TIGER

Journal Articles: 829 results
Molecular Models of Peroxides and Albendazoles  William F. Coleman
This month's Featured Molecules are albendazole and benzoyl peroxide.
Coleman, William F. J. Chem. Educ. 2008, 85, 1710.
Consumer Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical  Kate J. Graham, Brian J. Johnson, T. Nicholas Jones, Edward J. McIntee, and Chris P. Schaller
Describes an open-ended laboratory practical that challenges students to evaluate when different purification techniques are appropriate.
Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P. J. Chem. Educ. 2008, 85, 1644.
IR Spectroscopy |
Microscale Lab |
Molecular Properties / Structure |
NMR Spectroscopy |
Physical Properties |
Separation Science
Ionic Blocks  Richard S. Sevcik, Rex Gamble, Elizabet Martinez, Linda D. Schultz, and Susan V. Alexander
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery.
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V. J. Chem. Educ. 2008, 85, 1631.
Ionic Bonding |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Stoichiometry
Molecular Models of Natural Products  William F. Coleman
This months Featured Molecules focus on natural products and include blattellquinone, a sex pheromone secreted by female German cockroaches to attract males, and (R)-limonene, a secondary metabolite found in citrus fruit peels.
Coleman, William F. J. Chem. Educ. 2008, 85, 1584.
Molecular Modeling |
Molecular Properties / Structure |
Natural Products
Molecules and Medicine (E. J. Corey, Barbara Czakó, and László Kürti)  Robert E. Buntrock
Looking for a book on common drugs and pharmaceuticals? On diseases and medical conditions? On pharmacology? In addition, do you need some background in chemistry to handle all of this information? If you want all of this, and in addition want it under one cover, then this is the book for you.
Buntrock, Robert E. J. Chem. Educ. 2008, 85, 1495.
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Molecular Properties / Structure |
Proteins / Peptides |
Synthesis |
Toxicology
Molecular Models of Polymers Used in Sports Equipment  William F. Coleman
The Featured Molecules this month are a number of monomers and their associated polymers used in making equipment for a variety of high-impact sports. The molecules provide students with an introduction to an important area of applied chemistry and also enable them to examine complex structures using the models they have seen applied to small molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1456.
Molecular Modeling |
Molecular Properties / Structure |
Applications of Chemistry
A Dramatic Classroom Demonstration of Limiting Reagent Using the Vinegar and Sodium Hydrogen Carbonate Reaction  Romklao Artdej and Tienthong Thongpanchang
This demonstration, appropriate for high school chemistry level and recommended for a large classroom presentation, is designed to illustrate the concept of limiting reagent via a series of experiments in which increasing amounts of sodium bicarbonate are added to a fixed amount of vinegar is fixed until the volume of carbon dioxide generated remains constant.
Artdej, Romklao; Thongpanchang, Tienthong. J. Chem. Educ. 2008, 85, 1382.
Acids / Bases |
Food Science |
Gases |
Stoichiometry
Oven versus Bunsen Burner When Heating Copper(II) Chloride Dihydrate  Michael C. Wirtz
In "greening up" the classical stoichiometry experiment where students determine the formula of copper(II) chloride dihydrate, it is critical that teachers and instructors use a 110°C oven rather than a Bunsen burner. Copper(II) chloride dihydrate decomposes at temperatures above 300°C, releasing chlorine gas.
Wirtz, Michael C. J. Chem. Educ. 2008, 85, 1345.
Laboratory Management |
Stoichiometry
Molecular Models of EDTA and Other Chelating Agents  William F. Coleman
EDTA and related chelating agents, including EGTA, DCTA, NTA, BAPTA, and DTPA, are this months Featured Molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1296.
Molecular Modeling |
Molecular Properties / Structure
A Non-Mercury Thermometer Alternative for Use in Older Melting Point Apparatuses  Lois K. Ongley, Clayton S. Kern, and Barry W. Woods
This work demonstrates that lab-calibrated thermocouples are a statistically accurate and economically reasonable substitute for mercury thermometers to measure the melting point temperature for organic compounds in older Mel-Temp devices.
Ongley, Lois K.; Kern, Clayton S.; Woods, Barry W. J. Chem. Educ. 2008, 85, 1263.
Calibration |
Laboratory Equipment / Apparatus |
Molecular Properties / Structure |
Physical Properties |
Laboratory Management
Helping Students Assess the Relative Importance of Different Intermolecular Interactions  Paul G. Jasien
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipoledipole interactions, and H-bonding on the normal boiling points for a series of simple, straight-chain organic compounds. Application of this model may be useful in addressing student misconceptions related to the additivity of intermolecular interactions.
Jasien, Paul G. J. Chem. Educ. 2008, 85, 1222.
Chemometrics |
Molecular Properties / Structure |
Noncovalent Interactions |
Physical Properties
Stilling Waves with Ordered Molecular Monolayers  Ed Vitz
The amazing ability of a film of oil one molecule thick to dissipate the relatively large energy of water waves can be readily demonstrated, but an explanation of the effect has been elusive until recently.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1064.
Lipids |
Molecular Properties / Structure |
Noncovalent Interactions |
Surface Science |
Water / Water Chemistry |
Fatty Acids
Molecular Models of Real and Mock Illicit Drugs from a Forensic Chemistry Activity  William F. Coleman
The Featured Molecules for this month have been drawn from a forensic chemistry exercise in which model compounds are used to simulate the behavior of various drugs in a series of chemical tests. The compounds considered include chlorpromazine (Thorazine) and phenothiazine, both involved in the manufacture of antipsychotic drugs.
Coleman, William F. J. Chem. Educ. 2008, 85, 880.
Drugs / Pharmaceuticals |
Forensic Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Identification of an Unknown Compound by Combined Use of IR, 1H NMR, 13C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination  Louis J. Liotta and Magdalena James-Pederson
In this introductory organic chemistry experiment, students are expected to operate NMR, IR, and GCMS instrumentation to obtain spectra which are interpreted to elucidate the chemical structure of the assigned compounds without the benefit of a list of possible unknowns.
Liotta, Louis J.; James-Pederson, Magdalena. J. Chem. Educ. 2008, 85, 832.
Gas Chromatography |
Instrumental Methods |
IR Spectroscopy |
Mass Spectrometry |
Molecular Properties / Structure |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
A Simple Penny Analysis  Nicholas C. Thomas and Stephen Faulk
Describes a simple procedure for determining the zinc composition of U.S. pennies in which the penny zinc core is dissolved in acid and the evolved hydrogen gas is collected by water displacement.
Thomas, Nicholas C.; Faulk, Stephen. J. Chem. Educ. 2008, 85, 817.
Acids / Bases |
Gases |
Gravimetric Analysis |
Metals |
Stoichiometry
Using Pooled Data and Data Visualization To Introduce Statistical Concepts in the General Chemistry Laboratory   Robert J. Olsen
This article describes how data pooling and visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set.
Olsen, Robert J. J. Chem. Educ. 2008, 85, 544.
Chemometrics |
Stoichiometry
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
Yet Another Variation on the Electrolysis of Water at Iron Nails  Mark T. Stauffer and Justin P. Fox
Describes a variation on the electrolysis of water with iron nails in which a sharp contrast in the colors produced effectively demonstrates electrolysis and the diffusion of oxidized and reduced species from the electrodes.
Stauffer, Mark T.; Fox, Justin P. J. Chem. Educ. 2008, 85, 523.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry |
Electrolytic / Galvanic Cells / Potentials
Molecular Models of Antioxidants and Radicals  William F. Coleman
This months Featured Molecules include L-ascorbic acid (vitamin C), trans-cinnamic acid, citric acid monohydrate, Fremy's salt (nitrosodisulfonate)dianion, hydroquinone, salicylic acid, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), and (R,R,R)-a-tocopherol (vitamin E).
Coleman, William F. J. Chem. Educ. 2008, 85, 464.
Applications of Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Molecular Models of Lycopene and Other Carotenoids  William F. Coleman
This month's Featured Molecules include the carotenoids lycopene and beta-carotene.
Coleman, William F. J. Chem. Educ. 2008, 85, 320.
Food Science |
Molecular Modeling |
Molecular Properties / Structure
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Using the Relationship between Vehicle Fuel Consumption and CO2 Emissions To Illustrate Chemical Principles  Maria T. Oliver-Hoyo and Gabriel Pinto
This instructional resource utilizes consumer product information by which students compare theoretical stoichiometric calculations to CO2 car emissions and fuel consumption data. Representing graphically the emission of CO2 versus consumption of fuel provides a tangible way of connecting concepts studied in chemistry classes to everyday life.
Oliver-Hoyo, Maria T.; Pinto, Gabriel. J. Chem. Educ. 2008, 85, 218.
Applications of Chemistry |
Consumer Chemistry |
Stoichiometry
Reply to A. F.Photooxidation of Bilirubin to Biliverdin and Bilirubin Structure  William F. Coleman
The JCE Featured Molecules Editor replies to criticisms of a previous Featured Molecule.
Coleman, William F. J. Chem. Educ. 2008, 85, 202.
Dyes / Pigments |
Photochemistry |
Molecular Properties / Structure |
Molecular Modeling
Molecular Models of Dyes  William F. Coleman
The JCE Featured Molecules for this month include the triarylmethane and xanthene dyes fluorescein, erythrosin B, thymolphthalein, and rhodamine B.
Coleman, William F. J. Chem. Educ. 2007, 84, 1798.
Dyes / Pigments |
Molecular Modeling |
Molecular Properties / Structure
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
Origin of the Formulas of Dihydrogen and Other Simple Molecules  Andrew Williams
The logic and experimental data are described with which chemists originally deduced the formulas of fundamental substances such as H2, H2O, Cl2, NH3, CH4, and HCl. It is argued that high school and first-year undergraduate students would gain substantially from exposure to this process.
Williams, Andrew. J. Chem. Educ. 2007, 84, 1779.
Enrichment / Review Materials |
Molecular Properties / Structure
Dancing Crystals: A Dramatic Illustration of Intermolecular Forces  Donald W. Mundell
Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution and previous demonstrations of surface motion are explored.
Mundell, Donald W. J. Chem. Educ. 2007, 84, 1773.
Aromatic Compounds |
Liquids |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Physical Properties |
Surface Science |
Noncovalent Interactions
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
Molecular Models of Compounds in Maple Syrup  William F. Coleman
This months Featured Molecules includes compounds found in honey and maple syrup.
Coleman, William F. J. Chem. Educ. 2007, 84, 1650.
Molecular Properties / Structure |
Molecular Modeling
Structures for the ABO(H) Blood Group: Which Textbook Is Correct?  John M. Risley
Six textbooks and two Internet sites show different structures for the A, B, and O(H) antigens of the ABO(H) blood group, but none of them are correct. This article emphasizes the correct molecular structures because it is important to distinguish between those carbohydrates that make up the antigens and those that are not part of the antigenic structures.
Risley, John M. J. Chem. Educ. 2007, 84, 1546.
Bioorganic Chemistry |
Carbohydrates |
Natural Products |
Molecular Properties / Structure
Pre-Service Teacher as Researcher: The Value of Inquiry in Learning Science  Janice M. Hohloch, Nathaniel Grove, and Stacey Lowery Bretz
An action research project to reform a chemistry course required of elementary and middle childhood pre-service teachers incorporated a hands-on approach to learning chemistry, modeled teaching science through inquiry, and emphasized the value of research experience.
Hohloch, Janice M.; Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2007, 84, 1530.
Chromatography |
Molecular Properties / Structure |
Nonmajor Courses |
Professional Development |
Undergraduate Research |
Student-Centered Learning |
Standards National / State
Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet  Bruce Mattson
When a neodymium magnet is brought near a suspended glass tube containing a small amount of liquid oxygen, the tube is attracted to the magnet, demonstrating oxygen's paramagnetism. In larger quantities the blue color of liquid oxygen is readily observable.
Mattson, Bruce. J. Chem. Educ. 2007, 84, 1296.
Descriptive Chemistry |
Gases |
Magnetic Properties |
MO Theory |
Molecular Properties / Structure
CARBOHYDECK: A Card Game To Teach the Stereochemistry of Carbohydrates  Manuel João Costa
This paper describes CARBOHYDECK, a card game that may replace or complement lectures identifying and differentiating monosaccharide isomers.
Costa, Manuel João. J. Chem. Educ. 2007, 84, 977.
Aldehydes / Ketones |
Carbohydrates |
Molecular Properties / Structure |
Stereochemistry |
Enrichment / Review Materials |
Student-Centered Learning
A2: Element or Compound?  Marilyne Stains and Vicente Talanquer
Particulate questions are used to investigate the mental association between the concepts of molecule and compound in chemistry students with different levels of academic preparation. A significant proportion of students misclassify molecular elements as chemical compounds, and this association is stronger in students with higher levels of preparation.
Stains, Marilyne; Talanquer, Vicente. J. Chem. Educ. 2007, 84, 880.
Molecular Properties / Structure
Molecular Models of DNA  William F. Coleman
The Featured Molecules this month are components of DNA and include purine and pyrimidine;the four corresponding deoxyribonucleosides and deoxyribonucleotides; a two-base-pair fragment showing the AT and GC hydrogen-bonded complements; several small 24-base-pair DNA fragmentspolyAT, polyGC; and a random array of bases.
Coleman, William F. J. Chem. Educ. 2007, 84, 809.
Molecular Modeling |
Molecular Properties / Structure
Aromatic Bagels: An Edible Resonance Analogy  Shirley Lin
Describes a classroom demonstration involving the use of a bagel and cream cheese as an analogy for benzene that emphasizes the deficiencies of using a single Lewis structure to describe this structure.
Lin, Shirley. J. Chem. Educ. 2007, 84, 779.
Aromatic Compounds |
Lewis Structures |
Resonance Theory |
Molecular Properties / Structure
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Let's All Visit Mole City!  Addison Ault
Additional commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Ault, Addison. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Let's All Visit Mole City!  Mark W. Armstrong
Brief commentary on a previously published article, "Mole City: A Stoichiometric Analogy."
Armstrong, Mark W. J. Chem. Educ. 2007, 84, 596.
Stoichiometry
Electronic Structure Principles and Aromaticity  P. K. Chattaraj, U. Sarkar, and D. R. Roy
Electronic structure principles dictate that aromatic molecules are associated with low energy, polarizability, and electrophilicity but high hardness values, while antiaromatic molecules possess the opposite characteristics. These relationships are demonstrated through B3LYP/6-311G** calculations on benzene and cyclobutadiene.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. J. Chem. Educ. 2007, 84, 354.
Aromatic Compounds |
Molecular Properties / Structure |
Quantitative Analysis |
Theoretical Chemistry |
Alkenes |
Quantum Chemistry
Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling  John A. Bumpus, Anne Lewis, Corey Stotts, and Christopher J. Cramer
Four experiments suitable for use in the undergraduate instructional laboratory demonstrate the use of computational chemistry and molecular-modeling procedures to calculate selected physical and chemical properties of several high explosives and other energetic compounds.
Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J. J. Chem. Educ. 2007, 84, 329.
Computational Chemistry |
Gases |
Physical Properties |
Molecular Modeling |
Molecular Properties / Structure
Thermochemical Analysis of Neutralization Reactions: An Introductory Discovery Experiment  Kenneth V. Mills and Louise W. Guilmette
Describes a guided-inquiry laboratory pedagogy in which students discover chemical concepts in the lab and the instructor uses their pooled data to guide the lecture portion of the course. This method is illustrated by an experiment that reinforces students' understanding of stoichiometry and allows them to discover neutralization reactions and thermochemistry.
Mills, Kenneth V.; Guilmette, Louise W. J. Chem. Educ. 2007, 84, 326.
Acids / Bases |
Stoichiometry |
Calorimetry / Thermochemistry |
Acids / Bases
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
High School Chemistry Content Background of Introductory College Chemistry Students and Its Association with College Chemistry Grades  Robert H. Tai, R. Bruce Ward, and Philip M. Sadler
Do students who focus on some content areas in high school chemistry have an advantage over others in college chemistry? This manuscript seeks to answer this question through the use of a survey of 3521 introductory college chemistry students. The results indicate that studying stoichiometry in high school was most strongly predictive of college chemistry success.
Tai, Robert H.; Ward, R. Bruce; Sadler, Philip M. J. Chem. Educ. 2006, 83, 1703.
Mathematics / Symbolic Mathematics |
Stoichiometry |
Student / Career Counseling
Molecular Model of Creatine Synthesis  William F. Coleman
The Featured Molecules for this month come from the synthesis of creatine and illustrate some of the limitations associated with the computation of molecular structure.
Coleman, William F. J. Chem. Educ. 2006, 83, 1657.
Molecular Modeling |
Molecular Properties / Structure |
Bioorganic Chemistry
Astrochemistry Examples in the Classroom  Reggie L. Hudson
In this article some recent developments in astrochemistry are suggested as examples for the teaching of acid-base chemistry, molecular structure, and chemical reactivity. Suggestions for additional reading are provided, with an emphasis on readily-accessible materials.
Hudson, Reggie L. J. Chem. Educ. 2006, 83, 1611.
Acids / Bases |
Astrochemistry |
IR Spectroscopy |
Molecular Properties / Structure |
Brønsted-Lowry Acids / Bases
Mole City: A Stoichiometric Analogy  Addison Ault
Offers an analogy to illustrate one of chemistry's most fundamental concepts and skills.
Ault, Addison. J. Chem. Educ. 2006, 83, 1587.
Stoichiometry
Fountain Pen Ink  William F. Coleman
This months Featured Molecules are involved in the composition and stability of inks and include gallic and gallotannic acid.
Coleman, William F. J. Chem. Educ. 2006, 83, 1568.
Molecular Modeling |
Molecular Properties / Structure
A Polymer in Everyday Life: The Isolation of Poly(vinyl alcohol) from Aqueous PVA Glues. An Undergraduate Chemistry Experiment   Yueh-Huey Chen and Jing-Fun Yaung
The IR spectra of three common and related polymers are used to identify functional groups and rationalize molecular structures.
Chen, Yueh-Huey; Yaung, Jing-Fun. J. Chem. Educ. 2006, 83, 1534.
Applications of Chemistry |
Aqueous Solution Chemistry |
Esters |
IR Spectroscopy |
Molecular Properties / Structure
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Photochemical Oxidation of Bilirubin to Biliverdin  William F. Coleman
The Featured Molecules for this month are related to the photochemical oxidation of bilirubin to biliverdin. Biliverdin is a breakdown product of hemoglobin which is reduced by biliverdin reductase to bilirubin, the molecule that is responsible for neonatal jaundice.
Coleman, William F. J. Chem. Educ. 2006, 83, 1329.
Photochemistry |
Molecular Modeling |
Molecular Properties / Structure
Using Physical Models of Biomolecular Structures To Teach Concepts of Biochemical Structure and Structure Depiction in the Introductory Chemistry Laboratory  Gordon A. Bain, John Yi, Mithra Beikmohamadi, Timothy M. Herman, and Michael A. Patrick
Custom-made physical models of alpha-helices and beta-sheets, the zinc finger moiety, beta-globin, and green fluorescent protein are used to introduce students in first-year chemistry to the primary, secondary, and tertiary structure of proteins.
Bain, Gordon A.; Yi, John; Beikmohamadi, Mithra; Herman, Timothy M.; Patrick, Michael A. J. Chem. Educ. 2006, 83, 1322.
Amino Acids |
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Unique Demonstration Model of DNA  Jonathan P. L. Cox
Describes a physical demonstration model of DNA for the classroom. The model comprises two types of building blocks that can be put together rapidly to produce an abstract structure that portrays several of the gross architectural features of idealized B-DNA.
Cox, Jonathan P. L. J. Chem. Educ. 2006, 83, 1319.
Molecular Biology |
Molecular Properties / Structure |
Student-Centered Learning |
Nucleic Acids / DNA / RNA
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Copper and Nickel Complex Ions  William F. Coleman
The Featured Molecules this month include all eight isomeric forms of [Ni(en)3]2+, demonstrating the effects of ligand backbone conformation.
Coleman, William F. J. Chem. Educ. 2006, 83, 1248.
Amino Acids |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
A Laboratory Experiment Using Molecular Models for an Introductory Chemistry Class  Shahrokh Ghaffari
Presents a new approach to using molecular models in teaching general chemistry concepts. Students construct molecular models and use them to balance simple chemical equations, demonstrate the law of conservation of mass, and discover the relationship between the mole and molecules and atoms.
Ghaffari, Shahrokh. J. Chem. Educ. 2006, 83, 1182.
Molecular Modeling |
Stoichiometry |
Student-Centered Learning
Amino Acids  William F. Coleman
The Featured Molecules this month are the 20 standard alpha-amino acids found in proteins. The molecules are presented in two formats, the neutral form and the ionized form found in solution at physiologic pH.
Coleman, William F. J. Chem. Educ. 2006, 83, 1103.
Amino Acids |
Proteins / Peptides |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics
Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry  Kristen L. Cacciatore and Hannah Sevian
Presents an experiment with four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary.
Cacciatore, Kristen L.; Sevian, Hannah. J. Chem. Educ. 2006, 83, 1039.
Quantitative Analysis |
Green Chemistry |
Gravimetric Analysis |
Stoichiometry
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
Interactive Demonstrations for Mole Ratios and Limiting Reagents  Crystal Wood and Bryan Breyfogle
The objective of this study was to develop interactive lecture demonstrations based on conceptual-change learning theory. Experimental instruction was designed for an introductory chemistry course for nonmajors to address misconceptions related to mole ratios and limiting reagents
Wood, Crystal; Breyfogle, Bryan. J. Chem. Educ. 2006, 83, 741.
Learning Theories |
Reactions |
Stoichiometry |
Student-Centered Learning
What Happens When Chemical Compounds Are Added to Water? An Introduction to the Model–Observe–Reflect–Explain (MORE) Thinking Frame  Adam C. Mattox, Barbara A. Reisner, and Dawn Rickey
This article describes a laboratory designed to help students understand how different compounds behave when dissolved in water, and introduces the modelobservereflectexplain (MORE) thinking frame, an instructional tool that encourages students to connect macroscopic observations with their understanding of the behavior of particles at the molecular level.
Mattox, Adam C.; Reisner, Barbara A.; Rickey, Dawn. J. Chem. Educ. 2006, 83, 622.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents |
Stoichiometry
The Chemistry of Popcorn: Polymers of Glucose  William F. Coleman
The Featured Molecules this month are all polymers of glucose and include cellobiose, maltose, 10-mer of cellulose, 40-mer of amylose, and an amylopectin fragment.
Coleman, William F. J. Chem. Educ. 2006, 83, 413.
Molecular Modeling |
Molecular Properties / Structure |
Carbohydrates
Mechanisms That Interchange Axial and Equatorial Atoms in Fluxional Processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal Vibrational Modes  Marion E. Cass, King Kuok Hii, and Henry S. Rzepa
Teaching the Berry pseudorotation mechanism presents particular pedagogic problems due to both its dynamic and three dimensional character. The approach described here illustrates these processes using interactive animations embedded in a Web page.
Cass, Marion E.; Hii, King Kuok; Rzepa, Henry S. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Mechanisms of Reactions |
NMR Spectroscopy |
Nonmetals
Using Jmol To Help Students Better Understand Fluxional Processes   William F. Coleman and Edward W. Fedosky
This new WebWare neatly combines instructional text and Jmol interactive, animated illustrations to teach mechanisms that need to be clearly visualized in order to be well understood.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Mechanisms of Reactions |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Nonmetals
Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water  Jorge E. Loyo-Rosales, Alba Torrents, Georgina C. Rosales-Rivera, and Clifford P. Rice
A known quantity of the sodium salt of octylphenoxyacetic acid is dissolved in water, transformed to the acid (insoluble) form, and extracted using dichloromethane. These changes can be followed visually owing to conspicuous changes in solution turbidity.
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford P. J. Chem. Educ. 2006, 83, 248.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
pH |
Stoichiometry |
Nonmajor Courses |
Water / Water Chemistry
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
An Animated Interactive Overview of Molecular Symmetry  Marion E. Cass, Henry S. Rzepa, David R. Rzepa, and Charlotte K. Williams
An Animated Interactive Overview of Molecular Symmetry is a series of Web pages designed to help instructors teach molecular symmetry. These pages combine interactive images and instructional text that allow students to examine and explore the operations and elements that give rise to molecular symmetry.
Cass, Marion E.; Rzepa, Henry S.; Rzepa, David R.; Williams, Charlotte K. J. Chem. Educ. 2005, 82, 1742.
Group Theory / Symmetry |
Molecular Properties / Structure
3D Molecular Symmetry Shockwave: A Web Application for Interactive Visualization and Three-Dimensional Perception of Molecular Symmetry  Nickolas D. Charistos, Constantinos A. Tsipis, and Michail P. Sigalas
3D Molecular Symmetry Shockwave is a Web-based application for interactive visualization and three-dimensional perception of molecular symmetry. The user interface is simple, and students learn how to use the program from the built-in help screens.
Charistos, Nickolas D.; Tsipis, Constantinos A.; Sigalas, Michail P. J. Chem. Educ. 2005, 82, 1741.
Group Theory / Symmetry |
Molecular Modeling |
Molecular Properties / Structure
Teaching Molecular Symmetry with JCE WebWare  William F. Coleman and Edward W. Fedosky
Presents two tools, 3D Molecular Symmetry Shockwave and An Animated Interactive Overview of Molecular Symmetry, that illustrate and help teach molecular symmetry.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2005, 82, 1741.
Computational Chemistry |
Molecular Properties / Structure |
Group Theory / Symmetry
The Use of the Free, Open-Source Program Jmol To Generate an Interactive Web Site To Teach Molecular Symmetry  Marion E. Cass and Henry S. Rzepa
Describes the use of Jmol, a free, open-source code program, for the presentation of interactive materials to teach molecular symmetry.
Cass, Marion E.; Rzepa, Henry S. J. Chem. Educ. 2005, 82, 1736.
Group Theory / Symmetry |
Molecular Properties / Structure
A Simple and Easy-To-Learn Chart of the Main Classes of Inorganic Compounds and Their Acid–Base Reactions  Grigoriy Sereda
Presents a two-dimensional chart for the classification of the main classes of inorganic compounds with respect to their acidic and basic properties that makes it possible to predict reaction products and determine the coefficients in chemical equations of acidbase reactions.
Sereda, Grigoriy. J. Chem. Educ. 2005, 82, 1645.
Acids / Bases |
Reactions |
Stoichiometry
Stoichiometry of Calcium Medicines  Gabriel Pinto
Calcium supplements provide an excellent context in which to review most of the core content of general chemistry, namely, stoichiometry, concentration units, hydration of salts, inorganic and organic salts, physiological importance of elements, resonance in ions, geometry of polyatomic ions, and isomerism.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1509.
Stoichiometry |
Applications of Chemistry |
Drugs / Pharmaceuticals |
Medicinal Chemistry
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment  Gerald R. Van Hecke, Kerry K. Karukstis, Hanhan Li, Hansford C. Hendargo, Andrew J. Cosand, and Marja M. Fox
This experiment features an investigative approach designed for the introductory science or engineering major and integrates concepts in the fields of chemistry, biology, and physics. Derived from faculty research interests, this novel experiment gives students the opportunity to draw conclusions from tests performed to illustrate the connection between molecular structure and macroscopic properties. The chemical synthesis of the compounds studied further enhances the connection between molecular structure and macroscopic physical properties. The results of two separate physical measurements, refractometry and absorption spectroscopy, are combined to calculate a microscopic, but very practical, property of chiral nematic liquidsthe pitch of the helix formed in the liquid crystalline phase.
