrous-ferric half-cell potential at a platinum electrode, using a silver-silver ion reference electrode, a salt bridge, and a voltmeter.
Evans, James S. J. Chem. Educ. 1968, 45, 532.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Effect of complexing agents on oxidation potentials  Helsen, Jef
A short note on a simple experiment to demonstrate the effect of complexing agents on the oxidation-reduction properties of redox couples such as Fe3+/Fe2+.
Helsen, Jef J. Chem. Educ. 1968, 45, 518.
Coordination Compounds |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
The Becquerel effect  Ensanian, Minas
A short note on a demonstration of the Becquerel effect.
Ensanian, Minas J. Chem. Educ. 1968, 45, 240.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
A lecture room digital multimeter  Barnard, W. Robert.; Kelley, John C.; Gidden, Robert; Eberhardt, William H.
Presents a design for a lecture room digital multimeter and a lecture table manometer.
Barnard, W. Robert.; Kelley, John C.; Gidden, Robert; Eberhardt, William H. J. Chem. Educ. 1968, 45, 206.
Electrochemistry |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Coulometric titration of cyclohexene with bromine  Evans, Dennis H.
Describes the coulometric titration of cyclohexene with bromine appropriate for an introductory course.
Evans, Dennis H. J. Chem. Educ. 1968, 45, 88.
Electrochemistry |
Titration / Volumetric Analysis |
Quantitative Analysis
Energy and Entropy in Chemistry (Wyatt, P. A. H.)  Strong, Laurence E.

Strong, Laurence E. J. Chem. Educ. 1968, 45, 71.
Thermodynamics
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
Metallurgy D. Refining the Metal  Alyea, Hubert N.
Copper refined by electroplating.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A717.
Metallurgy |
Metals |
Electrochemistry
Energy E. Mechanical Energy   Owens, Charles
A steam engine demonstrates the transformation of heat into motion.
Owens, Charles J. Chem. Educ. 1967, 44, A273.
Thermodynamics
Group 1. The Alkali Metals C. The Copper Group  Alyea, Hubert N.; Mancuso, Carl J.; Bernard, Robert
Demonstrations include electroplating copper, Fehling's test, the silver mirror (Ag+ + tartrate), insoluble silver salts, photo-film + hypo, hypo fixer + silver coin, and a solution of gold in aqua-regia.
Alyea, Hubert N.; Mancuso, Carl J.; Bernard, Robert J. Chem. Educ. 1967, 44, A1005.
Electrochemistry |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents |
Metals
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
Microapparatus for demonstrating electrophoresis on paper  Stock, John T.; DeThomas, A. V.
This article describes a microapparatus for demonstrating electrophoresis on paper that is powered by a 9 V battery.
Stock, John T.; DeThomas, A. V. J. Chem. Educ. 1967, 44, 415.
Microscale Lab |
Electrochemistry |
Electrophoresis |
Separation Science |
Laboratory Equipment / Apparatus
A simple analogy of the relationship of ?G to the position of equilibrium  Marks, D. J.
This short note describes a simple demonstration to serve as an analogy of the relationship of ?G to the position of equilibrium.
Marks, D. J. J. Chem. Educ. 1967, 44, 402.
Thermodynamics |
Equilibrium
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
Energy B. Heat energy  Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N.
Demonstrations presented include the absorption of black vs white surfaces, the heat ignition of touching flash-bulbs, the low heat of combustion of guncotton, and the heats of displacement of metals.
Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A978.
Metals |
Thermodynamics
Ionization, Electricity D. Special electrical phenomena   Bernard, Robert; Slabaugh, W. H.
Demonstrations include cation analysis, conductivity during the titration of Ba(OH)2 + HCl vs H2C2O4, and conductivity during the titration of Ba(OH)2 + HCl vs H3PO4.
Bernard, Robert; Slabaugh, W. H. J. Chem. Educ. 1966, 43, A901.
Titration / Volumetric Analysis |
Quantitative Analysis |
Qualitative Analysis |
Electrochemistry |
Conductivity
Ionization, Electricity C. Consumption of electricity   Bernard, Robert; Owens, Charles; Holman, J. S.; Peischl, C. J.
Demonstrations include the electrolysis of ZnCl2, electrodeposition of Pb, lead chromate by electrolysis, and manufacturing NaOH and Cl2 by the Hg-process.