Van Hecke, Gerald R.; Karukstis, Kerry K.; Li, Hanhan; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M. J. Chem. Educ. 2005, 82, 1349.
Chirality / Optical Activity |
Crystals / Crystallography |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Acids / Bases |
Esters |
Physical Properties |
Physical Properties
Assessing the Effect of Web-Based Learning Tools on Student Understanding of Stoichiometry Using Knowledge Space Theory  Ramesh D. Arasasingham, Mare Taagepera, Frank Potter, Ingrid Martorell, and Stacy Lonjers
This paper reports a comparative study using knowledge space theory (KST) to assess the impact of a Web-based instructional software program on students' understanding of the concept of stoichiometry. The software program called Mastering Chemistry Web (MCWeb) allows students to practice problems that emphasize the development of molecular-level conceptualization and visualization, analytical reasoning, and proportional reasoning, as well as learning to recognize and relate different representations in chemistry. The experimental design compared students in two sections taught by the same instructor. One section used the MCWeb instructional software as homework (MCWeb group) while the other section used text-based homework (non-MCWeb group, control).
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Martorell, Ingrid; Lonjers, Stacy. J. Chem. Educ. 2005, 82, 1251.
Stoichiometry |
Student-Centered Learning
Mass Relationships in a Chemical Reaction: Incorporating Additional Graphing Exercises into the Introductory Chemistry Laboratory  Stephen DeMeo
The purpose of this article is to increase student involvement with graph construction specifically in the context of introductory laboratory activities that involve mass relationships between reacting substances and products. In this regard, five massmass plots derived from a synthesis of a binary compound from its elements are presented as well as a set of questions to focus learners on the significance of each plot. The benefit of providing learners with these types of graphing activities include the use of higher-order cognitive processes as well as the elucidation of fundamental chemical knowledge such as the law of the conservation of mass, the law of constant composition, limiting and excess reactants, and empirical formula.
DeMeo, Stephen. J. Chem. Educ. 2005, 82, 1219.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Quantitative Analysis
Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills  Elzbieta Cook and Robert L. Cook
This paper focuses attention on the cross-proportion (C-P) method of mathematical problem solving, which was once widely used in chemical calculations. We propose that this method regain currency as an alternative to the dimensional analysis (DA) method, particularly in lower-level chemistry courses. In recent years, the DA method has emerged as the only problem solving mechanism offered to high-school and general chemistry students in contemporary textbooks, replacing more conceptual methods, C-P included.
Cook, Elzbieta; Cook, Robert L. J. Chem. Educ. 2005, 82, 1187.
Learning Theories |
Stoichiometry |
Chemometrics |
Student-Centered Learning
The Chemistry of Coffee  William F. Coleman
The paper by Marino Petracco provides a hearty blend of molecules for this month. The author deals with coffee at a number of different levels ranging from the economic and social to the still perplexing questions of flavor and aroma. The associated molecules demonstrate a range of structural features that students will benefit from examining in three dimensions.
Coleman, William F. J. Chem. Educ. 2005, 82, 1167.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry  Ed Vitz
Calculations demonstrating amino acid complementarity are presented as an interesting application of stoichiometry. Food proteins are said to have complementary amino acids when the proteins combine to provide amino acids in the proper stoichiometric ratios to synthesize human protein. Implications for vegetarian diet, efficiency of food production, and diet adaptations in various cultures are explored briefly.
Vitz, Ed. J. Chem. Educ. 2005, 82, 1013.
Amino Acids |
Proteins / Peptides |
Stoichiometry |
Food Science
Misconceptions in Sign Conventions: Flipping the Electric Dipole Moment  James W. Hovick and J. C. Poler
Reexamination of a central concept from the perspective of a new subdiscipline should not introduce misconceptions about that concept. When misconceptions introduced through chemical language can be avoided, we should change the way we speak.
Hovick, James W.; Poler, J. C. J. Chem. Educ. 2005, 82, 889.
Molecular Properties / Structure |
Noncovalent Interactions
8:31 a.m. Belly Flop: Attitude Adjustment through Weekly Feature Molecules  Sonya J. Franklin, Norbert J. Pienta, and Melissa D. Fry
A series of molecules or molecular systems were described to students in the second semester of general chemistry as a way to convey that "everything is a chemical", to demonstrate the relevance of chemistry in their everyday lives, and to promote student engagement in a class that was offered in the early morning.
Franklin, Sonya J.; Pienta, Norbert J.; Fry, Melissa D. J. Chem. Educ. 2005, 82, 847.
Descriptive Chemistry |
Enrichment / Review Materials |
Applications of Chemistry |
Consumer Chemistry |
Molecular Properties / Structure |
Student-Centered Learning
Use Correct Projection  V. K. Kapoor
If a substituent in a two-dimensional representation of a three dimensional molecule is to be shown as lying below the plane of the paper it should be more appropriately indicated by an inverted broken wedge.
Kapoor, V. K. J. Chem. Educ. 2005, 82, 838.
Enrichment / Review Materials |
Molecular Properties / Structure |
Molecular Modeling
Analysis of OxiClean: An Interesting Comparison of Percarbonate Stain Removers  Jeffrey D. Bracken and David Tietz
Several different brands of oxygen-based multipurpose stain removers consist of simple mixtures of sodium percarbonate and sodium carbonate. A small sample of each brand of stain remover is decomposed and then analyzed. The observed difference in mass allows students to accurately determine the percentages of each component of the stain remover. A back-titration experiment and a precipitation reaction are performed to confirm the complete decomposition of the original mixture.
Bracken, Jeffrey D.; Tietz, David. J. Chem. Educ. 2005, 82, 762.
Stoichiometry |
Consumer Chemistry
Physical Chemistry at the Nanometer Scale  K. W. Hipps
An overview is provided of the Petroleum Research Fund sponsored summer school, "Physical Chemistry at the Nanometer Scale." Several articles resulting from the school (and printed in this issue) are introduced and placed in perspective from the standpoint of how they might be used in the undergraduate curriculum.
Hipps, K. W. J. Chem. Educ. 2005, 82, 693.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
Connected Chemistry  Mike Stieff
Connected Chemistry, a novel learning environment for teaching chemistry, is appropriate for use in both high school and undergraduate chemistry classrooms. Connected Chemistry comprises several molecular simulations designed to enable instructors to teach chemistry using the perspective of emergent phenomena. That is, it allows students to see observed macro-level chemical phenomena, like many other scientific phenomena, as resultant from the interactions of many individual agents on a micro-level.
Stieff, Mike. J. Chem. Educ. 2005, 82, 494.
Molecular Properties / Structure |
Molecular Modeling |
Constructivism
Simple Dynamic Models for Hydrogen Bonding Using Velcro-Polarized Molecular Models  Emeric Schultz
This article describes the use of models that dynamically illustrate the unique characteristics of weak intermolecular interactions, specifically hydrogen bonds. The models clearly demonstrate that H-bonds can break and reform while covalent bonds stay intact. The manner in which the models form and break H-bonds reflects the geometric and statistical manner in which H-bonding actually occurs and is not contrived. The use of these models addresses a significant area of student misconceptions. The construction of these molecular models is described.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 401.
Molecular Properties / Structure |
Molecular Modeling |
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Mage: A Tool for Developing Interactive Instructional Graphics  Stephen F. Pavkovic
This article demonstrates some of the advantages of the Mage program: (i) construction of instructional Mage data files is straightforward and results in clear, geometrically correct images; (ii) Mage images may be viewed directly from a Java-capable Web page; (iii) several other formats may be converted to kinemages in order to use the Mage applet. This paper also discusses a related student activity.
Pavkovic, Stephen F. J. Chem. Educ. 2005, 82, 167.
Molecular Properties / Structure
Evaluating Students' Conceptual Understanding of Balanced Equations and Stoichiometric Ratios Using a Particulate Drawing  Michael J. Sanger
A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between the concepts of subscripts and coefficients and including unreacted chemical species in the equation.
Sanger, Michael J. J. Chem. Educ. 2005, 82, 131.
Stoichiometry |
Kinetic-Molecular Theory
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
Using Knowledge Space Theory To Assess Student Understanding of Stoichiometry  Ramesh D. Arasasingham, Mare Taagepera, Frank Potter, and Stacy Lonjers
Using the concept of stoichiometry we examined the ability of beginning college chemistry students to make connections among the molecular, symbolic, and graphical representations of chemical phenomena, as well as to conceptualize, visualize, and solve numerical problems. Students took a test designed to follow conceptual development; we then analyzed student responses and the connectivities of their responses, or the cognitive organization of the material or thinking patterns, applying knowledge space theory (KST). The results reveal that the students' logical frameworks of conceptual understanding were very weak and lacked an integrated understanding of some of the fundamental aspects of chemical reactivity.
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy. J. Chem. Educ. 2004, 81, 1517.
Learning Theories |
Stoichiometry |
Constructivism
The Origin of the Mole Concept  William B. Jensen
In response to a reader query, the column traces the origins of the mole concept in chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 1409.
Stoichiometry |
Nomenclature / Units / Symbols
Chocolate: Theobromine and Caffeine  William F. Coleman
Theobromine and caffeine are both methyl-xanthines. Theobromine is a smooth muscle stimulant, while caffeine is predominately a central nervous system stimulant.
Coleman, William F. J. Chem. Educ. 2004, 81, 1232.
Molecular Properties / Structure |
Molecular Modeling
Exploring the Structure–Function Relationship of Macromolecules at the Undergraduate Level  Belinda Pastrana-Rios
The undergraduate teaching initiatives discussed in this manuscript take advantage of a state-of-the-art visualization center devoted to teaching and research activities.
Pastrana-Rios, Belinda. J. Chem. Educ. 2004, 81, 837.
Molecular Properties / Structure |
Biophysical Chemistry |
Biotechnology
How Many Digits Should We Use in Formula or Molar Mass Calculations?  Christer Svensson
This article addresses the question often asked by students, "How many digits should I use when calculating the formula or molar mass of a substance?
Svensson, Christer. J. Chem. Educ. 2004, 81, 827.
Molecular Properties / Structure |
Learning Theories
SI for Chemists: Persistent Problems, Solid Solutions; SI Basic Units: The Kilogram and the Mole  Robert D. Freeman
Karols letter is a prime example of the type of article about which he complains in his first paragraph. There are four major flaws in Karols suggestions.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
Boron Clusters  William F. Coleman
The review paper by Russell N. Grimes on boron clusters reminds us both of the past impact that these interesting structures have had on the development of our understanding of cluster chemistry and on the future development of what one might refer to as "post-fullerene" clusters.
Coleman, William F. J. Chem. Educ. 2004, 81, 768.
Molecular Modeling |
Molecular Properties / Structure
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Big Picture  William F. Coleman
Fully manipulable Chime versions of important biological molecules (such as chlorophyll), inks (such as pen ink), CFCs, hydrocarbon fuels, plastics (such as Lexan polycarbonate), and molecules with medical applications (such as aspirin and novocaine).
Coleman, William F. J. Chem. Educ. 2004, 81, 604.
Molecular Modeling |
Molecular Properties / Structure
Caveman Chemistry: 28 Projects, from the Creation of Fire to the Production of Plastics (Kevin M. Dunn)  Michael S. Matthews
In Caveman Chemistry, Kevin Dunn presents a historically oriented hands-on introduction to chemistry and chemical technology that is tremendously entertaining.
Matthews, Michael S. J. Chem. Educ. 2004, 81, 490.
Stoichiometry |
Oxidation / Reduction |
Applications of Chemistry |
Nomenclature / Units / Symbols |
Natural Products |
Nonmajor Courses
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
Well Wishes. A Case on Septic Systems and Well Water Requiring In-Depth Analysis and Including Optional Laboratory Experiments  Mary M. Walczak and Juliette M. Lantz
This paper describes the use of a case study to teach introductory chemistry students the chemical principles of solution concentration (especially ppm) and dilution, aqueous redox reactions, and stoichiometric conversions between different solution species.
Walczak, Mary M.; Lantz, Juliette M. J. Chem. Educ. 2004, 81, 218.
Consumer Chemistry |
Water / Water Chemistry |
Solutions / Solvents |
Oxidation / Reduction |
Stoichiometry
A "Polypeptide Demonstrator"  Addison Ault
I have used a telephone Handset Coil Cord as a simple and convenient model for the structure of a polypeptide.
Ault, Addison. J. Chem. Educ. 2004, 81, 196.
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure
The Decomposition of Zinc Carbonate: Using Stoichiometry To Choose between Chemical Formulas  Stephen DeMeo
To determine which formula corresponds to a bottle labeled "zinc carbonate", students perform qualitative tests on three of zinc carbonate's decomposition products: zinc oxide, carbon dioxide, and water. Next students make quantitative measurements to find molar ratios and compare them with the coefficients of the balanced chemical equations. This allows the correct formula of zinc carbonate to be deduced.
DeMeo, Stephen. J. Chem. Educ. 2004, 81, 119.
Gases |
Stoichiometry |
Quantitative Analysis
Chemistry Perfumes Your Daily Life  Anne-Dominique Fortineau
This article gives a brief history of perfumery.
Fortineau, Anne-Dominique. J. Chem. Educ. 2004, 81, 45.
Consumer Chemistry |
Natural Products |
Applications of Chemistry |
Molecular Properties / Structure
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
E-Mail Molecules—Individualizing the Large Lecture Class  Carl C. Wamser
All students in the organic chemistry class are assigned a unique set of nine molecules to report on as optional extra credit assignments. The molecules are taken from a list containing over 200 molecules on the class Web site; they represent an assortment of biologically relevant compounds, from acetaminophen to yohimbine.
Wamser, Carl C. J. Chem. Educ. 2003, 80, 1267.
Molecular Properties / Structure
The Origin of Stoichiometry Problems  William B. Jensen
In response to a reader query, the column discusses the question of when quantitative stoichiometry problems first began to appear in introductory textbooks, and especially the role of the American chemist, Josiah Parsons Cooke, in this process.
Jensen, William B. J. Chem. Educ. 2003, 80, 1248.
Stoichiometry
Learning Stoichiometry with Hamburger Sandwiches  Liliana Haim, Eduardo Cortón, Santiago Kocmur, and Lydia Galagovsky
Simple and understandable activities involving the manufacturing of hamburgers can be used as an analogy for stoichiometric concepts and calculations.
Haim, Liliana; Cortón, Eduardo; Kocmur, Santiago; Galagovsky, Lydia. J. Chem. Educ. 2003, 80, 1021.
Stoichiometry |
Enrichment / Review Materials
Chemistry Problem-Solving: Symbol, Macro, Micro, and Process Aspects  William R. Robinson
This article summarizes a paper by Yehudit J. Dori and Mira Hameiri, "Multidimensional Analysis System for Quantitative Chemistry Problems: Symbol, Macro, Micro, and Process Aspects", which describes the Multidimensional Analysis System (MAS), an approach to constructing, classifying, and analyzing introductory stoichiometry problems.
Robinson, William R. J. Chem. Educ. 2003, 80, 978.
Kinetic-Molecular Theory |
Stoichiometry
Purple or Colorless—Which Way Up? An Entertaining Solubility Demonstration  Trevor M. Kitson
Discrepant demonstration involving immiscible mixture of water colored with potassium permanganate and hexane.
Kitson, Trevor M. J. Chem. Educ. 2003, 80, 892.
Aqueous Solution Chemistry |
Solutions / Solvents |
UV-Vis Spectroscopy |
Noncovalent Interactions |
Molecular Properties / Structure |
Physical Properties
Laboratory Sequence in Computational Methods for Introductory Chemistry  Jason A. Cody and Dawn C. Wiser
Description of a four-week laboratory sequence that exposes students to instrumentation (FT-NMR, GC) and computational chemistry.
Cody, Jason A.; Wiser, Dawn C. J. Chem. Educ. 2003, 80, 793.
Chromatography |
Computational Chemistry |
Noncovalent Interactions |
MO Theory |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Gas Chromatography
Determination of Avogadro's Number by Improved Electroplating  Carlos A. Seiglie
Electroplating procedure to accurately determine Avogadro's number or Faraday's constant.
Seiglie, Carlos A. J. Chem. Educ. 2003, 80, 668.
Electrochemistry |
Metals |
Quantitative Analysis |
Stoichiometry
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
A Concept-Based Environmental Project for the First-Year Laboratory: Remediation of Barium-Contaminated Soil by In Situ Immobilization  Heather D. Harle, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
Simulating the detection and remediation of lead-contaminated soil using barium.
Harle, Heather D.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2003, 80, 561.
Synthesis |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis |
Quantitative Analysis |
Metals |
Aqueous Solution Chemistry |
Gravimetric Analysis |
Applications of Chemistry
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
The Strange Case of Mole Airlines Flight 1023  Karl F. Jones
Forensic chemistry mystery / puzzle involving determining formulas based on chemical compositions.
Jones, Karl F. J. Chem. Educ. 2003, 80, 407.
Drugs / Pharmaceuticals |
Stoichiometry |
Molecular Properties / Structure |
Enrichment / Review Materials |
Applications of Chemistry |
Forensic Chemistry
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
Use of Chloroisocyanuarates for Disinfection of Water: Application of Miscellaneous General Chemistry Topics  Gabriel Pinto and Brian Rohrig
Using the chlorination of water (using sodium dichloroisocyanurate and trichloroisocyanuric acid) to develop general chemistry concepts; includes question for students and answers.
Pinto, Gabriel; Rohrig, Brian. J. Chem. Educ. 2003, 80, 41.
Stoichiometry |
Water / Water Chemistry |
Applications of Chemistry |
Photochemistry
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Correction to Featured Molecule of July 2002 (re J. Chem. Educ. 2002, 79, 772)  
Correct formula of anthracene.
J. Chem. Educ. 2002, 79, 1071.
Laboratory Management |
Physical Properties |
Molecular Properties / Structure
Structure and Nuclear Magnetic Resonance. An Experiment for the General Chemistry Laboratory  Rosa M. Dávila and R. K. Widener
Lab exercise to introduce first-year students to the concepts of functional groups and isomerism, as well as using NMR spectroscopy to determine simple molecular structures.
Dávila, Rosa M.; Widener, R. K. J. Chem. Educ. 2002, 79, 997.
NMR Spectroscopy |
Molecular Properties / Structure |
Instrumental Methods
Determination of the Empirical Formula of a Copper Oxide Salt Using Two Different Methods  Michael J. Sanger and Kimberly Geer
Converting copper oxide into copper metal using two different methods: reduction of copper oxide to copper metal using methane gas, and reduction of copper oxide to copper metal using aluminum in aqueous solution; the results are used to determine the empirical formula of copper oxide.
Sanger, Michael J.; Geer, Kimberly. J. Chem. Educ. 2002, 79, 994.
Oxidation / Reduction |
Stoichiometry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Metals
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
Experimental Design and Multiplexed Modeling Using Titrimetry and Spreadsheets  Peter de B. Harrington, Erin Kolbrich, and Jennifer Cline
Determining the acidity of three vinegar samples using multiplexed titrations and an MS Excel spreadsheet.
Harrington, Peter de B.; Kolbrich, Erin; Cline, Jennifer. J. Chem. Educ. 2002, 79, 863.
Acids / Bases |
Chemometrics |
Stoichiometry |
Titration / Volumetric Analysis
Alka-Seltzer Fizzing—Determination of Percent by Mass of NaHCO3 in Alka-Seltzer Tablets. An Undergraduate General Chemistry Experiment  Yueh-Huey Chen and Jing-Fun Yaung
Lab activity that introduces the concept of a limiting reactant by incrementally increasing the amount of vinegar added to an Alka Seltzer tablet.
Chen, Yueh-Huey; Yaung, Jing-Fun. J. Chem. Educ. 2002, 79, 848.
Acids / Bases |
Quantitative Analysis |
Stoichiometry
Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know  Guinevere A. Giffin, Steven R. Boone, Renée S. Cole, Scott E. McKay, and Robert Kopitzke
Summary of the chemistry of a variety of sports and athletics; topics include golf, football, tennis, and hockey, as well as sports medicine, performance-enhancing drugs, sports supplements and drinks, and the couch potato.
Giffin, Guinevere A.; Boone, Steven R.; Cole, Renée S.; McKay, Scott E.; Kopitzke, Robert. J. Chem. Educ. 2002, 79, 813.
Consumer Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
Using Limiting-Excess Stoichiometry to Introduce Equilibrium Calculations: A Discrepant Event Laboratory Activity Involving Precipitation Reactions  Stephen DeMeo
Students are introduced to the concept of equilibrium as they investigate two precipitation reactions, predict which reactant is present in excess, and find that there are two excess reactants.
DeMeo, Stephen. J. Chem. Educ. 2002, 79, 474.
Equilibrium |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis
A Simple Experiment for the Determination of Molecular Weights of Gases Lighter Than Air  Van T. Lieu and Gene E. Kalbus
A simple method for the determination of molecular weights of gases lighter than air.
Lieu, Van T.; Kalbus, Gene E. J. Chem. Educ. 2002, 79, 473.
Gases |
Molecular Properties / Structure |
Physical Properties
Crystal Models Made from Clear Plastic Boxes and Their Use in Determining Avogadro's Number  Thomas H. Bindel
Construction and use of unit cell / crystal lattice models made from clear plastic boxes.
Bindel, Thomas H. J. Chem. Educ. 2002, 79, 468.
Crystals / Crystallography |
X-ray Crystallography |
Stoichiometry |
Molecular Modeling
The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory  Frazier Nyasulu, John Macklin, and William Cusworth III
Examination of the spectrum of liquid oxygen and testing several hypotheses to explain the pattern of spectral lines observed.
Nyasulu, Frazier; Macklin, John; Cusworth, William, III. J. Chem. Educ. 2002, 79, 356.
MO Theory |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
"Dishing Out" Stereochemical Principles  Harold Hart
Demonstrating the concepts of chiral centers and enantiomers using plastic dishes.
Hart, Harold. J. Chem. Educ. 2001, 78, 1632.
Chirality / Optical Activity |
Molecular Modeling |
Stereochemistry |
Molecular Properties / Structure |
Enantiomers
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
The Use of Stick Figures to Visualize Fischer Projections  Laurie S. Starkey
Using stick figures to help students visualize the three-dimensional orientations represented by Fischer projections.
Starkey, Laurie S. J. Chem. Educ. 2001, 78, 1486.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Demonstrating Chirality: Using a Mirror with Physical Models to Show Non-superimposability of Chiral Molecules with Their Mirror Images  Michael J. Collins
Using a mirror with physical models to show non-superimposability of chiral molecules with their mirror images.
Collins, Michael J. J. Chem. Educ. 2001, 78, 1484.
Chirality / Optical Activity |
Enantiomers |
Molecular Modeling |
Molecular Properties / Structure
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
Problem Analysis: Lesson Scripts and Their Potential Applications  Maria Oliver-Hoyo
Development and use of lesson scripts to give students more informative feedback when performing calculations in an interactive, computerized tutorial.
Oliver-Hoyo, Maria. J. Chem. Educ. 2001, 78, 1425.
Stoichiometry |
Learning Theories
Using Computer-Based Visualization Strategies to Improve Students' Understanding of Molecular Polarity and Miscibility  Michael J. Sanger and Steven M. Badger II
Study of how the use of visualization strategies associated with dynamic computer animations and electron density plots affect students' conceptual understanding of molecular polarity and miscibility.
Sanger, Michael J.; Badger, Steven M., II. J. Chem. Educ. 2001, 78, 1412.
Molecular Properties / Structure |
Solutions / Solvents |
Molecular Modeling |
Molecular Mechanics / Dynamics
How to Say How Much: Amounts and Stoichiometry  Addison Ault
Pictorial representation of the ways by which chemists describe an amount of material, and a systematic way to create a visual representation or "map" for solving stoichiometry problems.
Ault, Addison. J. Chem. Educ. 2001, 78, 1347.
Stoichiometry
The Mole, the Periodic Table, and Quantum Numbers: An Introductory Trio  Mali Yin and Raymond S. Ochs
Suggestions for presenting and developing three key ideas in chemistry: the mole, the periodic table, and quantum numbers.
Yin, Mali; Ochs, Raymond S. J. Chem. Educ. 2001, 78, 1345.
Nonmajor Courses |
Periodicity / Periodic Table |
Stoichiometry |
Atomic Properties / Structure
Blood-Chemistry Tutorials: Teaching Biological Applications of General Chemistry Material  Rachel E. Casiday, Dewey Holten, Richard Krathen, and Regina F. Frey
Four, Web-based tutorials that deal with chemical processes in the blood and provide an integrated biological context for a variety of chemical concepts.
Casiday, Rachel E.; Holten, Dewey; Krathen, Richard; Frey, Regina F. J. Chem. Educ. 2001, 78, 1210.
Applications of Chemistry |
Medicinal Chemistry |
Proteins / Peptides |
Acids / Bases |
Equilibrium |
Molecular Properties / Structure
Making Assumptions Explicit: How the Law of Conservation of Matter Can Explain Empirical Formula Problems  Stephen DeMeo
How the law of conservation of mass provides a theoretical foundation for empirical formula problems that introductory students encounter.
DeMeo, Stephen. J. Chem. Educ. 2001, 78, 1050.
Descriptive Chemistry |
Stoichiometry
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
A Known-to-Unknown Approach to Teach about Empirical and Molecular Formulas  P. K. Thamburaj
Analogy for helping students to understand molecular and empirical formula problems.
Thamburaj, P. K. J. Chem. Educ. 2001, 78, 915.
Stoichiometry
Molecular Modeling in the Undergraduate Chemistry Curriculum  Martin B. Jones
Project to expose all chemistry students at all levels to computer-based molecular modeling.
Jones, Martin B. J. Chem. Educ. 2001, 78, 867.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Metal Complexes of Trifluoropentanedione. An Experiment for the General Chemistry Laboratory  Robert C. Sadoski, David Shipp, and Bill Durham
Investigation of the transition-metal complexes produced by the reactions of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with 1,1,1-trifluoro-2,4-pentanedione; mass spectroscopy is used to determine the stoichiometry of the reaction products.
Sadoski, Robert C.; Shipp, David; Durham, Bill. J. Chem. Educ. 2001, 78, 665.
Coordination Compounds |
Synthesis |
Mass Spectrometry |
Transition Elements |
Stoichiometry
Analysis of an Oxygen Bleach: A Redox Titration Lab  Christine L. Copper and Edward Koubek
Students balance the reaction of H2O2 and MnO4 in two different ways (one assuming that H2O2 is the oxygen source and a second assuming that MnO4 is the oxygen source), determine which of these balanced equations has the correct stoichiometry by titrating a standard H2O2 solution with KMnO4, and use the correct balanced equation to determine the mass percent of H2O2 in a commercially available bleach solution.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 2001, 78, 652.
Quantitative Analysis |
Oxidation / Reduction |
Stoichiometry |
Titration / Volumetric Analysis |
Consumer Chemistry
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Introducing Stereochemistry to Non-science Majors  Hannia Luján-Upton
Two exercises to introduce concepts associated with stereochemistry such as "sameness", superimposability, chirality, enantiomers, optical activity, polarimetry, and racemic mixtures; one compares chirality in hands with the achiral nature of two textbooks, the other involves a murder mystery.
Luján-Upton, Hannia. J. Chem. Educ. 2001, 78, 475.
Chirality / Optical Activity |
Stereochemistry |
Nonmajor Courses |
Molecular Properties / Structure
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The Synthesis and Analysis of Copper(I) Iodide. A First-Year Laboratory Project  Lara A. Margolis, Richard W. Schaeffer, and Claude H. Yoder
This project provides a convenient preparation of a compound whose identity will not be obvious to students. The analytical procedures illustrate the fundamentals of gravimetric analysis and some basic chemical and physical characteristics of the elements. The analytical data allow students to find the identity of the product by determining its empirical formula.
Margolis, Lara A.; Schaeffer, Richard W.; Yoder, Claude H. J. Chem. Educ. 2001, 78, 235.
Synthesis |
Oxidation / Reduction |
Stoichiometry |
Gravimetric Analysis |
Qualitative Analysis |
Stoichiometry
Dog with Ball Joins Flying Bird
(re
J. Chem. Educ. 1999, 76, 1656)  Richard S. Treptow
Comparing structural models to simple figures.
Treptow, Richard S. J. Chem. Educ. 2001, 78, 31.
Molecular Properties / Structure |
Carboxylic Acids |
Molecular Modeling
Infrared Spectroscopy in the General Chemistry Lab  Margaret A. Hill
Three laboratory exercises in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.
Hill, Margaret A. J. Chem. Educ. 2001, 78, 26.
Instrumental Methods |
IR Spectroscopy |
Molecular Properties / Structure
The Science Teacher: Winter Break 2001  Steve Long
Summary or chemistry-related articles in the May through November 2000 issues of The Science Teacher.
Long, Steve. J. Chem. Educ. 2001, 78, 22.
Acids / Bases |
Forensic Chemistry |
Molecular Properties / Structure |
Stoichiometry |
Agricultural Chemistry
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
When A + B  Is Not Equal To B + A  Erling Antony, Lindsay Mitchell, and Lauren Nettenstrom
Many acid-base chemistry demonstrations and laboratory manuals include the "baking soda volcano". Others use the formation of calcium carbonate from calcium hydroxide and carbon dioxide in human breath. This demonstration uses principles from both as well as stoichiometry to answer the question "Does the order of mixing of reagents make a difference?"
Antony, Erling; Mitchell, Lindsay; Nettenstrom, Lauren. J. Chem. Educ. 2000, 77, 1180.
Acids / Bases |
Stoichiometry |
Reactions
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
A Drop in the Ocean  Damon Diemente
Teachers of high-school chemistry customarily use calculations done as in-class exercises or as demonstrations to impress their students with the enormity of Avogadro's number and the concomitant miniscularity of atoms and molecules. This article presents and works out one such calculation.
Diemente, Damon. J. Chem. Educ. 2000, 77, 1010.
Stoichiometry |
Atomic Properties / Structure
The Other Double Helix--The Fascinating Chemistry of Starch  Robert D. Hancock and Bryon J. Tarbet
The chemistry of starch, particularly the structure of starch and starch granules.
Hancock, Robert D.; Tarbet, Bryon J. J. Chem. Educ. 2000, 77, 988.
Bioorganic Chemistry |
Carbohydrates |
Food Science |
Stereochemistry |
Applications of Chemistry |
Molecular Properties / Structure
Preparation and Analysis of Multiple Hydrates of Simple Salts  Richard W. Schaeffer, Benny Chan, Shireen R. Marshall, Brian Blasiole, Neetha Khan, Kendra L. Yoder, Melissa E. Trainer, and Claude H. Yoder
A laboratory project in which students prepare a series of hydrates of simple salts and then determine the extent of hydration of the product(s); provides a good introduction to the concepts of solubility, saturation, recrystallization, relative compound stability, and simple gravimetric analysis.
Schaeffer, Richard W.; Chan, Benny; Marshall, Shireen R.; Blasiole, Brian; Khan, Neetha; Yoder, Kendra L.; Trainer, Melissa E.; Yoder, Claude H. J. Chem. Educ. 2000, 77, 509.
Stoichiometry |
Qualitative Analysis |
Crystals / Crystallography |
Precipitation / Solubility |
Gravimetric Analysis |
Quantitative Analysis
Reply to Coulombic Models in Chemical Bonding  Smith, Derek W.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Smith, Derek W. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Coulombic Models in Chemical Bonding  Sacks, Lawrence J.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Sacks, Lawrence J. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Drawing Lewis Structures from Lewis Symbols: A Direct Electron-Pairing Approach  Wan-Yaacob Ahmad and Mat B. Zakaria
We describe a different, more student-friendly approach to writing Lewis structures for covalent molecules and ions based on Lewis theory and Abegg's rule. Several rules for selecting central atoms are provided. Separate sets of rules are provided for diatomic molecules and ions and for polyatomic molecules and ions.
Ahmad, Wan-Yaacob; Zakaria, Mat B. J. Chem. Educ. 2000, 77, 329.
Molecular Properties / Structure |
Lewis Structures
Correction to Using Overhead Projectors to Simulate X-ray Diffraction Experiments.  Dragojlovic, Veljko
Correction to Figure 1 [1999, 76, 1240-1241]
Dragojlovic, Veljko J. Chem. Educ. 2000, 77, 160.
Crystals / Crystallography |
X-ray Crystallography |
Molecular Properties / Structure
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Liver and Onions: DNA Extraction from Animal and Plant Tissues  Karen J. Nordell, Anne-Marie L. Jackelen, S. Michael Condren, George C. Lisensky, and Arthur B. Ellis*
This activity, which allows students to extract DNA from plant and animal cells, serves as a spectacular example of the complexity of biochemical structure and function and fits well with a discussion of nucleic acids, hydrogen bonding, genetic coding, and heredity. DNA extraction can also be used in conjunction with a discussion of polymers and their properties.
Nordell, Karen J.; Jackelen, Anne-Marie L.; Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1999, 76, 400A.
Hydrogen Bonding |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
The Solubility of Ionic Solids and Molecular Liquids  C. Baer and Sheila M. Adamus
The solubilities of three ionic salts (NaCl, PbCl2, and KAl(SO4)2.12H2O) in water are measured at four temperatures. The concept of recrystallization is introduced as students cool a high-temperature solution and observe crystal formation. Spreadsheet calculations are performed with the group data, which are then graphed, and students observe the wide variance in solubility behavior for the three salts.
Baer, Carl; Adamus, Sheila M. J. Chem. Educ. 1999, 76, 1540.
Noncovalent Interactions |
Laboratory Computing / Interfacing |
Liquids |
Molecular Properties / Structure |
Solutions / Solvents
More on Double Replacement  Kauffman, G. B.
Reference to directions for writing double replacement reactions.
Kauffman, G. B. J. Chem. Educ. 1999, 76, 1340.
Reactions |
Stoichiometry
Using Overhead Projector to Simulate X-ray Diffraction Experiments  Veljko Dragojlovic
A demonstration to simulate X-ray diffraction experiments can be performed using an overhead projector. As a classroom activity, the spacing between the lines of a grating or, once the spacing is known, the wavelength of diffracted light can be calculated.
Dragojlovic, Veljko. J. Chem. Educ. 1999, 76, 1240.
Crystals / Crystallography |
Molecular Properties / Structure |
X-ray Crystallography
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Limiting Reactant. An Alternative Analogy  Zoltn Tth
A concrete analogy involving students and the make-up of teams is proposed to better explain the identification of the limiting reactant in stoichiometric calculations.
Tth, Zoltn. J. Chem. Educ. 1999, 76, 934.
Stoichiometry
Pressure and Stoichiometry  Charles E. Roser and Catherine L. McCluskey
This experiment determines the stoichiometry of the reaction of a carbonate or hydrogen carbonate and HCl by measuring the pressure of the CO2 produced using a Vernier pressure sensor, TI CBL interface, and a TI-82/83 graphing calculator. Various amounts of the carbonate are reacted with a constant amount of HCl.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 638.
Stoichiometry |
Gases |
Laboratory Computing / Interfacing
Illustrating Newman Projections by Using Overhead Transparencies  L. Phillip Silverman and John Barbaro
A method of illustrating the Newman projection of a molecule using an overhead projector is described. This method, which uses two overhead transparencies linked by a thumbtack, provides both an easy and a clear way to present this type of conformational analysis to large lecture classes.
Silverman, L. Phillip; Barbaro, John. J. Chem. Educ. 1999, 76, 630.
Learning Theories |
Stereochemistry |
Molecular Properties / Structure
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
A Novel Multipurpose Model Set for Teaching General Chemistry  H. O. Gupta and Brahm Parkash
Teaching general chemistry requires a simple and inexpensive model set capable of demonstrating all the common structures in organic, inorganic, and physical chemistry. This paper describes our endeavour to develop such a model set.
Gupta, H. O.; Parkash, Brahm. J. Chem. Educ. 1999, 76, 204.
Molecular Properties / Structure |
Molecular Modeling
Replace Double Replacement  R. Bruce Martin
Reactions described as double replacements in high school texts are poorly described by this designation. The driving force for such reactions is precipitation of a solid derived from ions in solution or the production of water in acid-base reactions.
Martin, R. Bruce. J. Chem. Educ. 1999, 76, 133.
Stoichiometry |
Reactions |
Precipitation / Solubility
Effect of Experience on Retention and Elimination of Misconceptions about Molecular Structure and Bonding  James P. Birk and Martha J. Kurtz
A test designed to uncover misconceptions in molecular structure and bonding was administered to students from high school through graduate school and to some college faculty. The study tracked the disappearance of these misconceptions over a time span of 10 years of student experience, along with the development of accepted conceptions.
Birk, James P.; Kurtz , Martha J. J. Chem. Educ. 1999, 76, 124.
Molecular Properties / Structure |
Learning Theories
Spectroscopy of Simple Molecules  C. Baer and K. Cornely
A spectroscopy experiment in which students utilize IR and NMR spectroscopy to identify the structures of three unknowns from a list of 15 carefully chosen simple organic molecules. In taking IR and NMR spectra, students learn to use state-of-the-art instrumentation that is used by practicing chemists.
Baer, Carl; Cornely, Kathleen. J. Chem. Educ. 1999, 76, 89.
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Amounts Tables as a Diagnostic Tool for Flawed Stoichiometric Reasoning  John Olmsted III
Amounts tables can be used to organize the data and reasoning involved in limiting-reagent problems. In this context, amounts tables can provide useful diagnostic information about students' abilities to reason stoichiometrically.
Olmsted, John A., III. J. Chem. Educ. 1999, 76, 52.
Learning Theories |
Stoichiometry
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Chain Gang-The Chemistry of Polymers (edited by Mickey Sarquis)  David M. Collard
After a brief introduction to some basic concepts, the book presents a series of 23 polymer experiments spanning topics of chemistry, physical properties, analysis, and processing. Each experiment is recommended as either a hands-on activity or demonstration for various grade levels. A guide for the teacher suggests how the experiment can be used to illustrate topics in the science curriculum.
Collard, David M. J. Chem. Educ. 1999, 76, 32.
Molecular Properties / Structure
Cut-Out Molecular Models  Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria.
Suggestions for improvement to the original demonstration.
Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria. J. Chem. Educ. 1999, 76, 28.
Molecular Modeling |
Molecular Properties / Structure |
Stoichiometry
Stereowordimers-Minding Your P's and Q's  Edward G. Neeland
The use of words having different colored sides is a excellent way to introduce stereochemical concepts that might not be easily grasped when using molecular examples. We have found that concepts such as enantiomers, diastereomers, identical molecules, chirality, achirality, mirror planes of symmetry, and internal planes of symmetry are readily understood by students when using stereowordimer examples.
Neeland, Edward G. J. Chem. Educ. 1998, 75, 1573.
Stereochemistry |
Diastereomers |
Enantiomers |
Molecular Properties / Structure
A Cyclist's Guide to Ionic Concentration  Arthur M. Last
A simple analogy to help students understand ionic concentration is presented.
Last, Arthur M. J. Chem. Educ. 1998, 75, 1433.
Solutions / Solvents |
Stoichiometry
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Vanillin (the author replies)  Hocking, Martin
Additional information regarding salicylic acid.
Hocking, Martin J. Chem. Educ. 1998, 75, 1203.
Aldehydes / Ketones |
Applications of Chemistry |
Medicinal Chemistry |
Molecular Properties / Structure
Vanillin  Calloway, Dean
Incorrect structural formula for methyl salicylate.
Calloway, Dean J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Letters  
Incorrect structural formula for methyl salicylate.
J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Let's Dot Our I's and Cross Our T's  Leenson, Ilya A.

Leenson, Ilya A. J. Chem. Educ. 1998, 75, 1088.
Stoichiometry |
Oxidation / Reduction
Tetrahedral Bond Angle  Ferreira, Ricardo
Easy way to calculate the terahedral bond angle.
Ferreira, Ricardo J. Chem. Educ. 1998, 75, 1087.
Molecular Properties / Structure
News from Online: Using the Web for Your Courses  Carolyn Sweeney Judd
Useful online resources for chemistry and education.
Judd, Carolyn Sweeney. J. Chem. Educ. 1998, 75, 1073.
Stoichiometry
Intermolecular Forces in Introductory Chemistry Studied by Gas Chromatography, Computer Models, and Viscometry  Jonathan C. Wedvik, Charity McManaman, Janet S. Anderson, and Mary K. Carroll
Students performing gas chromatographic (GC) analyses of mixtures of n-alkanes and samples that simulate crime scene evidence discover that liquid mixtures can be separated rapidly into their components based upon intermolecular forces. Each group of students is given a liquid sample that simulates one collected at an arson scene, and the group is required to determine the identity of the accelerant. Students also examine computer models to better visualize how molecular structure affects intermolecular forces: London forces, dipole-dipole interactions, and hydrogen bonding.
Wedvik, Jonathan C.; McManaman, Charity; Anderson, Janet S.; Carroll, Mary K. J. Chem. Educ. 1998, 75, 885.
Theoretical Chemistry |
Chromatography |
Noncovalent Interactions |
Gas Chromatography |
Molecular Modeling |
Forensic Chemistry |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Molecular Properties / Structure
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
Percent Composition and Empirical Formula - A New View  George L. Gilbert
A new method of obtaining the empirical formula for a compound from its percent composition is proposed. The method involves the determination of a minimum molar mass for the compound based on the percentage of each element, obtaining the lowest common molar mass and using this data to calculate the integer values used in writing the empirical formula.
Gilbert, George L. J. Chem. Educ. 1998, 75, 851.
Atomic Properties / Structure |
Stoichiometry |
Chemometrics
Illustrating Tetrahedral Carbons in Organic Compounds  Stella D. Elakovich
This paper describes a method of illustrating the tetrahedral nature of carbons using an overhead projector and molecular models.
Stella D. Elakovich. J. Chem. Educ. 1998, 75, 479.
Learning Theories |
Molecular Properties / Structure
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
Simplified Lewis Structure Drawing for Nonscience Majors  Barnabe B. Miburo
Lewis structures are drawn using a simplified novel method with the following features: 1) the atoms used are brought in carrying all their valence electrons; 2) bonds are created by pairing up valence electrons between the central atoms and peripheric atoms; 3) anions are formed by addition of electrons to single electrons on appropriate atoms, while cations are formed by removal of single electrons.
Miburo, Barnabe B. J. Chem. Educ. 1998, 75, 317.
Learning Theories |
Lewis Structures |
Nonmajor Courses |
Molecular Properties / Structure
Portraying the Structure of Micelles  F. M. Menger, R. Zana, and B. Lindman
The schematic of a micelle is given as an attempt to "disprove" the appearance of the spokes of a wheel.
Menger, F. M.; Zana, R.; Lindman, B. J. Chem. Educ. 1998, 75, 115.
Micelles |
Molecular Properties / Structure |
Molecular Modeling
A Simple Demonstration of How Intermolecular Forces Make DNA Helical  Michael F. Bruist
The usage of stacked identical boxes can be used to demonstrate the helical shape of DNA by the effect of intermolecular forces.
Bruist, Michael F. J. Chem. Educ. 1998, 75, 53.
Molecular Properties / Structure |
Hydrogen Bonding |
Noncovalent Interactions |
Molecular Modeling
A Challenging Balance  P Glaister
A difficult-to-balance equation and how its solution might be approached.
Glaister, P. J. Chem. Educ. 1997, 74, 1368.
Stoichiometry
Redox Balancing without Puzzling  Marten J. ten Hoor
Once it has been established by experiment that the given reactants can indeed be converted into the given products, chemistry has done its job. Balancing the equation of the reaction is a matter of mathematics only.
ten Hoor, Marten J. J. Chem. Educ. 1997, 74, 1367.
Stoichiometry |
Oxidation / Reduction
A New and General Method for Balancing Chemical Equations by Inspections  Chunshi Guo
Any chemical equation, no matter how complicated, can be balanced by inspection. In fact, inspection is often the quickest and easiest way to balance complex equation. The method described here involves the use of "linked sets". It does not require the use of oxidation numbers of the splitting of equations into "half reactions". It can be used to balance all kinds of chemical equations, including ionic equations.
Guo, Chunshi. J. Chem. Educ. 1997, 74, 1365.
Stoichiometry
Balancing Chemical Equations by Inspection  Zoltán Tóth
The paper shows that the balancing chemical equations by inspection is not a trial-and-error process, because a systematic procedure for the balancing simple and more complicated chemical equations without oxidation numbers or equations with several unknowns can be suggested. The proposed method is suitable for balancing all the chemical equations, including ionic equations, which have single unique solution.
Toth, Zoltan. J. Chem. Educ. 1997, 74, 1363.
Stoichiometry
On Balancing Chemical Equations: Past and Present  William C. Herndon
The main purposes of this paper are to give a listing of selected papers on balancing chemical equations that may be useful to chemistry teachers and potential authors as background material, and to provide some comparisons of methods. The selection criteria for the references were deliberately broad, in order to include a wide variety of topics and seminal historical citations, and the references are annotated to increase their usefulness.
Herndon, William C. J. Chem. Educ. 1997, 74, 1359.
Stoichiometry
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
How Big Is the Balloon? Stoichiometry Using Baking Soda and Vinegar  
Students discover the concept of stoichiometry and limiting reactants in two ways: first by adding vinegar to a small quantity of baking soda until bubbles stop, and second by mixing a constant quantity of baking soda with increasing volumes of vinegar and collecting the carbon dioxide produced in balloons.
J. Chem. Educ. 1997, 74, 1328A.
Stoichiometry
Letter to the Editor about Letter to the Editor "Redox Challenges" from David M. Hart and Response from Roland Stout (J. Chem. Educ. 1996, 73, A226-7)  Andrzej Sobkowiak
Examples of a variety of redox equations.
Sobkowiak, Andrzej. J. Chem. Educ. 1997, 74, 1256.
Stoichiometry |
Reactions |
Oxidation / Reduction
Letter to the Editor about "Redox Challenges" by Roland Stout (J. Chem. Educ. 1995, 72, 1125)  Rodger S. Nelson
Solution for balancing a difficult equation using the conservation of mass.
Nelson, Rodger S. J. Chem. Educ. 1997, 74, 1256.
Stoichiometry
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
Fostering Curiosity-Driven Learning through Interactive Multimedia Representations of Biological Molecules  Abby L. Parrill and Jacquelyn Gervay
A series of QuickTime movies have been developed and are available over the World Wide Web (WWW) to help evoke student curiosity about organic chemistry. When viewed in series the movies start with a 'big picture' view based on crystallographic data and narrow in on the basic concepts needed to understand that scientific observation.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 1141.
Molecular Properties / Structure |
Molecular Modeling
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
Two Comments on Bond Angles  P. Glaister
The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry.
Glaister, P. J. Chem. Educ. 1997, 74, 1086.
Molecular Properties / Structure
CheMentor Software System by H. A. Peoples  reviewed by Brian P. Reid
CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit.
Reid, Brian P. J. Chem. Educ. 1997, 74, 1047.
Stoichiometry
Chemical Behavior  Paul G. Jasien
In order to increase student understanding of the seemingly confusing behavior of chemical substances involved in environmental chemistry, an analogy between chemical and human behavior is presented. The analogy focuses on how the same individual can behave differently due to his/her social surroundings.
Jasien, Paul G. J. Chem. Educ. 1997, 74, 943.
Molecular Properties / Structure |
Nonmajor Courses |
Consumer Chemistry |
Atmospheric Chemistry
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0  reviewed by Allen D. Hunter
Chemistry drawing and NMR prediction packages.
Hunter, Allen D. . J. Chem. Educ. 1997, 74, 905.
NMR Spectroscopy |
Molecular Modeling |
Molecular Properties / Structure
Hot and Spicy versus Cool and Minty as an Example of Organic Structure-Activity Relationships  Doris R. Kimbrough
Structures of substances found in spices and food that we normally associate with "hot" (or spicy) and "cool" (or minty) flavors are presented and discussed. Functional group similarities within the two groups provide an interesting example of the relationship between molecular structure and molecular function.
Kimbrough, Doris R. J. Chem. Educ. 1997, 74, 861.
Molecular Properties / Structure |
Natural Products |
Plant Chemistry |
Applications of Chemistry
A General Chemistry Experiment Incorporating Synthesis and Structural Determination  Hal Van Ryswyk
An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin.
Van Ryswyk, Hal. J. Chem. Educ. 1997, 74, 842.
Instrumental Methods |
Microscale Lab |
Synthesis |
Molecular Properties / Structure |
Gas Chromatography |
Mass Spectrometry |
Fourier Transform Techniques |
Spectroscopy
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Use of Pom Pons To Illustrate Cubic Crystal Structures  Susan G. Cady
Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons.
Cady, Susan G. J. Chem. Educ. 1997, 74, 794.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
VSEPR Theory Demo  Janice Parker
This article describes a procedure to demonstrate electron pair repulsion (or molecular arrangement) using cow magnets and simple laboratory equipment.
Parker, Janice. J. Chem. Educ. 1997, 74, 776.
Atomic Properties / Structure |
Molecular Properties / Structure |
VSEPR Theory
An Analysis of the Algebraic Method for Balancing Chemical Reactions  John A. Olson
A new aspect of this treatment is the mathematical formulation of a third condition involving a balance between oxidation and reduction. The treatment begins with the three general conditions that a balanced chemical reaction must satisfy. These conditions are then expressed in mathematical form that enables the stoichiometric coefficients to be determined.
Olson, John A. . J. Chem. Educ. 1997, 74, 538.
Oxidation / Reduction |
Stoichiometry
From UNIX to PC via X-Windows: Molecular Modeling for the General Chemistry Lab  Donald Pavia and Mark Wicholas
A 3-hour experiment that attempts to illustrate the relationship between molecular geometry as predicted by the VSEPR model and valence bond theory. As a pre-laboratory take-home exercise, students are given a list of 23 species and asked to predict bond angles, geometry, and hybridization.
Pavia, Donald; Wicholas, Mark. J. Chem. Educ. 1997, 74, 444.
VSEPR Theory |
Molecular Properties / Structure
Discovery-Based Stereochemistry Tutorials Available on the World Wide Web  Abby L. Parrill and Jacquelyn Gervay
The WWW offers the ability to develop interactive, discovery-based tutorials for use as study tools, and multimedia offers significant improvements in the display of three-dimensional objects. As part of a chemical education research program, three stereochemistry tutorials were developed to capitalize on these advantages.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 329.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
Stoogiometry: A Cognitive Approach to Teaching Stoichiometry  Carla R. Krieger
Moe's Mall is a locational device designed to be used by learners as a simple algorithm for solving mole-based exercises efficiently and accurately. The mall functions as a map for setting up solutions to mole-based exercises using dimensional analysis. It clears the cognitive decks of students' easily overburdened short-term memory space, allowing them to focus on the versatility of the mole, rather than stepwise solutions to meaningless exercises.
Krieger, Carla R. J. Chem. Educ. 1997, 74, 306.
Learning Theories |
Computational Chemistry |
Stoichiometry
Redox Challenges (the author replies)  Stout, Roland
Algebraic solution to balancing a redox equation.
Stout, Roland J. Chem. Educ. 1996, 73, A227.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (2)  Zaugg, Noel S.
Algebraic solution to balancing a redox equation.
Zaugg, Noel S. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (1)  Hart, David M.
Algebraic solution to balancing a redox equation.
Hart, David M. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
How Do I Balance Thee? ... Let Me Count the Ways!  Lawrence A. Ferguson
The author suggests that this would be a good equation for students to try to balance by trial and error because it has two different sets of coefficients that are not multiples of each other.
Ferguson, Lawrence A. J. Chem. Educ. 1996, 73, 1129.
Stoichiometry
Four Programs for Windows: Abstract of Volume 4D, Number 2: Alkanes in Motion  Jae Hyun Kim
Alkanes in Motion depicts the molecular motion of hydrocarbons in the gas phase. Four animations from the collection are presented here. These four animations consist of two animations each of hexane and octadecane, one animation calculated to show translational motion and one to show vibrational motion.
Kim, Jae Hyun. J. Chem. Educ. 1996, 73, 1079.
Molecular Modeling |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Gases
An Easily Constructed and Versatile Molecular Model  Sandra A. Hernandez, Nora M. Rodriguez, and Oscar Quinzani
This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves.
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar V. J. Chem. Educ. 1996, 73, 748.
Molecular Modeling |
Atomic Properties / Structure |
Molecular Properties / Structure
Teaching VSEPR: The Plastic Egg Model  James P. Birk and Soraya Abbassian
We describe the construction and use of a set of models based on plastic eggs, which afford advantages over the previously described models.
James P. Birk and Soraya Abbassian. J. Chem. Educ. 1996, 73, 636.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
An alternative to the conventional method of calculating enthalpies of reaction is presented, using enthalpies of atomization in place of enthalpies of formation. This allows the student to see directly that the reaction enthalpies are determined by the difference in bond strengths in the reactants and products.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 631.
Calorimetry / Thermochemistry |
Thermodynamics |
Equilibrium |
Reactions |
Atomic Properties / Structure |
Stoichiometry
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model  Ronald J. Gillespie, James N. Spencer, and Richard S. Moog
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model.
Ronald J. Gillespie, James N. Spencer, and Richard S. Moog. J. Chem. Educ. 1996, 73, 622.
Atomic Properties / Structure |
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
The Helium-Neon Laser-Induced Fluorescence Spectrum of Molecular Iodine: An Undergraduate Laboratory Experiment  John S. Muenter
The wavelength analyzed fluorescence spectrum provides accurate values of spectroscopic properties for the ground state electronic configuration of I2. From these spectroscopic properties students calculate the bond length, harmonic oscillator force constant, and a Birge-Sponer estimate of the bond dissociation energy.
Muenter, John S. J. Chem. Educ. 1996, 73, 576.