Bernard, Robert; Owens, Charles; Holman, J. S.; Peischl, C. J. J. Chem. Educ. 1966, 43, A901.
Electrochemistry
Ionization, electricity. B. Production of electricity. C. Consumption of electricity.  Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie
Demonstrations include the hydrogen electrode, H-electrode generating its own H2, consumption of electricity, Zn-Cu coupling, overvoltage, the Faraday effect, lead storage battery, and the electrolysis of NaCl.
Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie J. Chem. Educ. 1966, 43, A658.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Ionization, electricity B. (continued) Production of electricity   Hornbeck, LeRoy; Barnard, Robert; Jackman, Kenneth; Ulery, Denver; Rogers, Crosby
Demonstrations include magnesium + acid ringing a bell, magnesium + acid lighting a bulb, couples without a salt bridge, and half-cells with salt bridge and microammeter.
Hornbeck, LeRoy; Barnard, Robert; Jackman, Kenneth; Ulery, Denver; Rogers, Crosby J. Chem. Educ. 1966, 43, A585.
Aqueous Solution Chemistry |
Electrochemistry
Lectures on Matter and Equilibrium (Hill, Terrell L.)  Rosenburg, Robert

Rosenburg, Robert J. Chem. Educ. 1966, 43, A1086.
Thermodynamics |
Enrichment / Review Materials
The fundamental assumptions of chemical thermodynamics  MacRae, Duncan
Examines the fundamental terms, definitions, and assumptions of chemical thermodynamics.
MacRae, Duncan J. Chem. Educ. 1966, 43, 586.
Thermodynamics
Demonstrations of spontaneous endothermic reactions  Matthews, G. W. J.
The reaction between hydrated metal chlorides and thionyl chloride provides a series of valuable experiments that can be used to demonstrate spontaneous endothermic reactions.
Matthews, G. W. J. J. Chem. Educ. 1966, 43, 476.
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry
Porous glass salt bridges  Durst, Richard A.
Describes the characteristics and applications of porous glass salt bridges.
Durst, Richard A. J. Chem. Educ. 1966, 43, 437.
Laboratory Equipment / Apparatus |
Electrochemistry
Electro-osmosis as a demonstration experiment. Coupled irreversible effects and direct energy conversion  Dixon, John R.; Schafer, Frank W.
When a stream of water is forced through a porous pug or other resistance associated with a pressure drop, an electrical potential is developed between the high and low pressure sides of the resistance.
Dixon, John R.; Schafer, Frank W. J. Chem. Educ. 1966, 43, 380.
Electrochemistry
Simple experiments in amperometry. Determination of acids, oxidizing agents  Feldman, Frederic J.
Amperometry, the measurement of current resulting from an electrochemical reaction at the electrode, is a simple means of determining the concentration of an electroactive species. An experiment is described here for the determination of acids or oxidizing agents by amperometry.
Feldman, Frederic J. J. Chem. Educ. 1966, 43, 378.
Quantitative Analysis |
Electrochemistry
Simple equipment for automatic potentiometric pH titrations  Olsen, Eugene D.
This paper describes a simple yet versatile apparatus employing a siphon pipet to deliver titrant solution automatically and accurately during the course of a titration.
Olsen, Eugene D. J. Chem. Educ. 1966, 43, 310.
pH |
Titration / Volumetric Analysis |
Electrochemistry |
Aqueous Solution Chemistry |
Quantitative Analysis |
Laboratory Equipment / Apparatus
Electrical conductance apparatus  Steinberg, Edwin E.; Nordmann, J.
A circuit diagram for an electrical conductance apparatus that is safe, accurate, and allows for qualitative measurements.
Steinberg, Edwin E.; Nordmann, J. J. Chem. Educ. 1966, 43, 309.
Electrochemistry |
Conductivity |
Laboratory Equipment / Apparatus
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
Demonstrating concepts of statistical thermodynamics: More on the Maxwell Demon bottle  Sussman, M. V.
The Maxwell Demon bottle can illustrate the nature of entropy, the difference between a work effect and a heat effect, the difference between reversible and irreversible work effects, the mechanical equivalent of heat, and similar intangibles.
Sussman, M. V. J. Chem. Educ. 1966, 43, 105.
Thermodynamics
Electrode potentials  Shombert, Donald
Changes in the potential observed for two Daniell cells are due to changes in ion concentrations.