Fluorescence Spectroscopy |
Molecular Properties / Structure |
Lasers
Tape and Tetrahedra  John W. Hill
I have found a simple solution to the problem of visualizing the tetrahedron. I use masking tape or labeling tape to connect the hydrogen atoms to one another. The tape represents the edges of the tetrahedron; the four hydrogen atoms are the corners.
Hill, John W. J. Chem. Educ. 1996, 73, 531.
Molecular Modeling |
Atomic Properties / Structure |
Molecular Properties / Structure
Why Don't Water and Oil Mix?  Katia Pravia and David F. Maynard
To develop an understanding of the molecular interactions of polar and nonpolar molecules, we have developed two simple and extremely useful overhead projection demonstrations that help students conceptualize the solubility rules.
Katia Pravia and David F. Maynard. J. Chem. Educ. 1996, 73, 497.
Hydrogen Bonding |
Covalent Bonding |
Precipitation / Solubility |
Molecular Properties / Structure
An Excel 4.0 Add-in Function to Calculate Molecular Mass  Christian Hauck
185. In this paper, a Microsoft Excel 4.0 add-in function is presented, which consists of a parser to interpret molecular formulas and a database containing three values for the atomic masses for every element: the mass number of the most abundant isotope, the mass of the most abundant isotope, and the atomic weight.
Hauck, Christian. J. Chem. Educ. 1996, 73, 433.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The Chemistry behind the Air Bag: High Tech in First-Year Chemistry  Andreas Madlung
The chemical process of air bag deployment provides practical applications of gas laws and stoichiometric equations appropriate for use in first-year chemistry.
Madlung, Andreas. J. Chem. Educ. 1996, 73, 347.
Applications of Chemistry |
Gases |
Stoichiometry
MOLSYM: A Program on Molecular Symmetry and Group Theory  Vazquez-Vidal, Luis
184. Program MOLSYM provides teachers, students, and researchers with tools for dealing with diverse aspects of molecular symmetry and applying them to specific examples and problems.
Vazquez-Vidal, Luis J. Chem. Educ. 1996, 73, 321.
Molecular Properties / Structure |
Group Theory / Symmetry
What's a Mole for?  Sheryl Dominic
A classroom competition for guessing the number of jelly beans in a jar of candy is used to help students understand the premise of the mole concept: counting particles by weighing.
Dominic, Sheryl. J. Chem. Educ. 1996, 73, 309.
Stoichiometry
Reinforcing Net Ionic Equation Writing: Second Semester  Betty J. Wruck
It is important to actively illustrate that total and net ionic equation writing is a way of learning and expressing an enormous amount of chemistry. There is a major problem with students retaining their ability to write net ionic equations in the second semester. We start this semester with a review and a special, long range assignment.
Wruck, Betty J. J. Chem. Educ. 1996, 73, 149.
Stoichiometry
Chemistry on the Web  Richard D. Mounts
181. Information on obtaining, installing, and using Web browsers and Web viewers is included. Chemical MIME objects, which are 3-dimensional representations of molecular structures, are used as examples of a type of resource available on the Web that is of special interest to chemists.
Mounts, Richard D. J. Chem. Educ. 1996, 73, 68.
Molecular Properties / Structure |
Molecular Modeling
Difficulties with the Geometry and Polarity of Molecules: Beyond Misconceptions  Carlos Furió and Ma Luisa Calatayud
In chemistry, research on student understanding and misconceptions has been conducted in several conceptual areas. Recent studies have been carried out on misconceptions of covalent bonding and structure of molecules.
Furio, Carlos; Calatayud, Ma Luisa. J. Chem. Educ. 1996, 73, 36.
Molecular Properties / Structure |
Constructivism
Low Cost 3-D Viewing of Chemical Structures  Wong, Yue-Ling; Yip, Ching-Wan
Generating 3-D stereoscopic projections using a anaglyphic (red-blue) pair processed with Adobe PhotoShop.
Wong, Yue-Ling; Yip, Ching-Wan J. Chem. Educ. 1995, 72, A237.
Molecular Modeling |
Molecular Properties / Structure
Visual Basic and Dynamic Data Exchange: Controlling Windows Applications  Porter, Timothy L.; Maxka, Jim; Abes, John
Description of general methods of controlling HyperChem through Visual Basic and dynamic data exchange (DDE).
Timothy L. Porter; Jim Maxka and John Abes. J. Chem. Educ. 1995, 72, A236.
Molecular Modeling |
Molecular Properties / Structure
Chemistry, The Molecular Science (Olmsted, John, III; Williams, George M.)  Eichstadt, Karen E.
Molecular approach to general chemistry.
Eichstadt, Karen E. J. Chem. Educ. 1995, 72, A107.
Descriptive Chemistry |
Molecular Properties / Structure
Small-Scale Experiments Involving Gas Evolution  Brouwer, H.
Apparatus for measuring very small volume changes of gases and several experimental procedures involving the evolution of gases.
Brouwer, H. J. Chem. Educ. 1995, 72, A100.
Gases |
Laboratory Equipment / Apparatus |
Stoichiometry |
Acids / Bases |
Reactions |
Mechanisms of Reactions |
Microscale Lab
Redox Challenges: Good Times for Puzzle Fanatics  Roland Stout
Three difficult to balance redox equations.
Stout, Roland. J. Chem. Educ. 1995, 72, 1125.
Reactions |
Stoichiometry |
Oxidation / Reduction |
Enrichment / Review Materials
A Simple, Discovery-Based Laboratory Exercise: The Molecular Mass Determination of Polystyrene  Greg A. Slough
Identification of an unknown polymer using silica gel TLC sheets and IR spectroscopy.
Slough, Greg A. J. Chem. Educ. 1995, 72, 1031.
Stoichiometry |
IR Spectroscopy |
Molecular Properties / Structure |
Thin Layer Chromatography
The Stoichiometry of the Neutralization of Citric Acid: An Introductory Laboratory  Susan E. Hayes
Experiment to introduce stoichiometry to pre-college students; includes sample data and analysis.
Hayes, Susan E. J. Chem. Educ. 1995, 72, 1029.
Acids / Bases |
Stoichiometry
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
The Relationship between the Number of Elements and the Number of Independent Equations of Elemental Balance in Inorganic Chemical Equations  R. Subramanian, N.K. Goh, and L. S. Chia
The criterion for determining whether a chemical equation can be balanced fully by the algebraic technique and its application.
Subramaniam, R.; Goh, N. K.; Chia, L. S. J. Chem. Educ. 1995, 72, 894.
Stoichiometry |
Chemometrics
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Paper Models for Fullerenes C60-C84   John M. Beaton
Photocopyable patterns to construct C60-C84.
J. Chem. Educ. 1995, 72, 863.
Main-Group Elements |
Molecular Modeling |
Molecular Properties / Structure |
Alkenes
Conservation of Matter  Meyer, Edwin F.
Letter pointing out that the demonstration referred to allows a quantitative measurement of the molecular weight of carbon dioxide.
Meyer, Edwin F. J. Chem. Educ. 1995, 72, 764.
Physical Properties |
Stoichiometry
Double Disproportionations   M.E. Cardinali, C. Giomini, Ciancarlo Marrosu
Method for balancing a difficult redox reaction.
Cardinali, Mario E.; Giomini, Claudio; Marrosu, Giancarlo. J. Chem. Educ. 1995, 72, 716.
Stoichiometry |
Oxidation / Reduction
Animation of Imaginary Frequencies at the Transition State  Robert H. Higgins
176. Software tutorial for strengthening spatial skills and an understanding of stereochemistry in exploring molecular structures.
Higgins, Robert H. J. Chem. Educ. 1995, 72, 699.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Stoichiometry and Chemical Reactions (the author replies)  Filgueiras, Carlos A.
The mere writing of balanced equations may be unrelated to the actual reaction that takes place.
Filgueiras, Carlos A. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
Stoichiometry and Chemical Reactions  Radhakrishnamurty, P.
Can there exist different ways of balancing a chemical reaction?
Radhakrishnamurty, P. J. Chem. Educ. 1995, 72, 668.
Reactions |
Stoichiometry
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
Common Textbook and Teaching Misrepresentations of Lewis Structures   Laila Suidan, Jay K. Badenhoop, Eric D. Glendening, and Frank Weinhold
Clarifying leading Lewis structures using computational software.
Suidan, Laila; Badenhoop, Jay K.; Glendening, Eric D.; Weinhold, Frank. J. Chem. Educ. 1995, 72, 583.
Lewis Structures |
Covalent Bonding |
Quantum Chemistry |
Molecular Properties / Structure
MolVib 2.0  Huber, Daniel; Wagner, Paul
Software to illustrate molecular vibrations.
Huber, Daniel; Wagner, Paul J. Chem. Educ. 1995, 72, 492.
Molecular Properties / Structure |
Molecular Modeling
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
A Concrete Analogy for Combustion Analysis Problems  Reingold, I. David
Exercise for helping students understand stoichiometry by considering a Sherlock Holmes case.
Reingold, I. David J. Chem. Educ. 1995, 72, 222.
Reactions |
Stoichiometry
Cubic and Related Structures of Many Types of Crystals: A Single Illuminated Model  Rich, Ronald L.
Instructions for constructing a three-dimensional, lighted model to illustrate the positions of atoms in many different crystalline structures.
Rich, Ronald L. J. Chem. Educ. 1995, 72, 172.
Crystals / Crystallography |
Laboratory Equipment / Apparatus |
Geochemistry |
Molecular Modeling |
Molecular Properties / Structure
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
Analysis of Cryoscopy Data  Wloch, Peter; Cherniak, E. A.
Method for analyzing cryoscopic data with applications to freezing point depression; includes data and analysis.
Wloch, Peter; Cherniak, E. A. J. Chem. Educ. 1995, 72, 59.
Physical Properties |
Physical Properties |
Stoichiometry
Tetrahedral Geometry Made Simple  Woolf, A. A.
Technique for evaluating the geometry of tetrahedral close packing using right-angled triangles and trigonometry.
Woolf, A. A. J. Chem. Educ. 1995, 72, 19.
Molecular Properties / Structure |
Crystals / Crystallography
A Graphical Representation of Limiting Reactant  Phillips, J. C.
The concept of limiting reactant may be conveniently illustrated by a graphical representation method that is based on a "minimum slope".
Phillips, J. C. J. Chem. Educ. 1994, 71, 1048.
Stoichiometry
A Student's Travels, Close Dancing, Bathtubs, and the Shopping Mall: More Analogies in Teaching Introductory Chemistry   Rayner-Canham, Geoff
Four analogies are described for use in introductory chemistry classes.
Rayner-Canham, Geoff J. Chem. Educ. 1994, 71, 943.
Atomic Properties / Structure |
Molecular Properties / Structure |
Equilibrium
Chemistry Navigator  Kotz, John C.; Young, Susan
Chemistry Navigator is a hyperbook-database of information in the form of descriptive text, numerical values of properties, full color photos of chemicals and reactions, three dimensional molecular structures, QuickTime animations of structural features, and graphs showing periodic trends, relative elemental abundances, and other properties.
Kotz, John C.; Young, Susan J. Chem. Educ. 1994, 71, 941.
Reactions |
Molecular Properties / Structure |
Periodicity / Periodic Table
The Mole Concept: Developing an Instrument To Assess Conceptual Understanding  Krishnan, Shanthi R.; Howe, Ann C.
The development of a diagnostic test to assess conceptual understanding of the mole.
Krishnan, Shanthi R.; Howe, Ann C. J. Chem. Educ. 1994, 71, 653.
Stoichiometry |
Constructivism
Pictorial Analogies XII: Stoichiometric Calculations  Fortman, John J.
Pictorial analogies for comparing different amounts in terms of number, volume, and mass; excess reagents; and stoichiometric approximations.
Fortman, John J. J. Chem. Educ. 1994, 71, 571.
Stoichiometry
Molecular Modeling for the Introductory Organic Chemistry Courses  Keeffe, James R.
Award in the Course and Curriculum Development (CCD) program for FY1994.
Keeffe, James R. J. Chem. Educ. 1994, 71, 508.
Molecular Modeling |
Molecular Properties / Structure
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
Solid State Structures for MacMolecule  Mayer, Ludwig A.
Provides an effective visualization of extended structure solids.
Mayer, Ludwig A. J. Chem. Educ. 1994, 71, 421.
Solid State Chemistry |
Solids |
Molecular Modeling |
Molecular Properties / Structure
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
Ambiguities in Balancing Chemical Equations  Toby, Sidney
Why some equations may be balanced in more than one way.
Toby, Sidney J. Chem. Educ. 1994, 71, 270.
Stoichiometry
Data-Driven Chemistry: Building Models of Molecular Structure (Literally) from Electron Diffraction Data  Hanson, Robert M.; Bergman, Sara A.
How electron diffraction data can be presented as evidence for molecular structure to first-year students.
Hanson, Robert M.; Bergman, Sara A. J. Chem. Educ. 1994, 71, 150.
Molecular Properties / Structure |
Molecular Modeling
Demonstrating the magnitude of Avogadro's number   Johns, Philip T.
A demonstration using the evaporation of acetone.
Johns, Philip T. J. Chem. Educ. 1993, 70, 774.
Stoichiometry
Pictorial analogies VIII: Types of formulas and structural isomers   Fortman, John J.
Visual ways of understanding empirical, structural, and molecular formulas as well as structural isomers.
Fortman, John J. J. Chem. Educ. 1993, 70, 755.
Stoichiometry |
Diastereomers
Experiments for modern introductory chemistry: Limiting reagent, stoichiometry, and the mole  Kildahl, Nicholas; Berka, Ladislav H.
Description of an experiment based on electronic absorption spectroscopy for general chemistry students that gives accurate results, conveys the excitement of discovery in experimental science, and illustrates key concepts.
Kildahl, Nicholas; Berka, Ladislav H. J. Chem. Educ. 1993, 70, 671.
Stoichiometry |
Spectroscopy
Unknown identification by simple stoichiometry  McCullough, Thomas
A simple experiment in which the student can determine the identity of a soluble carbonate salt using one straightforward reaction and gravimetric analysis.
McCullough, Thomas J. Chem. Educ. 1993, 70, 592.
Gravimetric Analysis |
Stoichiometry
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-based program that has modules on significant figures, VSEPR structures, stoichiometry, and unit conversions.
Cornelius, Richard J. Chem. Educ. 1993, 70, 460.
VSEPR Theory |
Stoichiometry |
Chemometrics
A mole of M&M's   Merlo, Carmela; Turner, Kathleen E.
Engaging students by asking the question: How thick would the layer of M&M candies be if we covered the continental United States with a mole of these candies? Compare this to a mole of water.
Merlo, Carmela; Turner, Kathleen E. J. Chem. Educ. 1993, 70, 453.
Stoichiometry |
Chemometrics
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-like program that includes modules on significant figures, conversions, stoichiometry, and VSEPR structures.
Cornelius, Richard J. Chem. Educ. 1993, 70, 387.
VSEPR Theory |
Stoichiometry |
Chemometrics
Combustion of hydrocarbons: A stoichiometry demonstration   Alexander, M. Dale
A simple demonstration that makes the introduction of stoichiometry more interesting and relevant to students.
Alexander, M. Dale J. Chem. Educ. 1993, 70, 327.
Stoichiometry
Empirical formulas from atom ratios: A simple method to obtain the integer factors of a rational number  Weltin, E.
Most textbooks advise students to use a method tantamount to trial and error when they encounter a ratio in empirical formula calculations where it is not immediately apparent what the coefficients should be. The author describes a simple procedure that is an effective way to find the integer factors.
Weltin, E. J. Chem. Educ. 1993, 70, 280.
Stoichiometry |
Chemometrics
Measuring Avogadro's number on the overhead projector   Solomon, Sally; Hur, Chinhyu
A Petri dish filled with water and stearic acid dissolved in petroleum ether upon an overhead projector can be used to introduce the topic of Avogadro's number.
Solomon, Sally; Hur, Chinhyu J. Chem. Educ. 1993, 70, 252.
Chemometrics |
Stoichiometry
Using monetary analogies to teach average atomic mass   Last, Arthur M.; Webb, Michael J.
Some strategies to overcome the frequent problem novice students have with calculating average atomic mass.
Last, Arthur M.; Webb, Michael J. J. Chem. Educ. 1993, 70, 234.
Chemometrics |
Stoichiometry
Relative atomic mass and the mole: A concrete analogy to help students understand these abstract concepts   de Sanabia, Josefina Arce
Suggestions on how to improve student understandings of the mathematical idea of "ratio" to enhance conceptual understanding of this fundamental chemistry concept.
de Sanabia, Josefina Arce J. Chem. Educ. 1993, 70, 233.
Chemometrics |
Stoichiometry
Demonstrating the conservation of matter: A trilogy of experiments   Martin, David; Russell, Randy D.; Thomas, Nicholas C.
Three related demonstrations involving calcium carbonate and hydrochloric acid explore the conservation of matter.
Martin, David; Russell, Randy D.; Thomas, Nicholas C. J. Chem. Educ. 1992, 69, 925.
Physical Properties |
Acids / Bases |
Stoichiometry |
Gases
Drawing Lewis structures: A step-by-step approach  Ahmad, Wan-Yaacob; Omar, Siraj
A simple step-by-step approach for deriving Lewis structures for students studying introductory chemistry.
Ahmad, Wan-Yaacob; Omar, Siraj J. Chem. Educ. 1992, 69, 791.
Lewis Structures |
VSEPR Theory |
Molecular Properties / Structure
Storing solar energy in calcium chloride  Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F.
Using common chemistry concepts to determine the feasibility of storing solar energy in calcium chloride hexahydrate.
Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 753.
Calorimetry / Thermochemistry |
Stoichiometry |
Chemometrics
A paper-pattern system for the construction of fullerene molecular models  Beaton, John M.
Paper cut-out models of C60, C70, C80, and C76 with Td and D2 symmetry.
Beaton, John M. J. Chem. Educ. 1992, 69, 610.
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Group Theory / Symmetry
Gravimetric-gasometric determination of zinc on galvanized nails.  Burgstahler, Albert W.
A simple acid-dissolution method for a combined gravimetric-gasometric determination of the amount of zinc coating galvanized nails through reaction with HCl.
Burgstahler, Albert W. J. Chem. Educ. 1992, 69, 575.
Gravimetric Analysis |
Qualitative Analysis |
Stoichiometry |
Electrochemistry
A method for building simple physical models: Representing the structures of nucleic acids  Benedetti, Giorgio; Morosetti, Stefano.
A low-resolution model made from inexpensive and common materials that retains the essentials structural features of a three-dimensional high-resolution structure.
Benedetti, Giorgio; Morosetti, Stefano. J. Chem. Educ. 1992, 69, 569.
Molecular Properties / Structure |
Molecular Modeling
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Representing isomeric structures: Five applications.  Thall, Edwin.
Five applications of a new method that the author calls Representing Isomeric Structures, in which arrows are used to point to unique sites on the carbon skeleton to represent functional groups.
Thall, Edwin. J. Chem. Educ. 1992, 69, 447.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Illustration of Mn and Mw in chain-growth polymerization using a simplified model: An undergraduate polymer chemistry laboratory exercise  Snyder, Donald M.
This exercise helps to attain three pedagogical objectives. Laying out the chains illustrates that a polymer is composed of a mixture of various chain lengths, the random-number assembly of the chain illustrates the statistical aspects of chain growth, the limited number of chains and chain length of the chain allows direct calculation of the number of chains and the weight averages of the chains.
Snyder, Donald M. J. Chem. Educ. 1992, 69, 422.
Physical Properties |
Molecular Properties / Structure
Gas chamber stoichiometry   Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F.
Most students know that HCN is used in gas chambers, they may not know however that HCN is produced in the burning of carpets, draperies, clothing and other textiles made of polyacrylonitrile.
Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 389.
Stoichiometry |
Gases |
Applications of Chemistry
Solutions, anyone?  McCullough, Bro. Thomas
A simple, quick, and economical experiment which gives the student intimate hands-on contact with most quantitative measurements of solutions is described.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 293.
Solutions / Solvents |
Quantitative Analysis |
Stoichiometry
Balancing a chemical equation: What does it mean?  Filgueiras, Carlos A
Students were puzzled by the idea that one chemical equation could be balanced in several different ways. This led to a fruitful discussion on how exact a science chemistry really is.
Filgueiras, Carlos A J. Chem. Educ. 1992, 69, 276.
Stoichiometry |
Oxidation / Reduction
The old Nassau demonstration: Educational and entertaining variations  Fortman, John J.
The Old Nassau reaction can be used to illustrate the effects of concentration and temperature on rates in a fun way.
Fortman, John J. J. Chem. Educ. 1992, 69, 236.
Kinetics |
Stoichiometry |
Rate Law
Molecular anthropomorphism: A creative writing exercise  Miller, Larry L.

Miller, Larry L. J. Chem. Educ. 1992, 69, 141.
Molecular Properties / Structure
Are moles really necessary?  McCullough, Bro. Thomas
Moles should not be allowed to divert ones attention from the equally valid and equally important balanced equation.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 121.
Stoichiometry
Micro-Kipp gas generators   Wilson, Byron J.
An attention-getting microexperiment to illustrate chemical stoichiometry involving several rockets made from plastic Beral pipets.
Wilson, Byron J. J. Chem. Educ. 1991, 68, A297.
Microscale Lab |
Stoichiometry |
Laboratory Equipment / Apparatus
Chem 1 concept builder (Lower, Steve with Instructional Software)  Hair, Sally R.
A review of a software package designed for tutorial and drill.
Hair, Sally R. J. Chem. Educ. 1991, 68, A19.
Acids / Bases |
Oxidation / Reduction |
Stoichiometry |
Atomic Properties / Structure
A mole mnemonic  Brown, Bernard S.
This article features a chart that provides a fun mnemonic offered to help students struggling with the concept of the mole by making ideas more concrete.
Brown, Bernard S. J. Chem. Educ. 1991, 68, 1039.
Stoichiometry
Chemical equations are actually matrix equations  Alberty, Robert A.
Chemists tend to think that chemical equations are unique to chemistry and they are not used to thinking of chemical equations as the mathematical equations they in fact are. The objective of this paper is to illustrate the mathematical significance of chemical equations.
Alberty, Robert A. J. Chem. Educ. 1991, 68, 984.
Stoichiometry |
Chemometrics
Explaining resonance - a colorful approach  Abel, Kenton B.; Hemmerlin, William M.
An analogy using color to help students understand that a resonance molecule does not shift back and forth between Lewis Structures, but is in fact a hybrid of the two structures.
Abel, Kenton B.; Hemmerlin, William M. J. Chem. Educ. 1991, 68, 834.
Resonance Theory |
Lewis Structures |
Molecular Properties / Structure
A BASIC program for computing reactant combinations from approximate elemental analysis data  Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu
129. A computer program has been developed for determining the number of moles of reactants participating in a reaction in addition to calculating the molecular formula for the analytical data.
Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu J. Chem. Educ. 1991, 68, 773.
Laboratory Computing / Interfacing |
Stoichiometry |
Quantitative Analysis
A poster exhibit on stoichiometry for National Chemistry Week  Pacer, Richard A.
An idea for a visually intriguing poster that will invite attention.
Pacer, Richard A. J. Chem. Educ. 1991, 68, 549.
Stoichiometry |
UV-Vis Spectroscopy
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
MolVib: Visualizing molecular vibrations  Huber, Daniel
A software program that features animations that aid in visualizing molecular vibrations. This program can be used appropriately in several levels of chemistry.
Huber, Daniel J. Chem. Educ. 1991, 68, 39.
Atomic Properties / Structure |
Molecular Properties / Structure
Desktop Molecular Modeller (Appleyard, John; Crabbe, James C.)  Smith, Douglas A.
Desktop Molecular Modeller is a molecular modeling, editing, and display package.
Smith, Douglas A. J. Chem. Educ. 1990, 67, A164.
Molecular Modeling |
Molecular Properties / Structure
ATOMS - Atomic Structure Display (Dowty, Eric)  Jacobson, Robert A.
The intent of this program is to provide a ready means of displaying structures of molecules, polymers and/or crystals.
Jacobson, Robert A. J. Chem. Educ. 1990, 67, A163.
Molecular Properties / Structure |
Crystals / Crystallography
An easily constructed model of twin trigonal pyramids penetrating each other  Yamana, Shukichi
A model of twin trigonal pyramids penetrating each other made from two sealed envelopes.
Yamana, Shukichi J. Chem. Educ. 1990, 67, 1029.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Molecular weight determination by boiling-point elevation of a urea solution  Thomas, Nicholas C.; Saisuwan, Patsy
Avoids the problems associated with determining the molecular weight of an unknown by measuring the freezing-point depression of the unknown in naphthalene solution.
Thomas, Nicholas C.; Saisuwan, Patsy J. Chem. Educ. 1990, 67, 971.
Molecular Properties / Structure |
Physical Properties
A model for valence shell electron-pair repulsion theory  Prall, Bruce R.
Using magnets as models to demonstrate VSEPR theory.
Prall, Bruce R. J. Chem. Educ. 1990, 67, 961.
VSEPR Theory |
Molecular Properties / Structure
Molecular shape prediction and the lone-pair electrons on the central atom  Al-Mousawi, Saleh M.
Procedures for predicting the shapes of simple molecules and ions using the total number of valence electrons they contain.
Al-Mousawi, Saleh M. J. Chem. Educ. 1990, 67, 861.
Molecular Properties / Structure
Avogadro's number, moles, and molecules  McCullough, Thomas, CSC
A simple diagram that relates Avogadro's number, moles, and number of atoms / molecules.
McCullough, Thomas, CSC J. Chem. Educ. 1990, 67, 783.
Nomenclature / Units / Symbols |
Stoichiometry
A straightforward derivation of stoichiometric mass relationships  Gorin, George
An alternative to the factor label method for solving stoichiometric mass relationship problems.
Gorin, George J. Chem. Educ. 1990, 67, 762.
Stoichiometry |
Chemometrics
Molecular models constructed in an easy way: Part 2. Models constructed by using tetrahedral units as building blocks  He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan
How a group of molecular models can be constructed from tetrahedral units made from paper ribbon.
He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan J. Chem. Educ. 1990, 67, 650.
Molecular Modeling |
Molecular Properties / Structure
Name for the basic physical quantity n, symbol for relative mass  Nelson, P. G.
Recommendations for naming the basic physical quantity n, symbol for relative mass.
Nelson, P. G. J. Chem. Educ. 1990, 67, 628.
Nomenclature / Units / Symbols |
Stoichiometry
Cotton swabs help to visualize structures  Ali, Saqib; Mazhar, M.
Using cotton swabs help to visualize atomic and molecular structures.
Ali, Saqib; Mazhar, M. J. Chem. Educ. 1990, 67, 558.
Molecular Modeling |
Molecular Properties / Structure
Molecular models constructed in an easy way: Part 1. Models of tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, and capped octahedron  He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan
An improved technique for making various molecular models using polyhedral units constructed from a strip of paper.
He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan J. Chem. Educ. 1990, 67, 556.
Molecular Modeling |
Molecular Properties / Structure
Molecular diffusion coefficients: Experimental determination and demonstration.  Fate, Gwendolyn; Lynn, David G.
This demonstration highlights the dependence of molecular transport on molar mass and temperature.
Fate, Gwendolyn; Lynn, David G. J. Chem. Educ. 1990, 67, 536.
Transport Properties |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Analysis of organic acids: A freshman laboratory experiment  Griswold, John R.; Rauner, Richard A.
In this experiment students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol.
Griswold, John R.; Rauner, Richard A. J. Chem. Educ. 1990, 67, 516.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry |
Precipitation / Solubility
Nitric oxide leftovers  Hornack, Fred M.
This example shows that a stoichiometric problem can be solved in a number of different but equally valid ways.
Hornack, Fred M. J. Chem. Educ. 1990, 67, 496.
Stoichiometry |
Applications of Chemistry
Lewis structure skills: Taxonomy and difficulty levels  Brady, Joseph A.; Milbury-Steen, John N.; Burmeister, John L.
The Office of Academic Computing and Instructional Technology at the University of Delaware committed itself to developing an intelligent tutoring system for drawing Lewis dot structures. An early prototype collected considerable data about student performance, which revealed the relative difficulty of the required skills.
Brady, Joseph A.; Milbury-Steen, John N.; Burmeister, John L. J. Chem. Educ. 1990, 67, 491.
Molecular Properties / Structure
How large is a mole?  Tannenbaum, Irving R.
This problem is designed to demonstrate to students the size of a mole.
Tannenbaum, Irving R. J. Chem. Educ. 1990, 67, 481.
Stoichiometry
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Further studies on concept learning versus problem solving  Pickering, Miles
Are there two kinds of students, some who possess an ability to do conceptual problems and some who can do mathematical problems without molecular understanding?
Pickering, Miles J. Chem. Educ. 1990, 67, 254.
Learning Theories |
Stoichiometry |
Gases
Concept learning versus problem solving: Revisited  Sawrey, Barbara A.
A student's ability to solve a numerical problem does not guarantee conceptual understanding of the molecular basis of the problem.
Sawrey, Barbara A. J. Chem. Educ. 1990, 67, 253.
Learning Theories |
Stoichiometry |
Gases
Problem solving and requisite knowledge of chemistry  Lythcott, Jean
It is possible for students to produce right answers to chemistry problems without really understanding much of the chemistry involved.
Lythcott, Jean J. Chem. Educ. 1990, 67, 248.
Stoichiometry |
Learning Theories
Copper dissolution in nitric acid   Stairs, Robert A.
Previous correspondence on the stoichiometry of the dissolution of copper in nitric acid is confused as a result of the attempt to write a single equation.
Stairs, Robert A. J. Chem. Educ. 1990, 67, 184.
Stoichiometry
Stoichiometry for copper dissolution in nitric acid: A comment   Carr, James D.
An explanation for the reason that several sets of coefficients will balance the reaction equation between copper and nitric acid.
Carr, James D. J. Chem. Educ. 1990, 67, 183.
Stoichiometry
In praise of thiosulfate  Tykodi, R. J.
The reactions of thiosulfate make impressive lecture demonstrations and worthwhile laboratory experiments.
Tykodi, R. J. J. Chem. Educ. 1990, 67, 146.
Acids / Bases |
Precipitation / Solubility |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry
A proposition about the quantity of which mole is the SI unit  Rocha-Filho, Romeu C.
In this note, after a brief review of the evolution of the meaning of the term mole and a discussion of intrinsic properties of matter, it is proposed that the quantity measured using the SI base unit mole is numerousness, an intrinsic property of samples of matter.
Rocha-Filho, Romeu C. J. Chem. Educ. 1990, 67, 139.
Stoichiometry
Hot stellar moles  Martin, John S.
To reinforce elemental concepts of chemistry, it helps to see how they work under unusual conditions.
Martin, John S. J. Chem. Educ. 1990, 67, 138.
Stoichiometry
Demonstrations for nonscience majors: Using common objects to illustrate abstract concepts  Laurita, William
Some concrete examples of common chemical phenomena designed for a class of nonscience majors.
Laurita, William J. Chem. Educ. 1990, 67, 60.
Nonmajor Courses |
Atomic Properties / Structure |
Molecular Properties / Structure
Visualization of electron clouds in atoms and molecules  Douglas, John E.
110. Visualization of the electron orbital concept continues to challenge and intrigue chemical educators. [October and November 1989 Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Douglas, John E. J. Chem. Educ. 1990, 67, 42.
Atomic Properties / Structure |
Molecular Properties / Structure
Principles of Stoichiometry (Gold, Marvin)  Montagnino, Frank
The program is primarily a tutorial supported by nonrandom generated problems which require user input.
Montagnino, Frank J. Chem. Educ. 1989, 66, A42.
Stoichiometry
Molecular models for the do-it-yourselfer  Birk, James P.; Foster, John
Instructions for making molecular models from styrofoam balls and wooden dowels.
Birk, James P.; Foster, John J. Chem. Educ. 1989, 66, 1015.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Identifying polar and nonpolar molecules  Tykodi, R. J.
A scheme based on the ideas of molecular symmetry for determining the polar / nonpolar nature of simple molecules.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1007.
Molecular Properties / Structure |
Physical Properties
Substitution of volumetric for gravimetric methods and other improvements in a new molar volume-molar mass experiment  Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S.
Improvements on an earlier procedure for the quantitative decomposition of 3% hydrogen peroxide to oxygen and water.
Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S. J. Chem. Educ. 1989, 66, 679.
Gravimetric Analysis |
Enzymes |
Stoichiometry |
Titration / Volumetric Analysis
Viewing stereo drawings  Srinivasan, A. R.; Olson, Wilma K.
Using stereo triptych representations in place of conventional stereo diagrams.
Srinivasan, A. R.; Olson, Wilma K. J. Chem. Educ. 1989, 66, 664.
Molecular Properties / Structure |
Stereochemistry
A stoichiometric journey  Molle, Brian
A story to help students overcome some of the difficulties they encounter in stoichiometry calculations.
Molle, Brian J. Chem. Educ. 1989, 66, 561.
Stoichiometry |
Chemometrics
Teaching a model for writing Lewis structures  Pardo, Juan Quilez
A general procedure for the representation of Lewis structures.
Pardo, Juan Quilez J. Chem. Educ. 1989, 66, 456.
Lewis Structures |
Molecular Properties / Structure |
Molecular Modeling
A simple qualitative technique for pattern recognition in structure-activity relationships  Roy, Glenn
Acetate Overlay Repeating Topology Assay (AORTA) provides an inexpensive way to introduce high school or college students to the ever expanding library of structure-taste relationships without the need of a computer.
Roy, Glenn J. Chem. Educ. 1989, 66, 435.
Qualitative Analysis |
Molecular Properties / Structure |
Aromatic Compounds
Overall chemical equations  Gil, Victor M. S.
An equation sum can be used safely by itself in stoichiometric and equilibrium calculations only if the intermediates produced in separate reactions are at low steady-state concentrations and if there are no other equilibria involving those species.
Gil, Victor M. S. J. Chem. Educ. 1989, 66, 324.
Stoichiometry |
Equilibrium
Ammonium hydroxide does not exist  Yoke, John
No matter how the s and three p orbitals are hybridized, nitrogen can form a maximum of only four bonds.
Yoke, John J. Chem. Educ. 1989, 66, 310.
Atomic Properties / Structure |
Molecular Properties / Structure
Moles, pennies, and nickels  Myers. Thomas R.
Students frequently have difficulty with the mole concept initially because atoms and molecules are involved and these are invisible.
Myers. Thomas R. J. Chem. Educ. 1989, 66, 249.
Stoichiometry
A question of basic chemical literacy?   Missen, Ronald W.; Smith, William R.
The ability to read and write clearly in chemical-equation terms is not as well developed as it should be. The purpose of this "Provocative Opinion" is to draw attention to this problem, and to suggest specific remedies for its solution.
Missen, Ronald W.; Smith, William R. J. Chem. Educ. 1989, 66, 217.
Stoichiometry
Teaching stoichiometry: A two cycle approach   Poole, Richard L.
It is the intent of this article to describe and illustrate a tandem approach for the teaching of stoichiometry that the author developed.
Poole, Richard L. J. Chem. Educ. 1989, 66, 57.
Stoichiometry
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Teaching stoichiometry   Figueira, Alvaro Rocha
Students have a hard time with stoichiometry because it is often presented in a manner that is divorced from content and application.
Figueira, Alvaro Rocha J. Chem. Educ. 1988, 65, 1060.
Applications of Chemistry |
Stoichiometry
Teaching students to use algorithms for solving generic and harder problems in general chemistry  Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L.
This paper describes teaching strategies that help students improve their problem-solving skills.
Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L. J. Chem. Educ. 1988, 65, 987.
Stoichiometry |
Chemometrics
Determination of the universal gas constant  Lebman, Thomas A.; Harms, Gwen
An experiment for the calculation of R using R-PV/nT.
Lebman, Thomas A.; Harms, Gwen J. Chem. Educ. 1988, 65, 811.
Gases |
Stoichiometry
Stoichiometry to the rescue (a calculation challenge)   Ramette, Richard W.
Presentation of a question that would be suitable for a take-home exam or a problem set in a general or analytical chemistry course.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 800.
Amines / Ammonium Compounds |
Gases |
Stoichiometry
A simple quantitative synthesis: Sodium chloride from sodium carbonate  Gold, Marvin
A stoichiometry experiment that fulfills the following: satisfactory precision, no need for a fume hood, is interesting and instructive, and the products can be discarded in the sink.
Gold, Marvin J. Chem. Educ. 1988, 65, 731.
Stoichiometry
A simple rhyme for a simple formula  Thompson, Joel S.
A poem that helps students remember how to solve empirical formulas.
Thompson, Joel S. J. Chem. Educ. 1988, 65, 704.
Stoichiometry
Oxalate blockage of calcium and iron: A student learning activity  Walker, Noojin
The topics of iron deficiency anemia and osteoporosis entice student attention and can be used to construct meaningful learning activities about percent composition, mole concept, selective precipitation, and limiting factors.
Walker, Noojin J. Chem. Educ. 1988, 65, 533.
Medicinal Chemistry |
Stoichiometry |
Plant Chemistry |
Bioanalytical Chemistry |
Bioinorganic Chemistry
How to use crystallographic information in teaching first-year chemistry   Bevan, D. J. M.; Taylor, M. R.; Rossi, M.
These authors describe material appropriate for inclusion in a first-year chemistry lecture course. This article stresses how basic chemical principles have been derived from crystallographic results. A potential instructor need not have crystallographic training to incorporate these lectures.
Bevan, D. J. M.; Taylor, M. R.; Rossi, M. J. Chem. Educ. 1988, 65, 477.
X-ray Crystallography |
Crystals / Crystallography |
Molecular Properties / Structure
A colorful demonstration to simulate orbital hybridization  Emerson, David W.
A simple, colorful demonstration involving nothing more than several beakers of colored water can speed up student comprehension of hybrid orbitals at the introductory level.
Emerson, David W. J. Chem. Educ. 1988, 65, 454.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
An alternative to using the PV = nRT equation   Desmarais, George
This author shares his application of the factor-label method to solving gas problems which involves using the ideal gas constant as the starting point in the relationship.
Desmarais, George J. Chem. Educ. 1988, 65, 392.
Gases |
Stoichiometry |
Chemometrics
The mole concept is useful   Ramette, Richard W.
This is letter adds to the debate regarding the usefulness of the mole concept in introductory chemistry courses.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 376.
Stoichiometry
Avogadro's number: A perverse view  Lehman, Thomas A.
A way to think of Avogadro's number: take anything and double it 79 times.
Lehman, Thomas A. J. Chem. Educ. 1988, 65, 282.
Chemometrics |
Stoichiometry
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
A multi-topic problem for general chemistry   Burness, James H.
A 'marathon' problem which requires specific knowledge in several areas while requiring that the student recognize how these areas are related.
Burness, James H. J. Chem. Educ. 1988, 65, 145.
Stoichiometry |
Transport Properties |
Electrolytic / Galvanic Cells / Potentials |
Crystals / Crystallography
The Molecular Animator (Howbert, J. Jeffrey)  Smith, Alan G.
Allows molecules to be viewed in three-dimensions.
Smith, Alan G. J. Chem. Educ. 1987, 64, A286.
Molecular Modeling |
Molecular Properties / Structure
Reaction stoichiometry and suitable "coordinate systems"  Tykodi, R. J.
Methods for dealing with problems involving reactions stoichiometry: unitize and scale up, factor-label procedure, de Donder ratios, and titration relations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 958.
Stoichiometry |
Titration / Volumetric Analysis |
Chemometrics
Dozen, gross, nerds, moles, and sons  Banks, Alton J.
Technique for demonstrating the mole concept using candies.
Banks, Alton J. J. Chem. Educ. 1987, 64, 956.
Stoichiometry
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
A convenient demonstration of combustion and explosion  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
Demonstrating the correct molar ratio between propane and oxygen.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1987, 64, 894.
Stoichiometry |
Alkanes / Cycloalkanes |
Oxidation / Reduction
The 55 limit: A useful rule of thumb  Ruekberg, Benjamin P.
There are about 55 moles in a liter of water.
Ruekberg, Benjamin P. J. Chem. Educ. 1987, 64, 892.
Stoichiometry
Hard ways and easy ways  Schwartz, Lowell M.
Two examples of common general chemistry calculations and different approaches ("hard" and "easy") to solving them.
Schwartz, Lowell M. J. Chem. Educ. 1987, 64, 698.
Stoichiometry |
Chemometrics
Werner and Jorgensen: Presenting history with a computer  Whisnant, David M.
85. A computer simulation designed to illustrate the process of science - how theories develop, how change occurs, and how scientists behave.
Whisnant, David M. J. Chem. Educ. 1987, 64, 688.
Molecular Properties / Structure |
Coordination Compounds
An aqueous problem with an interesting solution  Thomas, Nicholas C.
Flow diagram outlining the steps to calculating the number of water molecules in one drop of water and the length of all these molecules stretched end to end.
Thomas, Nicholas C. J. Chem. Educ. 1987, 64, 611.
Water / Water Chemistry |
Stoichiometry
Concept learning versus problem solving: Is there a difference?  Nurrenbern, Susan C.; Pickering, Miles
Chemistry teachers have assumed implicitly that being able to solve problems is equivalent to understanding molecular concepts; this study examines whether this widespread assumption is justified.
Nurrenbern, Susan C.; Pickering, Miles J. Chem. Educ. 1987, 64, 508.
Stoichiometry
Solving limiting reagent problems (the author replies)  Kalantar, A. H.
Thanks for clarification and suggestion.
Kalantar, A. H. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
Solving limiting reagent problems  Skovlin, Dean O.
Uncertainty in the meaning of the term X.
Skovlin, Dean O. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
A simple, safe, and inexpensive laboratory exercise in the guided inquiry format  de Moura, John M.; Marcello, Joseph A.
Introductory laboratory exercise that illustrates stoichiometry, limiting reagents, and proportionality by reacting calcium chloride and sodium hydroxide.
de Moura, John M.; Marcello, Joseph A. J. Chem. Educ. 1987, 64, 452.
Stoichiometry |
Gravimetric Analysis |
Reactions
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
Lewis structures for compounds with expanded octets  Malerich, Charles J.
A simple method for recognizing expanded octets given only the molecular formula of the compound.
Malerich, Charles J. J. Chem. Educ. 1987, 64, 403.
Lewis Structures |
Molecular Properties / Structure
Which will evaporate first?  Stenmark, Allan
The evaporation rate of various short-chain alcohols and diethyl ether are compared.
Stenmark, Allan J. Chem. Educ. 1987, 64, 351.
Physical Properties |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure |
Alcohols |
Ethers
Mole fraction revisited  Mancott, A.
This problem requires the use of algebraic reasoning to derive and solve a fraction linear equation based on the concept of moles and conservation of moles.
Mancott, A. J. Chem. Educ. 1987, 64, 320.
Stoichiometry |
Chemometrics
Election results and reactions yields  Rocha-Filho, Romeu C.
Reactions do not always proceed to products as expected from the stoichiometry; sometimes only a fraction of the reagents undergo reaction, while at other times, side products are formed due to competing reactions.
Rocha-Filho, Romeu C. J. Chem. Educ. 1987, 64, 248.
Stoichiometry
A new method to balance chemical equations  Garcia, Arcesio
A simple method, applicable to any kind of reaction, that does not require the knowledge of oxidation numbers.
Garcia, Arcesio J. Chem. Educ. 1987, 64, 247.
Stoichiometry |
Oxidation State |
Reactions
Molar and equivalent amounts and concentrations  Kohman, Truman P.
What are the quantities of which molar and normal are units?
Kohman, Truman P. J. Chem. Educ. 1987, 64, 246.
Stoichiometry |
Nomenclature / Units / Symbols
Hands-on versus computer simulation methods in chemistry  Bourque, Donald R.; Carlson, Gaylen R.
Procedure, results, conclusions, and implications of a study that compares the effectiveness of a hands-on approach versus computer simulations in the same chemistry topics.
Bourque, Donald R.; Carlson, Gaylen R. J. Chem. Educ. 1987, 64, 232.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry
Methane pistol  Skinner, James F.
This simple demonstration leaves a lasting impression of the importance of intermolecular forces and hydrogen bonding.
Skinner, James F. J. Chem. Educ. 1987, 64, 171.
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
ChemPlate and Hopkins, a template and font for drawing molecular structures with the Macintosh computer  Hwu, Jih Ru.; Wetzel, John M.; Robl, Jeffrey A.
80. Features, use, and results of ChemPlate and Hopkins, software for drawing molecular structures with a Macintosh computer.
Hwu, Jih Ru.; Wetzel, John M.; Robl, Jeffrey A. J. Chem. Educ. 1987, 64, 135.
Molecular Properties / Structure
A nuts and bolts approach to explain limiting reagents  Blankenship, Craig
Using nuts and bolts to simulate the stoichiometry of a chemical reaction and the concept of limiting and excess reactants.
Blankenship, Craig J. Chem. Educ. 1987, 64, 134.
Stoichiometry |
Reactions
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
Stretched elastomers: A case of decreasing length upon heating  Clough, S. B.
Demonstrating and explaining the decrease in length of a heated rubber band.
Clough, S. B. J. Chem. Educ. 1987, 64, 42.
Thermodynamics |
Molecular Properties / Structure
The chemistry tutor (Rinehart, F.P.)  Watkins, Stanley R.; Krugh, William D.
Two reviews of a two-disk package that is designed to help students master the essential skills of equation balancing, stoichiometric,and limiting reagents calculations.
Watkins, Stanley R.; Krugh, William D. J. Chem. Educ. 1986, 63, A206.
Stoichiometry
Chemistry: Stoichiometry and Chemistry: Acids and Bases ( Frazin, J. and partners)  Bendall, Victor I.; Roe, Robert, Jr.
Two reviews of a software package that contains drill and practice programs that are suitable for beginning students of chemistry.
Bendall, Victor I.; Roe, Robert, Jr. J. Chem. Educ. 1986, 63, A204.
Stoichiometry |
Acids / Bases
A BASIC program for the calculation of elemental compositions from structural formulas  Smith, Roger A.; Spencer, Robin W.
78. Bits and pieces, 32. The authors have written a computer program in BASIC that will calculate the molecular weights and elemental compositions from a structural formula.
Smith, Roger A.; Spencer, Robin W. J. Chem. Educ. 1986, 63, 1076.
Molecular Properties / Structure |
Stereochemistry
FACES (features associated with chemical entities): II. Hydrocarbon isomers and their graphs  Larsen, Russell D.
The FACES program is modified in order to be able to display the structural features of compounds.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 1067.
Molecular Properties / Structure
S'mores: A demonstration of stoichiometric relationships   Cain, Linda
S'mores are a good analogy for students struggling to learn stoichiometry.
Cain, Linda J. Chem. Educ. 1986, 63, 1048.
Stoichiometry
Teaching stoichiometry   Steiner, Richard P.
This author targets some of the reasons behind why it is so difficult for beginning chemistry students to understand stoichiometry. He reveals that if taught correctly and effectively, a 7-year old can grasp the concepts of stoichiometry.
Steiner, Richard P. J. Chem. Educ. 1986, 63, 1048.
Stoichiometry
A simpler method of chemical reaction balancing  Harjadi, W.
The author adds to some other approaches that appeared in this Journal that dealt with balancing a rather large chemical equation.
Harjadi, W. J. Chem. Educ. 1986, 63, 978.
Stoichiometry
Gas cans and gas cubes: Visualizing Avogadro's Law   Bouma, J.
The author shares a strategy for making gas laws "visible" for students.
Bouma, J. J. Chem. Educ. 1986, 63, 586.
Gases |
Stoichiometry
What can we do about Sue: A case study of competence  Herron, J. Dudley; Greenbowe, Thomas J.
A case study of a "successful" student who is representative of other successful students that are not prepared to solve novel problems.
Herron, J. Dudley; Greenbowe, Thomas J. J. Chem. Educ. 1986, 63, 528.
Stoichiometry |
Learning Theories
A flowchart for dimensional analysis  Graham, D. M.
A flowchart to help students organize their thoughts when solving conversion problems.
Graham, D. M. J. Chem. Educ. 1986, 63, 527.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Teaching the concept of resonance with transparent overlays  Richardson, W. S.
The overlap method can be useful in the development of the concept of a partial charge on the atoms of an ion.
Richardson, W. S. J. Chem. Educ. 1986, 63, 518.
Resonance Theory |
Molecular Properties / Structure
Name that compound   Mancott, A.
These two problems require the use of algebraic reasoning and the application of the concepts of moles, atomic weights, and formulas-these are important facets of the general chemistry course.
Mancott, A. J. Chem. Educ. 1986, 63, 413.
Stoichiometry
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Unit basis a neglected problem-solving technique   Beichl, George J.
A technique that will prevent students from using ineffective problem-solving techniques such as dimensional analysis.
Beichl, George J. J. Chem. Educ. 1986, 63, 146.
Chemometrics |
Stoichiometry
Analogies for Avogadro's number  Poskozim, Paul S.; Wazorick, James W.; Tiempetpaisal, Permsook; Poskozim, Joyce Albin
To understand the enormity of Avogadro's number, the authors provide analogies to: small objects, counting, people, water, and money.
Poskozim, Paul S.; Wazorick, James W.; Tiempetpaisal, Permsook; Poskozim, Joyce Albin J. Chem. Educ. 1986, 63, 125.
Stoichiometry
Balancing chemical equations with a Commodore 64  Loercher, William
67. Bits and pieces, 27. Too many students seem never fully develop the skill of balancing equations. This program helps facilitate development.
Loercher, William J. Chem. Educ. 1986, 63, 74.
Stoichiometry
On writing equations  Campbell, J.A.
The author presents a very direct approach to writing complicated equations without using a matrix approach.
Campbell, J.A. J. Chem. Educ. 1986, 63, 63.
Stoichiometry |
Chemometrics
Molecular size and Raoult's Law  Kovac, Jeffrey
An additional cause for deviations from Raoult's Law that is rarely, if ever, mentioned in freshman chemistry texts.
Kovac, Jeffrey J. Chem. Educ. 1985, 62, 1090.
Molecular Properties / Structure |
Physical Properties |
Solutions / Solvents |
Gases
Mathematics in the chemistry classroom. Part 2. Elementary entities play their part  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
One of the problems that learners have to overcome when doing stoichiometry calculations is to learn how statements about elementary entities given by formulas and equations are related to statements about portions of substances as measured in the macroscopic world.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 1021.
Chemometrics |
Stoichiometry
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
Mathematics in the chemistry classroom. Part 1. The special nature of quantity equations  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
Differences between operation on quantities and operation on numbers and how chemical quantities should be described mathematically.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 839.
Chemometrics |
Stoichiometry |
Nomenclature / Units / Symbols
Determination of molecular dimensions using monolayers: Another approach  McNaught, Ian J.; Peckham, Gavin D.
A preliminary activity to help students understand the concept and calculations of the determination of molecular dimensions using monolayers.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1985, 62, 795.
Molecular Properties / Structure |
Chemometrics
New stoichiometry for copper dissolution in nitric acid  El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A.
NO2 does not appear to be a primary product in the oxidation of copper metal by nitric acid.
El-Cheikh, F. M.; Khalil, S. A.; El-Manguch, M. A.; Omar, Hadi A. J. Chem. Educ. 1985, 62, 761.
Reactions |
Stoichiometry |
Oxidation / Reduction
An addendum to: A simultaneous analysis problem for advanced general chemistry laboratories  Gallaher, T. N.; Moody, F. P.; Burkholder, T. R.; Leary, J. J.
A modification made to the determination of the empirical formula of MgO by burning magnesium metal in air.
Gallaher, T. N.; Moody, F. P.; Burkholder, T. R.; Leary, J. J. J. Chem. Educ. 1985, 62, 626.
Stoichiometry
A pictorial framework to aid conceptualization of reaction stoichiometry  Cameron, David L.
Approach to teaching stoichiometry that promotes students' understanding of a reaction as a coherent process.
Cameron, David L. J. Chem. Educ. 1985, 62, 510.
Stoichiometry |
Reactions
How should equation balancing be taught?  Porter, Spencer K.
Suggestions for balancing chemical equations.
Porter, Spencer K. J. Chem. Educ. 1985, 62, 507.
Stoichiometry
Why teach the gas laws?  Davenport, Derek A.
Justification for teaching the gas laws.
Davenport, Derek A. J. Chem. Educ. 1985, 62, 505.
Gases |
Stoichiometry
Measuring the atomic or molecular mass of a gas with a tire gauge and a butane lighter fluid can  Bodner, George M.; Magginnis, Lenard J.
Also demonstrating the mass of air and the dependence of the pressure of a gas on the mass of the sample.
Bodner, George M.; Magginnis, Lenard J. J. Chem. Educ. 1985, 62, 434.
Atomic Properties / Structure |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Gases
Using a conversion matrix to simplify stoichiometric calculations from balanced equations  Berger, Selman A.
Two examples of using a conversion matrix to simplify stoichiometric calculations from balanced equations.
Berger, Selman A. J. Chem. Educ. 1985, 62, 396.
Chemometrics |
Stoichiometry
Problem-solving skills in chemistry made easier  Fast, Kenneth V.
Step-by-step format for performing common calculations in chemistry.
Fast, Kenneth V. J. Chem. Educ. 1985, 62, 396.
Stoichiometry |
Chemometrics
Molecular geometry  Desseyn, H. O.; Herman, M. A.; Mullens, J.
We should teach our students that many factors influence molecular geometry and that the relative importance of these factors is complicated; considers the VSEPR, Mulliken-Walsh, and electrostatic force theories.
Desseyn, H. O.; Herman, M. A.; Mullens, J. J. Chem. Educ. 1985, 62, 220.
Molecular Properties / Structure |
VSEPR Theory
Limiting reagent problems made simple for students  Kalantar, A. H.
Method for determining the limiting reagent among three or more reactants.
Kalantar, A. H. J. Chem. Educ. 1985, 62, 106.
Stoichiometry |
Chemometrics
Five Avogadro's number problems  Todd, David
Five problems involving Avogadro's number.
Todd, David J. Chem. Educ. 1985, 62, 76.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
Limiting and excess reagents, theoretical yield  Silversmith, Ernest F.
Comparing the construction of bicycles with limiting and excess reactants.
Silversmith, Ernest F. J. Chem. Educ. 1985, 62, 61.