Shombert, Donald J. Chem. Educ. 1965, 42, A215.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Equilibrium
Potentiometer for the general chemistry laboratory  Wood, Stanley E.; Anderson, C. B.
A circuit diagram is presented for a potentiometer used to verify the Nernst equation and investigate other electrochemical phenomenon.
Wood, Stanley E.; Anderson, C. B. J. Chem. Educ. 1965, 42, 659.
Laboratory Equipment / Apparatus |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Student potentiometer using a zener diode  Atkinson, George F.
Presents a circuit diagram for a student potentiometer using a zener diode.
Atkinson, George F. J. Chem. Educ. 1965, 42, 656.
Laboratory Equipment / Apparatus |
Electrochemistry
Potentiometric titration of aspirin in ethanol  Shen, Samuel Y.; Gilman, Alfred J.
This experiment illustrates the potentiometric end point in nonaqueous acid-base titrations.
Shen, Samuel Y.; Gilman, Alfred J. J. Chem. Educ. 1965, 42, 540.
Titration / Volumetric Analysis |
Electrochemistry |
Quantitative Analysis |
Acids / Bases
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
Several designs for constructing potentiometers  Battino, Rubin
This paper describes several designs for constructing inexpensive potentiometers that possess a practical degree of precision.
Battino, Rubin J. Chem. Educ. 1965, 42, 211.
Electrochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Concerning equilibrium, free energy changes, LeChatelier's Principle. III. Halide-halate equilibria  Eberhardt, William H.
Compares four equilibria: KI + KIO3, KI + KBrO3, KBR + KBrO3, and KBr + KIO3.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A883.
Equilibrium |
Aqueous Solution Chemistry |
Thermodynamics
Concerning equilibrium, free energy changes, Le Châtelier's principle II  Eberhardt, William H.
This demonstration involves a reversible, temperature-based transformation from blue tetrahedrally coordinated Co2+ to pink sixfold coordinated Co2+.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Equilibrium |
Thermodynamics |
Aqueous Solution Chemistry |
Coordination Compounds
Electrolysis: H2O and H2O2  Eberhardt, William H.
This demonstration involves the concurrent electrolysis of water and hydrogen peroxide.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Electrochemistry |
Water / Water Chemistry
Metallic reduction of aqueous hydrogen chloride  Walker, Noojin, Jr.
Calcium reacts with HCl to liberate hydrogen gas.
Walker, Noojin, Jr. J. Chem. Educ. 1964, 41, A477.
Reactions |
Oxidation / Reduction |
Metals |
Electrochemistry
Concerning equilibrium, free energy changes, Le Chtelier's principle  Eberhardt, William H.
Aqueous KI is added to a solution of CuSO4 in a separatory funnel; adding more CuSO4 demonstrates an equilibrium sift.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A477.
Equilibrium |
Thermodynamics |
Reactions
Thermal expansion of gases  Barnard, W. Robert
Liquid nitrogen is poured over an inflated balloon.
Barnard, W. Robert J. Chem. Educ. 1964, 41, A139.
Gases |
Thermodynamics |
Kinetic-Molecular Theory
Maximum work revisited (Letters)  Mysels, Karol J.
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Mysels, Karol J. J. Chem. Educ. 1964, 41, 677.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Bauman, Robert
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Bauman, Robert J. Chem. Educ. 1964, 41, 676.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Kokes, Richard J.
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Kokes, Richard J. J. Chem. Educ. 1964, 41, 675.
Thermodynamics |
Gases
Maximum work revisited (Letters)  Bauman, Robert
Comments on an earlier "Textbook Error" article that considers at length errors in the calculation of work done in compression or expansion of an ideal gas.
Bauman, Robert J. Chem. Educ. 1964, 41, 675.
Thermodynamics |
Gases
Electrophoresis using thin layer materials  Criddle, W. J.; Moody, G. J.; Thomas, J. D. R.
Thin layer materials prepared for chromatography are used for electrophoresis.
Criddle, W. J.; Moody, G. J.; Thomas, J. D. R. J. Chem. Educ. 1964, 41, 609.
Electrochemistry |
Electrophoresis |
Separation Science |
Thin Layer Chromatography
A simple quantitative electrolysis experiment for first year chemistry  Petrucci, Ralph H.; Moews, P. C., Jr.