Stoichiometry
Gram formula weights and fruit salad  Felty, Wayne L.
Effective analogy and explanation of gram formula weights.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 61.
Stoichiometry |
Atomic Properties / Structure |
Molecular Properties / Structure
The mole: Questioning format can make a difference  Lazonby, John N.; Morris, Jane E.; Waddington, David J.
Study of 2,695 high school students that found that it is the piecing together of the individual steps involved in mole calculations that presents the main difficulty for students.
Lazonby, John N.; Morris, Jane E.; Waddington, David J. J. Chem. Educ. 1985, 62, 60.
Nomenclature / Units / Symbols |
Stoichiometry
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
MOLEC, Review II (Owen, G. Scott; Currie, James O.)  Hull, Leslie
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Hull, Leslie J. Chem. Educ. 1984, 61, A246.
Molecular Properties / Structure
MOLEC, Review I (Owen, G. Scott; Currie, James O.)  Coleman, William F.
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Coleman, William F. J. Chem. Educ. 1984, 61, A245.
Molecular Properties / Structure
Chain Structure and Conformation of Macromolecules (Bovey, Frank A.; Jelinski, Lynn W.)  Carraher, Charles E., Jr.
The first seven chapters are based on lectures delivered in 1981 at MIT.
Carraher, Charles E., Jr. J. Chem. Educ. 1984, 61, A209.
Molecular Properties / Structure |
Stereochemistry |
Conformational Analysis |
NMR Spectroscopy
A simple polarimeter and experiments utilizing an overhead projector  Dorn, H. C.; Bell, H.; Birkett, T.
Design and application of an overhead polarimeter that relies on small amounts of chiral solution and provides a "dual beam" light source for direct comparison of plane-polarized light emerging from chiral and achiral media.
Dorn, H. C.; Bell, H.; Birkett, T. J. Chem. Educ. 1984, 61, 1106.
Laboratory Equipment / Apparatus |
Chirality / Optical Activity |
Stereochemistry |
Molecular Properties / Structure
The unit gram/mole and its use in the description of molar mass  Gorin, G.
How is molar mass related to the quantity called "molecular (or atomic) weight"?
Gorin, G. J. Chem. Educ. 1984, 61, 1045.
Nomenclature / Units / Symbols |
Stoichiometry
A recipe for teaching stoichiometry  Umland, Jean B.
Comparing stoichiometry calculations to the methods required for fractioning or multiplying a baking recipe.
Umland, Jean B. J. Chem. Educ. 1984, 61, 1036.
Stoichiometry
The effect of polarity on solubility  Nordstrom, Brian H.
Students observe that iodine dissolves readily in 1,1,1-trichloroethane but not water.
Nordstrom, Brian H. J. Chem. Educ. 1984, 61, 1009.
Precipitation / Solubility |
Solutions / Solvents |
Molecular Properties / Structure |
Water / Water Chemistry
A useful model for the "lock and key" analogy  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
A model that nicely illustrates this principle is the "SOMA" puzzle cube.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1984, 61, 967.
Molecular Modeling |
Molecular Properties / Structure |
Molecular Recognition |
Enzymes
Accurate molecular dimensions from stearic acid monolayers  Lane, Charles A.; Burton, D. Edward; Crabb, Charles C.
Improvements to the fatty acid monolayer experiment to determine molecular dimensions.
Lane, Charles A.; Burton, D. Edward; Crabb, Charles C. J. Chem. Educ. 1984, 61, 815.
Molecular Properties / Structure |
Fatty Acids
Use of Plexiglas planes with molecular model kits  Fulkrod, John E.
Using Plexiglass to serve as a plane of reference in molecular models of organic molecules.
Fulkrod, John E. J. Chem. Educ. 1984, 61, 773.
Molecular Modeling |
Molecular Properties / Structure
Teaching VSEPR theory  McKenna, Anna G.; McKenna, Jack F.
Suggestions for teaching VSEPR theory for coordination numbers 2-6.
McKenna, Anna G.; McKenna, Jack F. J. Chem. Educ. 1984, 61, 771.
VSEPR Theory |
Molecular Properties / Structure
[Brand] rand the name with the linkage of the same  Garrett, James M.
Tool for helping to remember the configuration of the glucosidic linkages in maltose and cellobiose.
Garrett, James M. J. Chem. Educ. 1984, 61, 665.
Carbohydrates |
Molecular Properties / Structure
Analogies that indicate the size of atoms and molecules and the magnitude of Avogardo's number  Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T.
Three analogies to help students imagine the sizes of atoms, molecules, and Avogadro's number.
Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T. J. Chem. Educ. 1984, 61, 591.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry
Coffee, coins, and limiting reagents  McMinn, Dennis
Analogy regarding stoichiometry and limiting reagents.
McMinn, Dennis J. Chem. Educ. 1984, 61, 591.
Stoichiometry
Simplest formula for copper iodide  Suchow, Lawrence
We should no longer try to "prove" the Law of Definite Proportions with non-molecular inorganic solids, especially those that contain elements which exhibit multiple oxidation states.
Suchow, Lawrence J. Chem. Educ. 1984, 61, 566.
Oxidation State |
Metals |
Stoichiometry
R/S: Apple stereochemistry program  Barone, Rene; Meyer, Roger; Arbelot, Michel
51. Bits and pieces, 20. Computer program for helping students to learn R/S conventions.
Barone, Rene; Meyer, Roger; Arbelot, Michel J. Chem. Educ. 1984, 61, 524.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Enrichment / Review Materials
Note to: method for balancing redox reactions containing hydroxyl ions  Stark, Franz M.
A much simpler way of balancing the equations presented.
Stark, Franz M. J. Chem. Educ. 1984, 61, 476.
Stoichiometry |
Oxidation / Reduction
What a smell!  Perkins, Robert
How many molecules of vanillin are necessary in order to smell it anywhere within the Goodyear Airship hangar?
Perkins, Robert J. Chem. Educ. 1984, 61, 384.
Gases |
Stoichiometry
The "6N+2 Rule" for writing Lewis octet structures  Zandler, Melvin E.; Talaty, Erach R.
Applying the "6N+2 Rule" to writing Lewis octet structures.
Zandler, Melvin E.; Talaty, Erach R. J. Chem. Educ. 1984, 61, 124.
Lewis Structures |
Molecular Properties / Structure
Another procedure for writing Lewis structures  Clark, Thomas J.
A simple procedure for writing a correct Lewis structure for a molecule or ion containing only s- and p-block elements.
Clark, Thomas J. J. Chem. Educ. 1984, 61, 100.
Lewis Structures |
Molecular Properties / Structure
The density and apparent molecular weight of air  Harris, Arlo D.
Simple procedure for determining the density and apparent molecular weight of air.
Harris, Arlo D. J. Chem. Educ. 1984, 61, 74.
Atmospheric Chemistry |
Gases |
Molecular Properties / Structure |
Physical Properties
Teaching factor-label method without sleight of hand  Garrett, James M.
As an aid in teaching the factor-label method, the author has developed a rather simple card game involving the matching of symbols and colors.
Garrett, James M. J. Chem. Educ. 1983, 60, 962.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Determination of ammonia in household cleaners: an instrumental analysis experiment  Graham, Richard C.; DePew, Steven
This popular experiment describes a procedure that is easily modified to determine quantitatively such analytes as ammonia in solution.
Graham, Richard C.; DePew, Steven J. Chem. Educ. 1983, 60, 765.
Quantitative Analysis |
Titration / Volumetric Analysis |
Acids / Bases |
pH |
Consumer Chemistry |
Stoichiometry |
Solutions / Solvents
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
A simultaneous analysis problem for advanced general chemistry laboratories  Leary, James J.; Gallaher, T. N.
The goal of this experiment is to determine the percentage Mg3N2 and the percentage Mg formed when magnesium metal is ignited in a crucible using a Bunsen burner.
Leary, James J.; Gallaher, T. N. J. Chem. Educ. 1983, 60, 673.
Quantitative Analysis |
Stoichiometry
A visual analogy for metallic deposition  Hartwig, Dcio R.; Filho, Romeu C. Rocha
Metallic deposition stoichiometry problems are difficult for students to visualize. A clever visual tool is explained in this article.
Hartwig, Dcio R.; Filho, Romeu C. Rocha J. Chem. Educ. 1983, 60, 591.
Metals |
Electrochemistry |
Stoichiometry
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
The liquid silver parade   Perkins, Robert
The activity described in this note is useful in illustrating how small atoms are to students.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Stoichiometry |
Chemometrics
Absolute configuration in a Fischer projection: a simple approach  Bhushan, Ravi; Bhattacharjee, G.
First year undergraduates find it hard to assign absolute configuration to a chiral center when the lowest priority group is either to the left or right of the horizontal line.
Bhushan, Ravi; Bhattacharjee, G. J. Chem. Educ. 1983, 60, 191.
Chirality / Optical Activity |
Molecular Properties / Structure |
Molecular Modeling
Simplest formula of copper iodide: a stoichiometry experiment  MacDonald, D. J.
It is difficult to find a chemistry experiment that convincingly demonstrates stoichiometric relationships. The experiment in this article is elegant and pedagogically effective.
MacDonald, D. J. J. Chem. Educ. 1983, 60, 147.
Stoichiometry
Balancing complex chemical equations using a hand-held calculator   Alberty, Robert A.
37. Bits and pieces, 14. This article is primarily concerned the question: If certain specified chemical species are involved in a reaction, what are the stoichiometric coefficients?
Alberty, Robert A. J. Chem. Educ. 1983, 60, 102.
Stoichiometry
Drawing of ball and stick type molecular models with hidden line elimination   Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake
37. Bits and pieces, 14. These authors have developed a simple computer program for drawing molecular structures by microcomputers.
Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake J. Chem. Educ. 1983, 60, 98.
Molecular Mechanics / Dynamics |
Molecular Properties / Structure
A computer program for representing molecules as 3-D models   Kalcher, K.
37. Bits and pieces, 14. A computer program is described here that was developed to give students an adequate impression of sterical configurations by drawing molecules where spheres represent the atoms and connection lines between the bonds.
Kalcher, K. J. Chem. Educ. 1983, 60, 96.
Molecular Properties / Structure
A practical application of molality  Penrose, John F.
The stoichiometry problem related in this note captures student interest.
Penrose, John F. J. Chem. Educ. 1983, 60, 63.
Solutions / Solvents |
Stoichiometry
Investigation of secondary school students' understanding of the mole concept in Italy  Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori
Results of a small-scale investigation to ascertain the knowledge of chemistry among students entering first-year university courses in science.
Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori J. Chem. Educ. 1982, 59, 852.
Stoichiometry
A fluorescence lecture demonstration  Bozzelli, Joseph W.
A fluorescence demonstration can be related to several aspects of molecular theory and quantized energy levels; suggests eight different fluorescent dye solutions.
Bozzelli, Joseph W. J. Chem. Educ. 1982, 59, 787.
Photochemistry |
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry |
Dyes / Pigments
The estimation of Avogadro's number using cetyl alcohol as the monolayer  Feinstein, H. I.; Sisson, Robert F., III
Results and calculations using cetyl alcohol as the monolayer in estimating Avogadro's number.
Feinstein, H. I.; Sisson, Robert F., III J. Chem. Educ. 1982, 59, 751.
Stoichiometry |
Molecular Properties / Structure |
Chemometrics
Chemical equation balancing: A general method which is quick, simple, and has unexpected applications  Blakley, G. R.
Using matrices to solve mathematical equations and balance chemical equations. From "The Goals of General Chemistry - A Symposium."
Blakley, G. R. J. Chem. Educ. 1982, 59, 728.
Stoichiometry |
Chemometrics
General chemistry for engineers  Kybett, B. D.
A logical way introduce polymers into the general chemistry course. From "The Goals of General Chemistry - A Symposium."
Kybett, B. D. J. Chem. Educ. 1982, 59, 724.
Physical Properties |
Molecular Properties / Structure
Some tungsten oxidation-reduction chemistry: A paint pot titration  Pickering, Miles; Monts, David L.
Mild reducing agents reduce WO3 to a nonstoichiometric blue oxide, "mineral blue," whose approximate formula is WO2.2-3.0.
Pickering, Miles; Monts, David L. J. Chem. Educ. 1982, 59, 693.
Titration / Volumetric Analysis |
Oxidation / Reduction |
Stoichiometry
On the crosslinked structure of rubber: Classroom demonstration or experiment: A quantitative determination by swelling  Sperling, L. H.; Michael, T. C.
Uses a rubber band to examine the crosslinked behavior of rubber.
Sperling, L. H.; Michael, T. C. J. Chem. Educ. 1982, 59, 651.
Applications of Chemistry |
Polymerization |
Molecular Properties / Structure
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
Balancing chemical equations with a calculator  Kennedy, John H.
A straightforward mechanical approach that leads quickly to a properly balanced equation.
Kennedy, John H. J. Chem. Educ. 1982, 59, 523.
Stoichiometry
A new look at surface films  Hanson, Allen L.
Improvements to the monolayer film experiment commonly used to determine the size of a molecule.
Hanson, Allen L. J. Chem. Educ. 1982, 59, 379.
Surface Science |
Molecular Properties / Structure
A different approach to hybridization and geometric structure of simple molecules and ions  Eberlin, Diana; Monroe, Manus
A step-by-step teaching technique that directly correlates hydridization with structure.
Eberlin, Diana; Monroe, Manus J. Chem. Educ. 1982, 59, 285.
Molecular Properties / Structure
An alternative introduction to the mole fraction  White, Alvan D.
Comparing fractions of males and females in a population to mole fractions.
White, Alvan D. J. Chem. Educ. 1982, 59, 153.
Stoichiometry
The copper(I) iodide law of definite proportions revisited  Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D.
Improvement to the cited experiment.
Catsikis, B. D.; Goerner, J. W.; Goodrich, J. D. J. Chem. Educ. 1982, 59, 148.
Stoichiometry
Graphic display of molecular structures from crystallographic data  Keat, Rodney
25. Bits and pieces, 9. PROJECT-X is a program that translates X-ray crystallographic data into orthographic projections.
Keat, Rodney J. Chem. Educ. 1982, 59, 128.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
Chemical wastes and the law of conservation of matter   Hill, John W.
This note discusses the conservation of matter as a starting point for understanding the problems of chemical waste.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Stoichiometry |
Toxicology
Infrared spectrum of methanol: A first-year student experiment  Boehm, Garth; Dwyer, Mark
This paper describes an experiment in infrared spectroscopy designed to complement an alternative course, and the audiovisual system which supports this experiment.
Boehm, Garth; Dwyer, Mark J. Chem. Educ. 1981, 58, 809.
MO Theory |
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure
Balancing complex redox equations by inspection   Kolb, Doris
A step-by-step walk through of the inspection process for balancing equations.
Kolb, Doris J. Chem. Educ. 1981, 58, 642.
Stoichiometry |
Chemometrics
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
Setting high standards   Feinstein, H. I.
A question is contributed that will scaffold student learning of quantitative analysis skills.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 567.
Quantitative Analysis |
Stoichiometry
Protein denaturation: A physical chemistry project lab  Pickering, Miles; Crabtree, Robert H.
This experiment links physical chemistry with biology and can be done with in advanced freshman course.
Pickering, Miles; Crabtree, Robert H. J. Chem. Educ. 1981, 58, 513.
Proteins / Peptides |
Biophysical Chemistry |
Molecular Properties / Structure
How big is Avogadro's number (or how small are atoms, molecules and ions)  Fulkrod, John E.
Calculating the volume occupied by Avogadro's number of drops of water helps students understand the magnitude of this quantity while giving them practice at using scientific notation and the metric system.
Fulkrod, John E. J. Chem. Educ. 1981, 58, 508.
Nomenclature / Units / Symbols |
Chemometrics |
Stoichiometry
Bad booze   O'Connor, Rod
One of the brain tinglers: What is the maximum volume of 95% ethanol that a 120lb student could consume to reach a potentially lethal dosage of alcohol? This tingler also helps students understand why it is important to have denatured alcohol in the lab.
O'Connor, Rod J. Chem. Educ. 1981, 58, 502.
Alcohols |
Toxicology |
Stoichiometry |
Applications of Chemistry
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
An experimental introduction to stoichiometry   Webb, Michael J.
A procedure for an experiment with the purpose: To show via experiment that the quantities of materials used in chemical reactions are related to balanced chemical equations.
Webb, Michael J. J. Chem. Educ. 1981, 58, 192.
Stoichiometry |
Reactions
Tetrahedral bonding in CH4. An alternative explanation  Rees, Thomas
Using the VSEPR theory to conduct a thought experiment regarding the bonding and structure of methane.
Rees, Thomas J. Chem. Educ. 1980, 57, 899.
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Empirical formulas - A ratio problem  Knox, Kerro
A problem involving an analogy between ratios of boys to girls given their average weights and percentage composition of the class by weight.
Knox, Kerro J. Chem. Educ. 1980, 57, 879.
Chemometrics |
Molecular Properties / Structure
A novel method of representing orbitals in three dimensions  Chenier, Philip J.
Suggested convention for drawing orbitals in three dimensions.
Chenier, Philip J. J. Chem. Educ. 1980, 57, 788.
Molecular Properties / Structure
An approximate determination of Avogadro's constant  Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel
An experiment to determine a value for Avogadro's number by determining the relationship between the number of electrons flowing through an acidified solution of water and the number of moles of electrons which reduce hydrogen ions to produce hydrogen gas.
Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel J. Chem. Educ. 1980, 57, 735.
Stoichiometry |
Electrochemistry |
Aqueous Solution Chemistry
Mole fraction analogies  DeLorenzo, Ron
An analogy to help students solve concentration problems.
DeLorenzo, Ron J. Chem. Educ. 1980, 57, 733.
Stoichiometry |
Chemometrics |
Solutions / Solvents
Stoichiometry of redox reactions  Parker, Gordon A.
A question involving an amplification reaction sequence and the balancing of oxidation-reduction reactions.
Parker, Gordon A. J. Chem. Educ. 1980, 57, 721.
Stoichiometry |
Oxidation / Reduction
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Bicarbonate in Alka-Seltzer: A general chemistry experiment  Peck, Larry; Irgolic, Kurt; O'Connor, Rod
Determining the percentage bicarbonate ion by mass in Alka-Seltzer.
Peck, Larry; Irgolic, Kurt; O'Connor, Rod J. Chem. Educ. 1980, 57, 517.
Quantitative Analysis |
Gases |
Stoichiometry |
Acids / Bases
Optical Activity  Mickey, Charles D.
Historical background of stereoisomerism, the properties of light, the principles of a polarimeter, and optically active compounds.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 442.
Stereochemistry |
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Walnut models of simple molecules  Niac, Gavril; Florea, Cornel
Using natural walnut formations to illustrate the geometry of simple molecules.
Niac, Gavril; Florea, Cornel J. Chem. Educ. 1980, 57, 429.
Molecular Properties / Structure |
Molecular Modeling |
Natural Products |
VSEPR Theory
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Name the compound contest (Corridor demonstration)  Koubek, Edward
Providing molecular models for students to identify for credit or prizes.
Koubek, Edward J. Chem. Educ. 1980, 57, 308.
Molecular Properties / Structure
Rotation of plane-polarized light: A simple model  Hill, Roger R.; Whatley, Barrie G.
A simple model that explains why enantiomers of a chiral compound rotate light in different directions.
Hill, Roger R.; Whatley, Barrie G. J. Chem. Educ. 1980, 57, 306.
Photochemistry |
Molecular Modeling |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers |
Molecular Properties / Structure
A chemistry lesson at Three Mile Island  Mammano, Nicholas J.
Teaching principles of general chemistry through references made to the nuclear incident at Three Mile Island.
Mammano, Nicholas J. J. Chem. Educ. 1980, 57, 286.
Equilibrium |
Gases |
Stoichiometry |
Nonmajor Courses |
Nuclear / Radiochemistry |
Applications of Chemistry
Molecular Geometry  Mickey, Charles D.
Methods for determining molecular geometry and the application of VSEPR theory to real molecules.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 210.
Molecular Properties / Structure |
VSEPR Theory
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
An application of Gagne's principles of instructional design: Teaching the limiting-reactant problem  Ozsogomonyan, Ardas
The results of a study of the development and validation of effective individualized instructional materials to teach some major concepts of stoichiometry to underprepared students.
Ozsogomonyan, Ardas J. Chem. Educ. 1979, 56, 799.
Stoichiometry
A simple inexpensive model for student discovery of VSEPR  Halpern, Marc
A simple model made from yarn and four wooden spheres.
Halpern, Marc J. Chem. Educ. 1979, 56, 531.
VSEPR Theory |
Molecular Modeling |
Molecular Properties / Structure
The barium hydroxide ammonium thiocyanate reaction: A titrimetric continuous variations experiment  Harris, Arlo D.
Experiment that uses acid-base titrimetry to study the stoichiometry of a novel solid state reaction.
Harris, Arlo D. J. Chem. Educ. 1979, 56, 477.
Titration / Volumetric Analysis |
Acids / Bases |
Solid State Chemistry |
Stoichiometry
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
"The bounce principle"  Smith, Douglas D.
A demonstration involving "alive" and "dead" rubber balls. Submitted by "Doc the Clown".
Smith, Douglas D. J. Chem. Educ. 1979, 56, 338.
Physical Properties |
Molecular Properties / Structure
The aromatic ring  Kolb, Doris
Historic analysis and attempts to explain the structure of benzene, the concept of resonance, Huckel's rule, polycyclic aromatic compounds, non-classical aromatic compounds, and a definition for aromaticity.
Kolb, Doris J. Chem. Educ. 1979, 56, 334.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
More on balancing redox equations  Kolb, Doris
Balancing atypical redox equations.
Kolb, Doris J. Chem. Educ. 1979, 56, 181.
Stoichiometry |
Oxidation / Reduction
Evolution of an experiment (from moles/I2 to gaseous CaCl2)  Dauphinee, G. A.
An experiment originally designed to illustrate a simple problem in solution stoichiometry has produced a stimulus to student recognition of some applications of descriptive chemistry.
Dauphinee, G. A. J. Chem. Educ. 1979, 56, 116.
Stoichiometry |
Descriptive Chemistry
Plastics: Utilizing the properties of string-like molecules  J. Chem. Educ. Staff
A summary of the properties of common polymers.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 42.
Polymerization |
Molecular Properties / Structure |
Applications of Chemistry
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Balancing an atypical redox equation  Carrano, S. A.
The author presents a particularly tricky redox problem and walks readers through a solution.
Carrano, S. A. J. Chem. Educ. 1978, 55, 382.
Chemometrics |
Oxidation / Reduction |
Stoichiometry
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
The chemical formula. Part I: Development  Kolb, Doris
The origin of the chemical formula, the problem of isomers, nucleus theory, radical theories, residue theory, type theory, extension of the type theory, valence theory, graphic formulas, and contribution of Cannizzaro.
Kolb, Doris J. Chem. Educ. 1978, 55, 44.
Stoichiometry
Synthesis and properties of an optically active complex: A polarimeter experiment for general chemistry  Hunt, Harold R., Jr.
Synthesizing and determining the optical rotation of d-Co(phen)3(ClO4)3.2H2O.
Hunt, Harold R., Jr. J. Chem. Educ. 1977, 54, 710.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Synthesis |
Coordination Compounds
A computer program designed to balance inorganic chemical equations  Rosen, Allen I.
A BASIC program designed to check the correct balancing of chemical equations.
Rosen, Allen I. J. Chem. Educ. 1977, 54, 704.
Stoichiometry
Different experiment on chemical composition  Wells, Norman; Boschmann, Erwin
The synthesis of antimony iodide.
Wells, Norman; Boschmann, Erwin J. Chem. Educ. 1977, 54, 586.
Stoichiometry
Compact compact  Nelson, Gregory V.
Using a cardboard mailing tube to demonstrate the rigidity of the folding pattern and the flexibility of a non-helical region in a protein.
Nelson, Gregory V. J. Chem. Educ. 1977, 54, 578.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides
Synthesis in an integrated curriculum  Yoder, Claude H.
Outline of a four-year chemistry program culminating in a senior course "Synthesis and Determination of Structure," for which a separate outline is provided.
Yoder, Claude H. J. Chem. Educ. 1977, 54, 572.
Synthesis |
Molecular Properties / Structure
Pre-vacation experiment: The effect of temperature and torsion on the structure of a saccharide  Ford, Linda Kay
An experiment in which students prepare salt-water taffy.
Ford, Linda Kay J. Chem. Educ. 1977, 54, 550.
Carbohydrates |
Molecular Properties / Structure
Drinking-straw polyhedral models in structural chemistry  Mak, Thomas C. W.; Lam, C. N.; Lau, O. W.
Instructions for constructing a variety of molecular and crystal structures based on various ways of packing regular and semi-regular polyhedra made from plastic drinking straws.
Mak, Thomas C. W.; Lam, C. N.; Lau, O. W. J. Chem. Educ. 1977, 54, 438.
Molecular Properties / Structure |
Molecular Modeling
The relationship of lead and sulfur in a chemical reaction  Chapman, V. L.
Investigating the stoichiometric synthesis of lead and sulfur to form lead sulfide.
Chapman, V. L. J. Chem. Educ. 1977, 54, 436.
Reactions |
Stoichiometry
Teaching ion-ion, ion-dipole, and dipole-dipole interactions  Yoder, Claude H.
Shows how electrostatic interactions can be expressed quantitatively through Coulomb's law and taught at a variety of places in the chemistry curriculum.
Yoder, Claude H. J. Chem. Educ. 1977, 54, 402.
Molecular Properties / Structure
A balancing act  Schug, Kenneth
A method for teaching introductory students how to balance chemical equations.
Schug, Kenneth J. Chem. Educ. 1977, 54, 370.
Stoichiometry
A demonstration in solid state chemistry: The nonstoichiometry of nickel oxide, NiO  Perrino, Charles T.; Johnson, Robert
A simple experiment to demonstrate the nonstoichiometric synthesis of nickel oxide.
Perrino, Charles T.; Johnson, Robert J. Chem. Educ. 1977, 54, 367.
Stoichiometry |
Oxidation State |
Oxidation / Reduction |
Solid State Chemistry |
Metals
Molecular geometries and "repulsive ratings"  Arlotto, Roy J.
A procedure to help students rationalize VSEPR theory.
Arlotto, Roy J. J. Chem. Educ. 1977, 54, 306.
Molecular Properties / Structure |
VSEPR Theory
Illustrating infrared spectroscopy using commercially available plastic films  Webb, John; Rasmussen, Malcolm; Selinger, Ben
Collecting and comparing the IR spectra of commercially available plastic films.
Webb, John; Rasmussen, Malcolm; Selinger, Ben J. Chem. Educ. 1977, 54, 303.
Spectroscopy |
IR Spectroscopy |
Molecular Properties / Structure
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Introductory quantitative laboratory exercise  Crossfield, A. J.
Two laboratory exercises that give good experiences with balance use, titration techniques, aliquot use, and mole calculations.
Crossfield, A. J. J. Chem. Educ. 1977, 54, 190.
Quantitative Analysis |
Gravimetric Analysis |
Titration / Volumetric Analysis |
Stoichiometry
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
3 [Three] basketballs = 1 [one] mole of ideal gas at STP  Jardine, Fred H.
The volume of three basketballs = one mole of ideal gas at STP.
Jardine, Fred H. J. Chem. Educ. 1977, 54, 112.
Stoichiometry |
Gases
Vitalizing the lecture. Lap-dissolve projection  Harpp, David N.; Snyder, James P.
Describes and provides examples of the lap-dissolve effect, a technique that uses two 35mm slide projectors to convey changing images in a large lecture setting.
Harpp, David N.; Snyder, James P. J. Chem. Educ. 1977, 54, 68.
Molecular Properties / Structure |
Mechanisms of Reactions
Cookbook dimensional analysis  DeLorenzo, Ronald
Frequently, teachers will hear, "...it looks easy when you do it..." when teaching dimensional analysis. This teacher advises others on a way to help students gain self-efficacy with this problem solving-strategy.
DeLorenzo, Ronald J. Chem. Educ. 1976, 53, 633.
Stoichiometry |
Chemometrics
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
The identity of chemical substances: A first laboratory experiment for elementary chemistry students  Fernandez, Jack E.
Students are given two pure substances and asked to determine whether they are the same or different.
Fernandez, Jack E. J. Chem. Educ. 1975, 52, 726.
Stoichiometry
Construction of models which demonstrate planes  Clark, Thomas J.
Models demonstrating planes of interest can be easily constructed from framework molecular models and polystyrene casting resin.
Clark, Thomas J. J. Chem. Educ. 1975, 52, 628.
Molecular Properties / Structure |
Molecular Modeling
A logic diagram for teaching stoichiometry  Tyndall, John R.
Presents a diagram that the author found helpful in teaching the fundamentals of stoichiometry.
Tyndall, John R. J. Chem. Educ. 1975, 52, 492.
Stoichiometry |
Chemometrics
The reactions of ferroin complexes. A color-to-colorless freshman kinetic experiment  Edwards, John O.; Edwards, Kathleen; Palma, Jorge
A group of related reactions that can be easily followed with a colorimeter which show that the mechanism by which a reaction takes place may not be at all obvious from the stoichiometry.
Edwards, John O.; Edwards, Kathleen; Palma, Jorge J. Chem. Educ. 1975, 52, 408.
Kinetic-Molecular Theory |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Stoichiometry |
Mechanisms of Reactions
An experiment for introductory college chemistry. How to establish a chemistry equation  Masaguer, J. R.; Coto, M. Victoria; Casas, J. S.
The stoichiometry of the reaction between potassium chromate and barium chloride in an aqueous state is determined by using the height of of the precipitate formed when different amounts of both solutions are mixed in a graduated cylinder.
Masaguer, J. R.; Coto, M. Victoria; Casas, J. S. J. Chem. Educ. 1975, 52, 387.
Stoichiometry |
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
The paper clip mole - An undergraduate experiment  Cassen, T.
Paper clips are used to represent atoms and demonstrate the concept of atomic weight.
Cassen, T. J. Chem. Educ. 1975, 52, 386.
Stoichiometry
Deflection of falling solvents by an electric field  Brindle, I. D.; Tomlinson, R. H.
Using the deflection of a falling liquid by an electrically charged rod to demonstrate the polarity of molecules is misleading at best.
Brindle, I. D.; Tomlinson, R. H. J. Chem. Educ. 1975, 52, 382.
Molecular Properties / Structure |
Electrochemistry
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
Strand polarity: Antiparallel molecular interactions in nucleic acids  Davidson, Michael W.; Wilson, W. David
121. The illustrations in many biochemistry textbooks indicates a parallel polarity in DNA, but in truth DNA is antiparallel.
Davidson, Michael W.; Wilson, W. David J. Chem. Educ. 1975, 52, 323.
Molecular Properties / Structure
A simple model of an a[alpha]-helix  Hiegel, Gene A.
A simple model of an a[alpha]-helix made from a toilet tissue tube.
Hiegel, Gene A. J. Chem. Educ. 1975, 52, 231.
Molecular Properties / Structure |
Molecular Modeling
Preparation and color of azo-dyes  Mosher, Melvyn W.; Ansell, Jay M.
A simple experiment to relate the color of certain substituted azo-dyes to their visible absorption spectra.
Mosher, Melvyn W.; Ansell, Jay M. J. Chem. Educ. 1975, 52, 195.
Dyes / Pigments |
Synthesis |
Molecular Properties / Structure |
Aromatic Compounds |
Student-Centered Learning
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Illustrating large and small numbers. A problem for the birds  Sattler, Louis
A calculation designed to illustrate the relative size of Avogadro's number. The solution from p. 181 is reproduced in this PDF.
Sattler, Louis J. Chem. Educ. 1975, 52, 180.
Chemometrics |
Stoichiometry
Rediscovery in a course for nonscientists. Use of molecular models to solve classical structural problems  Wood, Gordon W.
Describes exercises using simple ball and stick models that students with no chemistry background can solve in the context of the original discovery.
Wood, Gordon W. J. Chem. Educ. 1975, 52, 177.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nonmajor Courses
Writing chemical equations. An introductory experiment  LeMay, H. Eugene, Jr.; Kemp, Kenneth C.
An introductory experiment in which students deduce the products by comparing their observations to descriptions of possible substances and write balanced chemical equations to represent the reactions.
LeMay, H. Eugene, Jr.; Kemp, Kenneth C. J. Chem. Educ. 1975, 52, 121.
Stoichiometry |
Descriptive Chemistry
Reduction of copper(II) oxide by alkanes of low molecular weight  Hoffman, A. B.; Hoffman, A. J.
This paper describes a laboratory where general chemistry students investigate the reduction of CuO by alkanes of low molecular weight.
Hoffman, A. B.; Hoffman, A. J. J. Chem. Educ. 1974, 51, 418.
Oxidation / Reduction |
Molecular Properties / Structure
The extent of reaction as a unifying basis for stoichiometry in elementary chemistry  Garst, John F.
The author uses a more approachable symbol for "moles rxn per liter". The author outlines this approach with some examples.
Garst, John F. J. Chem. Educ. 1974, 51, 194.
Stoichiometry |
Gases
A stereochemical model for illustrating pseudorotation of five-coordinate atoms  Riess, Jean G.
Design of an inexpensive, articulated model that simulates intramolecular isomerization or fluxional behavior on five-coordinate atoms.
Riess, Jean G. J. Chem. Educ. 1973, 50, 850.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
The reduction of CuO with burner gas and without a fume hood. A high school chemistry experiment  Zidick, Clem; Weismann, Thomas
This experiment is a modification of the classic reduction of CuO with hydrogen gas, except natural gas is used as the reducing agent, eliminating the danger of working with hydrogen.
Zidick, Clem; Weismann, Thomas J. Chem. Educ. 1973, 50, 717.
Oxidation / Reduction |
Reactions |
Stoichiometry
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
The paramagnetism of O2  Lethbridge, J. W.; Davies, M. B.
A simple but more spectacular demonstration of the paramagnetism of O2.
Lethbridge, J. W.; Davies, M. B. J. Chem. Educ. 1973, 50, 656.
Magnetic Properties |
Molecular Properties / Structure
A magnetic analogy for demonstrating some VSEPR principles  Schobert, Harold H.
Bar magnets and iron filings are used to simulate atomic nuclei and illustrate the difference in the degree of localization of electron density of bonding and non-bonding pairs.
Schobert, Harold H. J. Chem. Educ. 1973, 50, 651.
VSEPR Theory |
Molecular Properties / Structure
A simple demonstration of enantiomerism  Richards, K. E.
Design for a wooden box containing a mirror that uses a molecular model to demonstrate enantiomerism.
Richards, K. E. J. Chem. Educ. 1973, 50, 632.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Determining the molecular weight of N-fatty acids by thin layer chromatography  Singh, Eric J.; Zuspan, Frederick P.
Simple procedure for determining the molecular weight of N-fatty acids by thin layer chromatography.
Singh, Eric J.; Zuspan, Frederick P. J. Chem. Educ. 1973, 50, 625.
Molecular Properties / Structure |
Physical Properties |
Thin Layer Chromatography |
Chromatography |
Fatty Acids
An overhead projection demonstration of optical activity  Hill, John W.
An overhead projection demonstration of optical activity the makes use of two polarizing lenses and an optically active compound.
Hill, John W. J. Chem. Educ. 1973, 50, 574.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Carbohydrates
Capsules for molar volume experiments  Van Doren, Janet B.
Weighing metal turnings and placing them in a water soluble capsule for molar volume experiments.
Van Doren, Janet B. J. Chem. Educ. 1973, 50, 462.
Stoichiometry |
Laboratory Management
The law of definite proportions. An experiment for introductory chemistry  Wilhelm, Dale L.
Using the synthesis of copper iodide to demonstrate the law of definite proportions has advantages over other compounds.
Wilhelm, Dale L. J. Chem. Educ. 1973, 50, 436.
Stoichiometry |
Synthesis
Overhead projection of stereographic images  Crozat, Madeleine M.; Watkins, Steven F.
A simple technique that employs an overhead projector, colored filters, and colored transparent overlays to create three-dimensional images of molecules for viewing by up to thirty students simultaneously.
Crozat, Madeleine M.; Watkins, Steven F. J. Chem. Educ. 1973, 50, 374.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
The mole and Avogadro's number. A forced fusion of ideas for teaching purposes  Hawthorne, Robert M., Jr.
History of Avogadro's number and the mole and their increasing association with one another.
Hawthorne, Robert M., Jr. J. Chem. Educ. 1973, 50, 282.
Stoichiometry
A criticism of the valence shell electron pair repulsion model as a teaching device  Drago, Russell S.
The factors that influence the geometry of molecules are much more complicated than the VSEPR model would lead one to believe.
Drago, Russell S. J. Chem. Educ. 1973, 50, 244.
VSEPR Theory |
Molecular Properties / Structure
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Strength of chemical bonds  Christian, Jerry D.
Demonstrating the strength of chemical bonds by scaling a molecule up to a macroscopic size.
Christian, Jerry D. J. Chem. Educ. 1973, 50, 176.
Covalent Bonding |
Molecular Properties / Structure |
Metallic Bonding
The helix coil transition of DNA  Steinert, Roger; Hudson, Bruce
The design and use of a photometer to detect the transition of DNA from the double helix to random coil form.
Steinert, Roger; Hudson, Bruce J. Chem. Educ. 1973, 50, 129.
Molecular Properties / Structure |
Photochemistry |
Spectroscopy |
Laboratory Equipment / Apparatus
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of chemical principles and their solutions.
Campbell, J. A. J. Chem. Educ. 1973, 50, 128.
Enrichment / Review Materials |
Proteins / Peptides |
pH |
Carbohydrates |
Molecular Properties / Structure
Two lecture experiments demonstrating limiting quantities  Dillard, Clyde R.
Uses reactions between HCl and magnesium and HCl and calcium to demonstrate the concept of limiting reactants.
Dillard, Clyde R. J. Chem. Educ. 1972, 49, A694.
Stoichiometry |
Reactions
A computer program for balancing chemical equations  Brown, John P.; Brown, L. Pearl; Redd, Robert M.
Availability of a Fortran IV program that uses the matrix method for balancing chemical equations.
Brown, John P.; Brown, L. Pearl; Redd, Robert M. J. Chem. Educ. 1972, 49, 754.
Stoichiometry |
Reactions
Simple harmonic motion - A graphic demonstration  Magliulo, Anthony R.
A kymograph is adapted to the study of the vibration of a linear diatomic molecule.
Magliulo, Anthony R. J. Chem. Educ. 1972, 49, 640.
Molecular Properties / Structure
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
The stoichiometry of hydrated copper sulfate. A general chemistry laboratory experiment  Silber, Herbert B.
Students are provided with CuSO4.XH2O and asked to determine the % Cu, % SO4, and the number of water molecules in the hydrated salt using a cation-exchange resin coupled with gravimetric analysis.
Silber, Herbert B. J. Chem. Educ. 1972, 49, 586.
Stoichiometry |
Gravimetric Analysis |
Ion Exchange
Questions [and] Answers  Campbell, J. A.
Six questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 538.
Enrichment / Review Materials |
Applications of Chemistry |
Electrochemistry |
Astrochemistry |
Stoichiometry |
Metals
Why is the oxygen in water negative?  Liebman, Joel F.
Oxygen in water is negative because a negative charge, unlike a positive, can be stabilized using ground state ionic resonance structures.
Liebman, Joel F. J. Chem. Educ. 1972, 49, 415.
Water / Water Chemistry |
Molecular Properties / Structure |
Oxidation State
A modified Rast method for molecular weights  Wawzonek, Stanley
Avoiding problems associated with the Rast method for determining molecular weights.
Wawzonek, Stanley J. Chem. Educ. 1972, 49, 399.
Molecular Properties / Structure |
Physical Properties
The chlorophyll cat  Hardcastle, J. E.
A short poem and cartoon representation of the chlorophyll structure.
Hardcastle, J. E. J. Chem. Educ. 1972, 49, 364.
Plant Chemistry |
Photosynthesis |
Molecular Properties / Structure |
Proteins / Peptides
Construction of a framework model of DNA. A class project  Anderson, John A.
A model of DNA is constructed from plastic tubing as a class project.
Anderson, John A. J. Chem. Educ. 1972, 49, 329.
Molecular Modeling |
Molecular Properties / Structure
The use of a dye in the Dumas method of determining molecular weight  Tibbetts, Donald L.; Salter, E. Mimie
Using iodine to color a liquid in order to determine when its vaporative heating must be stopped.
Tibbetts, Donald L.; Salter, E. Mimie J. Chem. Educ. 1972, 49, 182.
Dyes / Pigments |
Physical Properties |
Molecular Properties / Structure
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
Computer generated display and manipulation of a general molecule  Portigal, Larry D.; Minicozzi, William P.
Availability of the Molecular Display Program (MOLDSP) and algorithms written in Fortran IV that transform topological and geometrical information into dynamic molecular displays.
Portigal, Larry D.; Minicozzi, William P. J. Chem. Educ. 1971, 48, 790.
Molecular Properties / Structure |
Molecular Modeling
Size of a molecule. Or what's in a shape?  Demchik, Michael J.; Demchik, Virginia C.
The authors describe an experiment which helps students understand why oleic acid is essentially insoluble in water.
Demchik, Michael J.; Demchik, Virginia C. J. Chem. Educ. 1971, 48, 770.
Lipids |
Molecular Properties / Structure |
Molecular Modeling |
Physical Properties |
Solutions / Solvents |
Fatty Acids
Mole concept and limiting reagent in the laboratory  Maio, Frances A.
The author provides a stepwise approach to problems in limiting reagents and the mole concepts.
Maio, Frances A. J. Chem. Educ. 1971, 48, 155.
Stoichiometry
A simple molecular weight experiment  Kalbus, Lee; Petrucci, Ralph H.
The authors share a method that is conceptually similar to the Dumas method and students have had considerable success.
Kalbus, Lee; Petrucci, Ralph H. J. Chem. Educ. 1971, 48, 107.
Molecular Properties / Structure |
Quantitative Analysis
Grading the copper sulfide experiment  Novick, Seymour
The author recommends a more liberal analysis in grading the copper sulfide experiment.
Novick, Seymour J. Chem. Educ. 1970, 47, 785.
Stoichiometry |
Chemometrics
Balancing equations (the author responds)  Young, Jay A.
Recognizes the referenced letter.
Young, Jay A. J. Chem. Educ. 1970, 47, 785.
Stoichiometry
Balancing equations  Missen, R. W.
The author provides an alternative answer to the question in the referenced article.
Missen, R. W. J. Chem. Educ. 1970, 47, 785.
Stoichiometry
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
Is ammonia like water?  Gill, J. B.
This article sets out to compare some of the properties of the two most widely studied solvents, water and liquid ammonia, and in particular illustrate some comparative aspects that are not normally considered.
Gill, J. B. J. Chem. Educ. 1970, 47, 619.
Water / Water Chemistry |
Molecular Properties / Structure |
Aqueous Solution Chemistry
Polymer models  Carraher, Charles E., Jr.
A child's "pop-it-bead" set or polystyrene spheres or corks with holes drilled through them and connected with a shoestring can be used to illustrate some relationships of structure to polymer properties.
Carraher, Charles E., Jr. J. Chem. Educ. 1970, 47, 581.
Molecular Properties / Structure |
Molecular Modeling |
Polymerization
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
A weevil's loss is our gain or sex strikes the pages on the Journal.  Brasted, Robert C.
The trans-isomer of the boll weevil sex attractant is a million times more active than the cis-isomer.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Natural Products |
Diastereomers |
Molecular Properties / Structure |
Agricultural Chemistry |
Applications of Chemistry
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
An improvement of the vapor density experiment in the general chemistry course  Seiwald, Robert; Gruhn, Thomas; Gorman, Mel
Suggests adding Rhodamine B to the liquid phase to make it highly visible.
Seiwald, Robert; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1970, 47, 390.
Gases |
Molecular Properties / Structure
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
A demonstration experiment on partial molar volumes  Coch, Juan A.; Lopez, Valentin
The partial molar volume of trichloroacetic acid can be determined by measuring the increase in volume when TCA is dissolved in water at constant temperature and pressure.
Coch, Juan A.; Lopez, Valentin J. Chem. Educ. 1970, 47, 270.
Solutions / Solvents |
Molecular Properties / Structure |
Stoichiometry
Isomerism in transition metal complexes: An experiment for freshman chemistry laboratory  Foust, Richard D., Jr.; Ford, Peter C.
In this experiment students synthesize two isomers, cis- and trans-dichlorobis(ethylenediamine)-cobalt(III) chloride.
Foust, Richard D., Jr.; Ford, Peter C. J. Chem. Educ. 1970, 47, 165.
Molecular Properties / Structure |
Transition Elements |
Metals |
Coordination Compounds |
Diastereomers |
Synthesis
Programs for correcting student balanced equations and for generating numerical problem parameters  Ratney, Ronald S.
Availability of two computer programs to correct student balanced equations and generate randomized parameters for use in numerical problems.
Ratney, Ronald S. J. Chem. Educ. 1970, 47, 136.
Stoichiometry
Infrared spectrometry of inorganic salts: A general chemistry experiment  Ackermann, Martin N.
An experiment in inorganic qualitative analysis for general chemistry.
Ackermann, Martin N. J. Chem. Educ. 1970, 47, 69.
IR Spectroscopy |
Qualitative Analysis |
Molecular Properties / Structure
Some reflections on the use and abuse of molecular models  Peterson, Quentin R.
Examines the history of the application of molecular models and model types, and proposes the construction of a new type of model.
Peterson, Quentin R. J. Chem. Educ. 1970, 47, 24.
Molecular Properties / Structure |
Molecular Modeling
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
The oxidation of hydrazine by basic iodine solutions: A stoichiometric study  Cooper, J. N.; Ramette, R. W.
This experiment relies on an oxidation-reduction reaction for which a variety of products is energetically possible.
Cooper, J. N.; Ramette, R. W. J. Chem. Educ. 1969, 46, 872.
Stoichiometry |
Oxidation / Reduction |
Reactions
Avogadro's number from the volume of a monolayer  Moynihan, Cornelius T.; Goldwhite, Harold
This article comments on and makes suggestions regarding the conduct of and treatment of data in the popular experiment in which Avogadro's number is estimated from the volume of a monolayer on a water surface.
Moynihan, Cornelius T.; Goldwhite, Harold J. Chem. Educ. 1969, 46, 779.
Stoichiometry |
Molecular Properties / Structure
The stoichiometry of silver chromate and basic copper chromate: Investigations for the freshman laboratory  Kalbus, L. H.; Petrucci, R. H.
This project begins with a continuous variation study of the formation of silver chromate and then turns to copper chromate and with this substance the results are unexpected, from beginning to end.
Kalbus, L. H.; Petrucci, R. H. J. Chem. Educ. 1969, 46, 776.
Stoichiometry |
Quantitative Analysis
LTE. Normalization of MO's  Hecht, Charles E.
The author suggests that the cited computer program be modified to normalize molecular orbitals.
Hecht, Charles E. J. Chem. Educ. 1969, 46, 700.
MO Theory |
Molecular Properties / Structure
LTE.  Crocker, Roger
The author points out that the objections raised to his earlier work are academic.
Crocker, Roger J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
LTE. Algebra and chemical equations  Copley, George Novello
The author questions the mathematic validity of the cited work.
Copley, George Novello J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
Construction and use of atomic and molecular models (Bassow, H.)  Martins, George

Martins, George J. Chem. Educ. 1969, 46, 623.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
An improved equivalent weight apparatus  Brown, Oliver L.
Presents an improved apparatus for the reaction of weighed samples of metals with hydrochloric acid and the measurement of the volume of hydrogen evolved.
Brown, Oliver L. J. Chem. Educ. 1969, 46, 617.
Laboratory Equipment / Apparatus |
Metals |
Laboratory Management |
Reactions |
Gases |
Stoichiometry
Friday experiments  Bissey, Jack E.
Provides data on an unknown gas and asks readers to determine if it is ideal, as well as its molecular weight and chemical formula.
Bissey, Jack E. J. Chem. Educ. 1969, 46, 497.
Gases |
Molecular Properties / Structure
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Prediction of molecular polarity by V.S.E.P.R. theory  Daugherty, N. A.
Suggestion for predicting molecular polarity using VSEPR theory.
Daugherty, N. A. J. Chem. Educ. 1969, 46, 283.
Molecular Properties / Structure |
VSEPR Theory
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
Avogadro's number by four methods  Slabaugh, W. H.
Describes a project by two general chemistry students to compare four methods for finding Avogadro's number; this article focusses on the electroplating method.
Slabaugh, W. H. J. Chem. Educ. 1969, 46, 40.
Stoichiometry |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
Molecular symmetry models  Craig, Norman C.
Presents the use of physical models in helping the general chemistry student to begin to replace his intuitive concept of symmetry with a more rigorous one.
Craig, Norman C. J. Chem. Educ. 1969, 46, 23.
Molecular Modeling |
Molecular Properties / Structure |
Group Theory / Symmetry
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Application of diophantine equations to problems in chemistry  Crocker, Roger
The mathematical method of diophantine equations is shown to apply to two problems in chemistry: the balancing of chemical equations, and determining the molecular formula of a compound.
Crocker, Roger J. Chem. Educ. 1968, 45, 731.
Mathematics / Symbolic Mathematics |
Stoichiometry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Bolte, John
(1) Is the mole a number or a weight? (2) Is there an easy way to locate a compound by volume and page in Beilstein? (3) What are the stages evident in a gas discharge tube as the pressure of the gas and the voltage are changed? - answer by Bolte
Young, J. A.; Malik, J. G.; Bolte, John J. Chem. Educ. 1968, 45, 718.
Stoichiometry |
Nomenclature / Units / Symbols |
Gases
Computer simulation of experimental data  Shwendeman, R. H.
This note describes some of the techniques in programming used to generate a sufficient variety of experimental data to provide each student with his own set of numbers for analysis in conjunction with the demonstration laboratory.
Shwendeman, R. H. J. Chem. Educ. 1968, 45, 665.
Molecular Properties / Structure |
Physical Properties |
Gas Chromatography
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
Framework molecular models to illustrate Linnett's double quartet theory  Bumgardner, Carl L.; Wahl, George H., Jr.
Presents a convenient method for depicting electron arrangements using molecular models.
Bumgardner, Carl L.; Wahl, George H., Jr. J. Chem. Educ. 1968, 45, 347.
Molecular Modeling |
Molecular Properties / Structure
Silver tree  Smith, Donald Z.
A suggestion for improving the silver:copper ratio in the silver tree experiment.
Smith, Donald Z. J. Chem. Educ. 1968, 45, 275.
Stoichiometry |
Reactions
An easily constructed tetrahedron model  Yamana, Shukichi
A simple method for constructing a tetrahedron by folding paper.
Yamana, Shukichi J. Chem. Educ. 1968, 45, 245.
Molecular Modeling |
Molecular Properties / Structure
Simple construction to determine protein molecular weights by the osmotic pressure method  Candlish, John K.
This short note presents a simple device to determine protein molecular weights through osmotic pressure.
Candlish, John K. J. Chem. Educ. 1968, 45, 93.
Molecular Properties / Structure |
Proteins / Peptides |
Physical Properties
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
The stoichiometry of sulfides: Experiments for the introductory laboratory  Dingledy, David
Uses the preparation of lead sulfide and nickel sulfide to illustrate the law of constant proportions.
Dingledy, David J. Chem. Educ. 1967, 44, 693.
Stoichiometry |
Synthesis
The construction of solid tetrahedral and octahedral models  Sheppard, William J.
Describes the construction of solid tetrahedral and octahedral models from wooden blocks.
Sheppard, William J. J. Chem. Educ. 1967, 44, 683.
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure
Letter to the editor  Bacon, E. K.
Examines values collected when using the production of copper sulfide to demonstrate the law of constant proportions.
Bacon, E. K. J. Chem. Educ. 1967, 44, 620.
Stoichiometry |
Synthesis
The stoichiometry of an oxidation-reduction reaction  Latimer, George W., Jr.
A short note on the titration of hydrazine sulfate with standard bromate in the presence of sodium molybdate that requires students to identify the products through the use of some elementary qualitative analysis.
Latimer, George W., Jr. J. Chem. Educ. 1967, 44, 537.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Titration / Volumetric Analysis |
Qualitative Analysis
Stoichiometry: Atomic weights, molecular formulas, microcosmic magnitudes (Nash, Leornard K.)  Maybury, P. Calvin

Maybury, P. Calvin J. Chem. Educ. 1967, 44, 429.
Stoichiometry |
Enrichment / Review Materials |
Molecular Recognition
Determination of the combining weight of tin: A new look at an old experiment  Carmody, Walter R.
Describes efforts to improve the determination of the combining weight of tin
Carmody, Walter R. J. Chem. Educ. 1967, 44, 416.
Stoichiometry |
Oxidation / Reduction |
Reactions |
Synthesis
Molecular weights from Dumas bulb experiments  Kaya, Julie J.; Campbell, J. Arthur
Describes an investigation in which students use a Dumas bulb to determine the molecular weight of several substances and presents the accompanying data.
Kaya, Julie J.; Campbell, J. Arthur J. Chem. Educ. 1967, 44, 394.
Molecular Properties / Structure
The stoichiometry of copper sulfide formed in an introductory laboratory exercise  Dingledy, David; Barnard, Walther M.
The preparation of copper sulfide is used as an introductory chemistry laboratory exercise to demonstrate the law of constant proportions.
Dingledy, David; Barnard, Walther M. J. Chem. Educ. 1967, 44, 242.
Stoichiometry |
Synthesis
The stoichiometry of an oxidation-reduction reaction: An elementary chemistry experiment  Child, W. C., Jr.; Ramette, R. W.
Students are asked to decide which of a number of nitrogen containing species is a reasonable product of the reaction between the hydroxylammonium ion and iron (III) on the basis of the experimentally determined stoichiometry of the reaction.
Child, W. C., Jr.; Ramette, R. W. J. Chem. Educ. 1967, 44, 109.
Stoichiometry |
Oxidation / Reduction |
Reactions
Improvements in the Victor-Meyer  Bader, Morris
Two improvements in the Victor-Meyer have simplified the apparatus and greatly increased the accuracy of molecular weight determinations.