This simple and inexpensive electrolysis experiment for first year chemistry allows a quantitative application of Faraday's laws without the need for analytical balances.
Petrucci, Ralph H.; Moews, P. C., Jr. J. Chem. Educ. 1964, 41, 552.
Electrochemistry
Reversible and irreversible work: A lecture demonstration  Eberhardt, William H.
This lecture demonstration illustrates the concepts of reversible and irreversible work using a pendulum and attached pan balance.
Eberhardt, William H. J. Chem. Educ. 1964, 41, 483.
Thermodynamics
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Teaching the entropy concept  Plumb, Robert C.
Presents a macroscopic lecture demonstration illustrating both potential energy and entropy driving forces and showing their interrelationship.
Plumb, Robert C. J. Chem. Educ. 1964, 41, 254.
Thermodynamics |
Statistical Mechanics
Work of compressing an ideal gas  Bauman, Robert P.
In formulating examples of compression problems there should be an explicit statement that the process is reversible, or at least slow.
Bauman, Robert P. J. Chem. Educ. 1964, 41, 102.
Thermodynamics |
Gases
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Demonstration notes: Chemiluminescence in electrolysis  Villarreal, Fidel; Garcia, Octavio
Suggests a modification to the usual chemiluminescence demonstration with luminol.
Villarreal, Fidel; Garcia, Octavio J. Chem. Educ. 1963, 40, A477.
Electrochemistry |
Oxidation / Reduction
Electrolysis of sodium through glass  Dutton, F. B.
Sodium is deposited on the inside of a light bulb immersed in molten NaNO3.
Dutton, F. B. J. Chem. Educ. 1963, 40, A313.
Electrochemistry
Analysis of aspirin: A conductometric titration  Proctor, J. S.; Roberts, J. E.
Suggests research questions based on an earlier published article.
Proctor, J. S.; Roberts, J. E. J. Chem. Educ. 1963, 40, A306.
Undergraduate Research |
Titration / Volumetric Analysis |
Quantitative Analysis |
Electrochemistry |
Conductivity
Oxidation of bromide and iodide ions  Dutton, Frederic B.
Color changes are indicative of oxidation reactions of bromide and iodide ions.
Dutton, Frederic B. J. Chem. Educ. 1963, 40, A241.
Oxidation / Reduction |
Reactions |
Electrochemistry
Oxidation of bromide and iodide ions  Dutton, Frederic B.
Color changes are indicative of oxidation reactions of bromide and iodide ions.
Dutton, Frederic B. J. Chem. Educ. 1963, 40, A241.
Oxidation / Reduction |
Reactions |
Electrochemistry
Entropy: The significance of the concept of entropy and its applications in science and technology (Fast, J. D.)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1963, 40, 442.
Thermodynamics
An experiment with galvanic cells: For the general chemistry laboratory  Dillard, Clyde R.; Kammeyer, Patty Hall
Describes a simple, low-cost galvanic cell and its use to compare various metallic electrodes.
Dillard, Clyde R.; Kammeyer, Patty Hall J. Chem. Educ. 1963, 40, 363.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals
A simple approach to the second law  Breck, W. G.
Uses a reversible Carnot cycle as a simple approach to explicating the second law.
Breck, W. G. J. Chem. Educ. 1963, 40, 353.
Thermodynamics
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
Mnemonics for thermodynamic equations  Radley, Edward T.; Cohen, Irwin; McCullough, Brother Thomas, C. S. C.
Presents several mnemonics devices for remembering thermodynamic equations.
Radley, Edward T.; Cohen, Irwin; McCullough, Brother Thomas, C. S. C. J. Chem. Educ. 1963, 40, 261.
Thermodynamics
Letters to the editor  Day, Jesse H.
The author suggests how the importance of thermodynamics might be demonstrated to students.
Day, Jesse H. J. Chem. Educ. 1963, 40, 229.
Thermodynamics
Maxwell's demon demonstrator  Sussman, M. V.
Describes a simple device used to illustrate the concept of irreversibility.
Sussman, M. V. J. Chem. Educ. 1963, 40, 49.
Thermodynamics
Magnesium cell for demonstration  Mathur, Prem Behari; Paul, Nityanandan J.
Describes a cell system consisting of copper and magnesium plates or ribbon immersed in copper sulfate solution.
Mathur, Prem Behari; Paul, Nityanandan J. J. Chem. Educ. 1963, 40, 43.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrolytic conductivity: A demonstration experiment  Thomas, William B.
Describes a simple method of measuring electrolytic conductivity based on Ohm's law.
Thomas, William B. J. Chem. Educ. 1962, 39, 531.
Electrochemistry |
Conductivity |
Solutions / Solvents |
Aqueous Solution Chemistry
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
A low cost direct current source for the laboratory  Barnard, W. Robert.; Woodriff, Ray
Presents a low cost source of variable direct current.
Barnard, W. Robert.; Woodriff, Ray J. Chem. Educ. 1961, 38, 521.
Laboratory Equipment / Apparatus |
Electrochemistry
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics
Editorially speaking  Kieffer, William F.
Suggests that more should be done to teach introductory college chemistry students basic principles such as entropy and free energy.
Kieffer, William F. J. Chem. Educ. 1961, 38, 333.
Thermodynamics
Faraday's laws in one equation  Strong, Frederick C.
Presents a derivation of a single-equation statement of Faraday's laws.
Strong, Frederick C. J. Chem. Educ. 1961, 38, 98.
Electrochemistry
Student experiment with filter paper electrophoresis  Garvin, James E.
The effect of electrical charge in determining some of the properties of amino acids and proteins can be simply and convincingly demonstrated to the student by means of filter paper electrophoresis.
Garvin, James E. J. Chem. Educ. 1961, 38, 36.
Separation Science |
Electrophoresis |
Amino Acids |
Proteins / Peptides |
Electrochemistry
A simple ice calorimeter: A first experiment in thermochemistry  Mahan, Bruce H.
This note describes a relatively crude and simple ice calorimeter that can be supplied to each student.
Mahan, Bruce H. J. Chem. Educ. 1960, 37, 634.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermodynamics
Potentiometric measurements of equilibria: In general chemistry laboratory  Chesick, J. P.; Patterson, Andrew, Jr.
The authors describe an experiment in which the solubility product of silver chloride, the ionization constant of the silver-ammonia complex, and the ionization constant of acetic acid can be determined with one afternoon of work.
Chesick, J. P.; Patterson, Andrew, Jr. J. Chem. Educ. 1959, 36, 496.
Electrochemistry |
Equilibrium |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Acids / Bases
The growth of lead trees in silicic acid gels  Hurd, Charles B.; Lamareaux, Harry F.
The fact that more active metals, such as zinc and cadmium, will replace lead in solutions of lead salts is well known; it is not so well known that the lead deposited will form an attractive, tree-like growth, particularly if supported in a gel.
Hurd, Charles B.; Lamareaux, Harry F. J. Chem. Educ. 1959, 36, 472.
Electrochemistry
Common sources of confusion; Electrode sign conventions  Anson, Fred C.
Examines common sources of confusion with respect to electrode signs and recommends new conventions.
Anson, Fred C. J. Chem. Educ. 1959, 36, 394.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Some demonstrations with the overhead projector  Keenan, C. W.
This paper describes the construction and use of demonstration apparatus to be used in conjunction with an overhead projector.
Keenan, C. W. J. Chem. Educ. 1958, 35, 36.
Electrochemistry |
Gases |
Electrolytic / Galvanic Cells / Potentials |
Transport Properties
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Some electrochemical experiments for freshmen  Gorman, Mel
The purpose of this discussion is to present an exercise for freshman laboratory work involving electrochemical unknowns and special electrode potential projects not usually studied in the first-year course.
Gorman, Mel J. Chem. Educ. 1957, 34, 409.
Electrochemistry |
Qualitative Analysis
Letters to the editor  Campbell, J. A.
The author includes an interpretation of the "Beating Heart Experiment" which was omitted in an earlier Journal article.
Campbell, J. A. J. Chem. Educ. 1957, 34, 362.
Oxidation / Reduction |
Electrochemistry
A simplified electrolysis apparatus  Teichman, Louis
Describes a simplified electrolysis apparatus using a plastic dish, two electrodes, and two test tubes.
Teichman, Louis J. Chem. Educ. 1957, 34, 291.
Laboratory Equipment / Apparatus |
Electrochemistry
Nuclear batteries  Garrett, Alfred B.
Describes the structure, operation, and application of nuclear batteries.
Garrett, Alfred B. J. Chem. Educ. 1956, 33, 446.
Nuclear / Radiochemistry |
Electrochemistry
Why is hydrofluoric acid a weak acid? An answer based on a correlation of free energies, with electronegativities  Pauling, Linus
The puzzling behavior of hydrofluoric acid is explained by considering the factors that determine the free energy of hydrogen halogenide molecules and hydrohalogenide ions.
Pauling, Linus J. Chem. Educ. 1956, 33, 16.
Acids / Bases |
Aqueous Solution Chemistry |
Thermodynamics |
Atomic Properties / Structure
Movable symbols and formulas as a teaching aid  Lippincott, W. T.; Wheaton, Roger
Movable magnetic squares with symbols and formulas printed on them are used as a visual teaching aid involving a variety of fundamental chemistry concepts.
Lippincott, W. T.; Wheaton, Roger J. Chem. Educ. 1956, 33, 15.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Apparatus for the demonstration of conductivity of electrolytes  Suter, Hans A.; Kaelber, Lorraine
This device uses a continuous flow of water and a light bulb to demonstrate the conductivity of electrolytes.
Suter, Hans A.; Kaelber, Lorraine J. Chem. Educ. 1955, 32, 640.
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry |
Electrochemistry |
Conductivity
A heat engine run by rubber  Cox, E. G.
Describes a rotating wheel powered by the alternate heating and cooling of rubber bands.
Cox, E. G. J. Chem. Educ. 1954, 31, 307.
Thermodynamics
Praseodymium tetrafluoride  Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R.
In spite of the experimental failures to prepare praseodymium tetrafluoride, there is strong evidence for its possible formation to be found by calculating the equilibrium constants for some of the reactions by which this compound might be prepared.
Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R. J. Chem. Educ. 1953, 30, 402.
Oxidation State |
Equilibrium |
Thermodynamics
Letters  Hackney, J. C.
The author elaborates on the source of a fallacy in the calculation of an overall redox potential by combination of two half-cell potentials.
Hackney, J. C. J. Chem. Educ. 1952, 29, 472.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Oxidation / Reduction
Letters  Angus, L. H.
Suggests a simple temperature-equilibrium demonstration.
Angus, L. H. J. Chem. Educ. 1952, 29, 472.
Thermodynamics
A simple demonstration of the Carnot cycle  Calingaert, George
This simple demonstration makes use of a stretched rubber band whose temperature changes are noted with the lips.
Calingaert, George J. Chem. Educ. 1952, 29, 405.
Thermodynamics
Miscellaneous experiments  Damerel, Charlotte I.
Offers three demonstrations, the first involving molecular models illustrating the generation of optical isomers in a laboratory synthesis; the second demonstrating that liquid sodium chloride conducts and electric current; and the third examining the flow of electric current in an electrochemical galvanic cell.
Damerel, Charlotte I. J. Chem. Educ. 1952, 29, 296.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Combining half-reactions and their standard electrode potentials  Miller, Sidney I.
To increase the value of standard electrode potential tables, a new method of combination of half-cell reactions is proposed.
Miller, Sidney I. J. Chem. Educ. 1952, 29, 140.
Electrochemistry |
Aqueous Solution Chemistry |
Electrolytic / Galvanic Cells / Potentials
A temperature-equilibrium demonstration  Brown, John A.
This demonstration makes use of the colored cobaltous complexes in a mixed solvent to show the dependence of some equilibria on temperature.
Brown, John A. J. Chem. Educ. 1951, 28, 640.
Equilibrium |
Calorimetry / Thermochemistry |
Thermodynamics |
Coordination Compounds
The overhead projector and chemical demonstrations  Slabaugh, W. H.
Chemical demonstrations described for use with an overhead projector include the relative activity of metals, the electrolysis of water, the random motion of gas molecules, the action of metal couples, the relative strength of acids, the qualitative aspects of optical activity, and electrochemistry.
Slabaugh, W. H. J. Chem. Educ. 1951, 28, 579.
Metals |
Kinetic-Molecular Theory |
Acids / Bases |
Electrochemistry |
Aqueous Solution Chemistry
Electrochemistry in the freshman course  Meldrum, William B.
This paper emphasizes the importance of electrochemical concepts in the freshman chemistry course.
Meldrum, William B. J. Chem. Educ. 1951, 28, 282.
Electrochemistry