Bader, Morris J. Chem. Educ. 1966, 43, 500.
Laboratory Equipment / Apparatus |
Molecular Properties / Structure
The relationship between Avogadro's Principle and the Law of Gay-Lussac  Feifer, Nathan
Teaching Avogadro's Principle as an explanation of the phenomena described by Gay-Lussac's Law gives the instructor an opportunity to stress some of the basic assumptions in chemistry and to highlight the logic implicit in Avogadro's reasoning.
Feifer, Nathan J. Chem. Educ. 1966, 43, 411.
Stoichiometry |
Gases
Inexpensive space-filling display models  Kellett, J. C., Jr.; Martin, A. N.
Using rubber molds to reproduce existing models in plaster.
Kellett, J. C., Jr.; Martin, A. N. J. Chem. Educ. 1966, 43, 374.
Molecular Modeling |
Molecular Properties / Structure
Evaluation of Avogadro's number: A general chemistry experiment  Henry, Paul S.
The method of J. Perin for evaluating Avogadro's number can be simplified by making use of suspensions of latex spherules by Dow.
Henry, Paul S. J. Chem. Educ. 1966, 43, 251.
Stoichiometry
Molecules versus moles  Guggenheim, E. A.
Now that the mass of molecules is known with great accuracy, there is nothing to be gained in continuing to use moles.
Guggenheim, E. A. J. Chem. Educ. 1966, 43, 250.
Stoichiometry |
Nomenclature / Units / Symbols
Concepts of species and state in chemistry and molecular physics  Goodfriend, P. L.
This article examines the concepts of species and state in chemistry and molecular physics.
Goodfriend, P. L. J. Chem. Educ. 1966, 43, 95.
Quantum Chemistry |
Diastereomers |
Molecular Properties / Structure
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Amedeo, Michael, and Charles and large numbers  Scholes, S. R.
A poem on Avogadro's number.
Scholes, S. R. J. Chem. Educ. 1965, 42, 650.
Stoichiometry
The architecture of molecules (Pauling, Linus; Hayward, Roger)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1965, 42, 579.
Molecular Properties / Structure
Notes on experiments for introductory college chemistry  
A brief set of notes regarding the complex salt [Co(NH3)5Cl]Cl2, the Guoy balance, Avogadro's number, and the stoichiometry of a mixture.
J. Chem. Educ. 1965, 42, 495.
Coordination Compounds |
Magnetic Properties |
Stoichiometry |
Solutions / Solvents
Stoichiometry of the reaction of bromine with phenols  Lockwood, Karl L.
The purpose of this investigation is to establish the stoichiometry for the reaction of a number of phenols with bromine, and to demonstrate the rapid and quantitative nature of the reaction of bromine with enols.
Lockwood, Karl L. J. Chem. Educ. 1965, 42, 482.
Stoichiometry |
Phenols
Units of measurement: An early application of Avogadro's number  Brasted, Robert C.
A comparison is made between the measured volume of a regular metallic solid and its theoretical volume as calculated using Avogadro's number.
Brasted, Robert C. J. Chem. Educ. 1965, 42, 472.
Stoichiometry |
Nomenclature / Units / Symbols |
Metals |
Physical Properties
Determination of Avogadro's number by Perrin's law  Slabaugh, W. H.
The experimental procedure for determining Avogadro's number by the Perrin method includes preparing a monodisperse colloid, ascertaining the mass of the particles, and making an accurate count of the number of particles at two points in the equilibrated colloid.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 471.
Stoichiometry |
Kinetic-Molecular Theory |
Gases |
Colloids
Experimental approach to stoichiometry. In first-year chemistry at Northwestern  King, L. Carroll; Cooper, Milton
Presents five experiments in which students are given a minimal set of directions and a simply stated objective.
King, L. Carroll; Cooper, Milton J. Chem. Educ. 1965, 42, 464.
Stoichiometry |
Coordination Compounds |
Undergraduate Research |
Aqueous Solution Chemistry |
Solutions / Solvents |
Precipitation / Solubility |
Titration / Volumetric Analysis
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Stereo molecular models  Godfrey, John C.
Presents a system of stereo molecular models designed by the author and their various applications.
Godfrey, John C. J. Chem. Educ. 1965, 42, 404.
Molecular Modeling |
Molecular Properties / Structure
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Minimum molecular weight approach for determining empirical formulas  Harwood, H. James
Describes the determination of empirical formulas from "minimum molecular weight," the molecular weight divided by the number of atoms of an element present in a molecule.
Harwood, H. James J. Chem. Educ. 1965, 42, 222.
Molecular Properties / Structure |
Stoichiometry
On Avogadro's number  Scholes, S. R.
A poem on the subject of Avogadro's number.
Scholes, S. R. J. Chem. Educ. 1965, 42, 126.
Stoichiometry
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Optical rotation  Evans, J. O. M.; Tietze, H. R.
The angle of rotation of sucrose can be easily determined using this simple demonstration.
Evans, J. O. M.; Tietze, H. R. J. Chem. Educ. 1964, 41, A973.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Precise atomic and molecular models  Adler, Alan D.; Steele, William J.
Presents designs for skeletal or lattice and space-filling models
Adler, Alan D.; Steele, William J. J. Chem. Educ. 1964, 41, 656.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Modeling clay models  Campbell, Melvin D.
Modeling clay can be used to effectively represent a variety of molecular structures and changes.
Campbell, Melvin D. J. Chem. Educ. 1964, 41, 612.
Molecular Modeling |
Molecular Properties / Structure
Effect of liquid NH3 on wood: A demonstration of the alcohol structure of cellulose  Hirsch, Phillis R.
A lecture demonstration of the plasticization of wood with liquid ammonia can be a very effective tool for teaching the alcohol structure of cellulose to any class studying basic organic chemistry.
Hirsch, Phillis R. J. Chem. Educ. 1964, 41, 605.
Carbohydrates |
Alcohols |
Molecular Properties / Structure
Illustrating conformational effects in acyclic systems  Sunderwirth, S. G.
A brief note describing a simple model for illustrating conformational effects.
Sunderwirth, S. G. J. Chem. Educ. 1964, 41, 557.
Molecular Properties / Structure |
Molecular Modeling
A model of the ice structure  Lambert, Jack L.; Seitz, Larry M.
Instructions for constructing a physical model of ice.
Lambert, Jack L.; Seitz, Larry M. J. Chem. Educ. 1964, 41, 504.
Water / Water Chemistry |
Molecular Modeling |
Molecular Properties / Structure
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Framework molecular orbital models  Brumlik, George C.; Barrett, Edward J.; Baumgarten, Reuben L.
Presents "Framework Molecular Orbital Models," which outline the symmetry axes and the symmetry planes of atomic and molecular orbitals in three dimensions and show on relative scale how far these orbitals reach out into molecular space.
Brumlik, George C.; Barrett, Edward J.; Baumgarten, Reuben L. J. Chem. Educ. 1964, 41, 221.
Molecular Modeling |
Molecular Properties / Structure
Atomic and molecular models made from vinyl covered wire  Larson, G. Olof.
This paper presents a series of scalar models made from vinyl covered wire.
Larson, G. Olof. J. Chem. Educ. 1964, 41, 219.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Tetrahedral and octahedral models  Larson, G. Olof
This short note describes simple models constructed from heavy paper and styrofoam balls used to facilitate discussions in stereochemistry.
Larson, G. Olof J. Chem. Educ. 1964, 41, 69.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
A magnetic molecular model  Meszaros, Lajos
This short note describes a model of the ethane molecule that demonstrates qualitatively the low energy barrier in free rotation about the carbon-carbon bond.
Meszaros, Lajos J. Chem. Educ. 1964, 41, 50.
Molecular Modeling |
Molecular Properties / Structure
Vapor shadowgraphs  King, L. Carroll; Templer, A. D.
Demonstrates the differential absorption of ultraviolet light by various vapors.
King, L. Carroll; Templer, A. D. J. Chem. Educ. 1963, 40, A987.
Molecular Properties / Structure
Variation in reactivityA demonstration  Bowen, D. M.
Provides suggestions for student research based on an earlier article published in the Journal.
Bowen, D. M. J. Chem. Educ. 1963, 40, A135.
Reactions |
Molecular Properties / Structure
Clathrates: Compounds in cages  Hagan, Mary Martinette, B. V. M.
Introduces clathrate compounds and examines some of their uses and applications.
Hagan, Mary Martinette, B. V. M. J. Chem. Educ. 1963, 40, 643.
Molecular Properties / Structure |
Applications of Chemistry |
Separation Science
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Crystals, minerals and chemistry  McConnell, Duncan; Verhoek, Frank H.
Considers stoichiometry and isomorphism, isomorphic substitutions, coupled substitution, the substitution of anions, and oxygen atoms per unit cell.
McConnell, Duncan; Verhoek, Frank H. J. Chem. Educ. 1963, 40, 512.
Crystals / Crystallography |
Geochemistry |
Stoichiometry
Demonstrating the Weissenberg effect with gelatin  Wiegand, James H.
Describes a simple apparatus to demonstrate the Weissenberg effect with gelatin.
Wiegand, James H. J. Chem. Educ. 1963, 40, 475.
Molecular Properties / Structure
Plastic Dreiding models  Fieser, Louis F.
This article describes superior molecular models of a new type available at cost low enough to allow purchase by students.
Fieser, Louis F. J. Chem. Educ. 1963, 40, 457.
Molecular Modeling |
Molecular Properties / Structure
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
Some experiments on the stoichiometry of reactions  Tietzie, H. R.
Students establish the stoichiometry of several reactions through volumetric analysis.
Tietzie, H. R. J. Chem. Educ. 1963, 40, 344.
Stoichiometry |
Titration / Volumetric Analysis
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Would Mendeleev have predicted the existence of XeF4?  Ward, Roland
The author suggests that a contemporary Mendeleev might have used the concept of molecular orbitals to predict the existence of XeF4.
Ward, Roland J. Chem. Educ. 1963, 40, 277.
Nonmetals |
Molecular Properties / Structure
Letters to the editor  Swayze, Donald R.
Examines balancing chemical equations.
Swayze, Donald R. J. Chem. Educ. 1963, 40, 269.
Stoichiometry |
Industrial Chemistry
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
A simple model to illustrate conformational effects in acyclic molecules  Tye, A.; LaPidus, J. B.
Describes a simple model that is effective for demonstrating rotational forms about a carbon-carbon bond because of its excellent visibility in large classrooms.
Tye, A.; LaPidus, J. B. J. Chem. Educ. 1963, 40, 28.
Molecular Modeling |
Molecular Properties / Structure
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
A versatile molecular model of cyclobutane  Wilson, Armin
Describes a versatile molecular model of cyclobutane constructed from brass tubing and used to illustrate ring strain.
Wilson, Armin J. Chem. Educ. 1962, 39, 649.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Lecture demonstration models of cycloalkanes  Schultz, Harry P.
Describes large, sturdy, lecture demonstration models of cycloalkanes.
Schultz, Harry P. J. Chem. Educ. 1962, 39, 648.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Inexpensive molecular models  Head, William F., Jr.
Describes the use of seamless, methacrylate spheres in constructing sturdy molecular models.
Head, William F., Jr. J. Chem. Educ. 1962, 39, 568.
Molecular Modeling |
Molecular Properties / Structure
Balancing ionic equations by the method of undetermined coefficients  Haas, Rudy; Gayer, Karl H.
Describes a mathematical method for balancing chemical equations.
Haas, Rudy; Gayer, Karl H. J. Chem. Educ. 1962, 39, 537.
Stoichiometry |
Chemometrics
The mole concept in chemistry (Kieffer, William F.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 488.
Stoichiometry
The "reaction equivalent" in stoichiometric problems  Dorf, Harold
Presents a simplified method for solving all stoichiometric problems based on chemical equations.
Dorf, Harold J. Chem. Educ. 1962, 39, 298.
Stoichiometry
Writing a chemical equation from titration data: Experiment for general chemistry  State, Harold M.
Students titrate phosphoric acid with sodium hydroxide to determine the chemical formula of Na2HPO4.
State, Harold M. J. Chem. Educ. 1962, 39, 297.
Acids / Bases |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Stoichiometry
The electronic structures and stereochemistry of NO2+, NO2, and NO2-  Panckhurst, M. H.
A comparison of the electronic structures and stereochemistry of NO2+, NO2, and NO2-.
Panckhurst, M. H. J. Chem. Educ. 1962, 39, 270.
Stereochemistry |
Molecular Properties / Structure |
Resonance Theory
Lecture-size molecular models with magnetic couplings  Kenney, Malcolm E.
Describes the design and use of large, lecture-size molecular models held together by magnetic couplings.
Kenney, Malcolm E. J. Chem. Educ. 1962, 39, 129.
Molecular Modeling |
Molecular Properties / Structure
Letters  Crawford, Crayton M.
Comments on use of the term equivalent weights and the determination of equivalent mass.
Crawford, Crayton M. J. Chem. Educ. 1961, 38, 637.
Nomenclature / Units / Symbols |
Stoichiometry
Moles and equivalents: Quantities of matter  Cohen, Irwin
Examines the various means of describing and measuring quantities of matter, including the mole and the equivalent.
Cohen, Irwin J. Chem. Educ. 1961, 38, 555.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Foy, John R.
Suggests a modification to an earlier proposed definition for the term mole.
Foy, John R. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Bieber, Theodore I.
Provides a concise definition for the mole.
Bieber, Theodore I. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Cohen, Irwin
Proposes use of the term cardinal weight.
Cohen, Irwin J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
A redefinition of "mole"  Lee, Shiu
Proposes improvements to a set of terms related to gram formula weights.
Lee, Shiu J. Chem. Educ. 1961, 38, 549.
Stoichiometry |
Nomenclature / Units / Symbols
To the editor  Baker, Wilbur L.
The author provides a simple method for laying out the sites for bonds on spherical atoms.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 533.
Molecular Modeling |
Molecular Properties / Structure
Geometry in the beginning chemistry course  Strong, Laurence E.; Clapp, L. B.; Edwards, J. O.
Presents a series of common general chemistry questions and their answers based on a structural analysis.
Strong, Laurence E.; Clapp, L. B.; Edwards, J. O. J. Chem. Educ. 1961, 38, 530.
Molecular Properties / Structure
Calculating molar solubilities from equilibrium constants  Butler, James N.
Presents several examples of calculating molar solubilities from equilibrium constants.
Butler, James N. J. Chem. Educ. 1961, 38, 460.
Chemical Technicians |
Equilibrium |
Stoichiometry |
Qualitative Analysis |
Aqueous Solution Chemistry
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Redox revisited  Lockwood, Karl L.
Examines issues regarding instruction in oxidation-reduction chemistry.
Lockwood, Karl L. J. Chem. Educ. 1961, 38, 326.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
Inexpensive Stuart-type molecular models  Hoover, William C.; Shriver, Duward
Describes a method for constructing Stuart-type molecular models using latex.
Hoover, William C.; Shriver, Duward J. Chem. Educ. 1961, 38, 295.
Molecular Modeling |
Molecular Properties / Structure
Antecedents to modern concepts of configurational symmetry in chemistry  Gorman, Mel
The application of geometric shapes to various scientific concepts is one of the oldest practices in the intellectual heritage of man.
Gorman, Mel J. Chem. Educ. 1961, 38, 99.
Molecular Properties / Structure
The mole and related quantities  Guggenheim, E. A.
Examines some of the terminology associated with the mole and expressing amounts of substances.
Guggenheim, E. A. J. Chem. Educ. 1961, 38, 86.
Stoichiometry |
Nomenclature / Units / Symbols
Editorially speaking  Kieffer, William K.
Calls attention to an article in this issue of the Journal on the mole concept.
Kieffer, William K. J. Chem. Educ. 1961, 38, 51.
Stoichiometry
Letters to the editor  Lambert, Frank L.
The author calls attention to polymer models.
Lambert, Frank L. J. Chem. Educ. 1960, 37, 490.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
Models for linear polymers  Morgan, Paul W.
Suggests models for addition and condensation polymers.
Morgan, Paul W. J. Chem. Educ. 1960, 37, 206.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Hall, Arthur C.
The molality-molarity paradox presented in an earlier article is artificial rather than apparent.
Hall, Arthur C. J. Chem. Educ. 1959, 36, 584.
Stoichiometry |
Solutions / Solvents |
Nomenclature / Units / Symbols
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
Letters to the editor  Perkins, Alfred J.
A discussion of balancing redox equations in response to an earlier article in the Journal.
Perkins, Alfred J. J. Chem. Educ. 1959, 36, 474.
Stoichiometry |
Oxidation / Reduction
Faint (heart, mind) ne'er won fair chemistry student  Olsen, Ralph
A humorous application of molar calculations and other basic concepts in the form of a short chemistry quiz.
Olsen, Ralph J. Chem. Educ. 1959, 36, 285.
Stoichiometry |
Atomic Properties / Structure
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Writing oxidation-reduction equations: A review of textbook materials  Yalman, Richard G.
The purpose of this paper is to review those parts of a number of textbooks containing aids or suggestions to help students balance oxidation-reduction reactions.
Yalman, Richard G. J. Chem. Educ. 1959, 36, 215.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
The geometry of giant molecules  Price, Charles C.
The author examines a variety of specific examples of natural and synthetic polymer molecules and describes how their geometric molecular arrangements influence their properties.
Price, Charles C. J. Chem. Educ. 1959, 36, 160.
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
Accurate molecular models  Godfrey, John C.
Describes the construction of molecular models that rely on plastics to represents as accurately as possible all of the physical characteristics of real molecules.
Godfrey, John C. J. Chem. Educ. 1959, 36, 140.
Molecular Modeling |
Molecular Properties / Structure
Construction of molecular models  Anker, Rudolph M.
Describes the construction of simple, durable, and inexpensive molecular models consisting primarily of sponge rubber balls of varying sizes.
Anker, Rudolph M. J. Chem. Educ. 1959, 36, 138.
Molecular Modeling |
Molecular Properties / Structure
Balancing organic redox equations  Burrell, Harold P. C.
This paper presents a method for balancing organic redox equations based on the study of structural formulas and an artificial device - the use of hypothetical free radicals.
Burrell, Harold P. C. J. Chem. Educ. 1959, 36, 77.
Stoichiometry |
Oxidation / Reduction |
Free Radicals
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Initial ratio of reactants to give, at equilibrium, a maximum yield of products  Haslam, E.
Derivation of the initial ratio of reactants to give, at equilibrium, a maximum yield of products.
Haslam, E. J. Chem. Educ. 1958, 35, 471.
Stoichiometry |
Chemometrics
Molecular weight determination by boiling-point elevation: A freshman research project  Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene
Describes an investigation into factors influencing the results of molecular weight determination by boiling-point elevation and the procedure refined through these efforts.
Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene J. Chem. Educ. 1958, 35, 412.
Physical Properties |
Molecular Properties / Structure |
Undergraduate Research |
Phases / Phase Transitions / Diagrams
Thought stimulation by demonstration experiments  Stone, Hosmer W.
Two projects are presented in which students are asked to predict the results of certain proposed experiments.
Stone, Hosmer W. J. Chem. Educ. 1958, 35, 349.
Stoichiometry
The pyranose structure of glucose  Miller, S. Porter
The author argues that a good rectangle is a better representation of the pyranose structure than a poor hexagon.
Miller, S. Porter J. Chem. Educ. 1958, 35, 302.
Molecular Properties / Structure |
Carbohydrates
Solution of problems in chemistry  Trousdale, Everett A.
Presents a method for analyzing and solving mole calculations.
Trousdale, Everett A. J. Chem. Educ. 1958, 35, 299.
Chemometrics |
Stoichiometry
Estimation of Avogadro's number: An experiment for general chemistry laboratory  King, L. Carroll; Neilsen, E. K.
This procedure involves measuring a film of oleic acid on water.
King, L. Carroll; Neilsen, E. K. J. Chem. Educ. 1958, 35, 198.
Stoichiometry
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Inexpensive molecular models for use in the laboratory  Tanaka, John
It has been found that satisfactory low-cost models can be made from wax.
Tanaka, John J. Chem. Educ. 1957, 34, 603.
Molecular Modeling |
Molecular Properties / Structure
Schematic models of biochemical polymers  Blackwell, R. Quentin
Demonstrates the use of plastic necklace beads to represent polysaccharides, peptides and proteins, and nucleotides.
Blackwell, R. Quentin J. Chem. Educ. 1957, 34, 500.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
Textbook errors: XIII. The nature of ionic and molecular species in sulfuric acid  Brubaker, Carl H., Jr.
Addresses misconceptions regarding the strength of sulfuric acid and the nature of ionic and molecular species present in solution.
Brubaker, Carl H., Jr. J. Chem. Educ. 1957, 34, 325.
Molecular Properties / Structure |
Solutions / Solvents |
Aqueous Solution Chemistry
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
New molecular models showing charge distribution and bond polarity  Sanderson, R. T.
Describes a new type of two- and three-dimensional molecular models that show charge distribution and bond polarity through the use of colors.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 195.
Molecular Modeling |
Molecular Properties / Structure
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
Model of the alpha helix configuration in polypeptides  Whalen, Thomas A.
The alpha helix configuration in polypeptides is modeled using sheets of ordinary paper.
Whalen, Thomas A. J. Chem. Educ. 1957, 34, 136.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides
Determination of the equivalent weight of metals: A freshman research project  Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin
This procedure involves a gravimetric method in which zinc, cadmium, or manganese is reacted in acid and the resulting solution is heated to dryness.
Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin J. Chem. Educ. 1957, 34, 133.
Stoichiometry |
Metals |
Gravimetric Analysis
Letters to the editor  Saxena, Satish Chandra
The author offers a restatement of Avogadro's law.
Saxena, Satish Chandra J. Chem. Educ. 1956, 33, 188.
Gases |
Stoichiometry
Amphoteric molecules, ions and salts  Davidson, David
It is the aim of this paper to call attention to the splendid opportunity amphoteric substances afford for the teaching of acid-base principles.
Davidson, David J. Chem. Educ. 1955, 32, 550.
Molecular Properties / Structure |
Acids / Bases |
pH |
Aqueous Solution Chemistry
Letters to the editor  Gaddis, Shirley W.
Has not the time come to bring up for debate the question of the advisability of teaching the equivalent weight concept?
Gaddis, Shirley W. J. Chem. Educ. 1955, 32, 289.
Stoichiometry
Orbital models  Fowles, Gerald W. A.
Constructing models of atomic and molecular orbitals from papier-mache.
Fowles, Gerald W. A. J. Chem. Educ. 1955, 32, 260.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Models of plane molecules  Harrell, Bryant; Corwin, Alsoph H.
Describes the construction of planar molecular models, particularly for ring systems.
Harrell, Bryant; Corwin, Alsoph H. J. Chem. Educ. 1955, 32, 186.
Molecular Modeling |
Molecular Properties / Structure
The Grignard reagent reaches the freshman  King, W. Bernard; Beel, John A.
A laboratory procedure that allows students to distinguish between the structure of ethanol and dimethyl ether.
King, W. Bernard; Beel, John A. J. Chem. Educ. 1955, 32, 146.
Grignard Reagents |
Molecular Properties / Structure
The laws of definite composition and of multiple proportions: A graphical approach  Fiekers, B. A.
The method presented here minimizes mathematical operations so that a fuller meaning of the laws of definite composition and of multiple proportions can be realized.
Fiekers, B. A. J. Chem. Educ. 1955, 32, 89.
Stoichiometry
Gram equivalent weights  Meldrum, William B.
The purpose of this paper is to review briefly the subject of equivalent weights and the more directly applicable gram equivalents and to offer a general method by which they may be deduced from chemical equations.
Meldrum, William B. J. Chem. Educ. 1955, 32, 48.
Nomenclature / Units / Symbols |
Stoichiometry
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
A mailing-tube polarimeter  Shaw, William H. R.
This simple but effective polarimeter is constructed from a cardboard tube and a small square of polarizing film.
Shaw, William H. R. J. Chem. Educ. 1955, 32, 10.
Chirality / Optical Activity |
Molecular Properties / Structure
A rapid method for the assembly of semi-diagrammatic molecular models  Zinsser, Hans H.
Mass-produced, airbrushed atoms on acetate film are used to produce three-dimensional images of molecular and crystalline structures.
Zinsser, Hans H. J. Chem. Educ. 1954, 31, 662.
Molecular Modeling |
Molecular Properties / Structure
Material balances and redox equations  Bennett, George W.
It is the purpose of this paper to remind teachers of a third method of balancing redox equations that does not depend on rule-of-thumb empiricism but relies on the conservation of matter.
Bennett, George W. J. Chem. Educ. 1954, 31, 324.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Molecular weight apparatus for use in general chemistry  Randall, David L.
Some of the difficulties that arise when general chemistry students determine the molecular weight of a volatile liquid are avoided by the use of a specialized glass bulb.
Randall, David L. J. Chem. Educ. 1954, 31, 297.
Laboratory Equipment / Apparatus |
Molecular Properties / Structure
Kekule's theory of aromaticity  Gero, Alexander
Examines what Kekule really wrote in his famous paper on the structure of benzene.
Gero, Alexander J. Chem. Educ. 1954, 31, 201.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Otis Coe Johnson and redox equations  Bennett, George W.
It is the purpose of this paper to point out what is basic verity and what is empiricism in Johnson's method for balancing oxidation-reduction equations.
Bennett, George W. J. Chem. Educ. 1954, 31, 157.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
Potentialities of protein isomerism  Asimov, Isaac
The permutations generated by structural isomerism in proteins could be demonstrated more convincingly and realistically if the amino acid compositions of actual proteins were taken into consideration.
Asimov, Isaac J. Chem. Educ. 1954, 31, 125.
Proteins / Peptides |
Molecular Properties / Structure |
Amino Acids |
Constitutional Isomers
Letters to the editor  Standen, Anthony
Helping students to understand the experiment they have done is a difficult task; experiments that claim to "prove" physical laws or determine Avogadro's number compound this problem.
Standen, Anthony J. Chem. Educ. 1954, 31, 46.
Stoichiometry
Differentiating between primary, secondary, and tertiary alcohols  Ritter, Frank O.
A primary or secondary aliphatic alcohol dissolved in pure glacial acetic acid decolorizes a water solution of KMnO4, while a tertiary alcohol fails to do so; a secondary alcohol will continue to react with KMnO4 solution if a little concentrated sulfuric acid is added, while a primary alcohol does not.
Ritter, Frank O. J. Chem. Educ. 1953, 30, 395.
Molecular Properties / Structure |
Alcohols |
Quantitative Analysis
Letters  Nair, C. N.
A mathematical derivation demonstrating that masses of different elements equal to their atomic weights must contain the same number of atoms.
Nair, C. N. J. Chem. Educ. 1953, 30, 155.
Stoichiometry |
Atomic Properties / Structure
Recent history of the notion of a chemical species  Bulloff, Jack J.
Quantum and nuclear chemistry have challenged the doctrine that chemical elements are homogeneous entities while studies of the structure and stoichiometry of solids invite a change in our ideas of definite proportions in chemical combinations.
Bulloff, Jack J. J. Chem. Educ. 1953, 30, 78.
Nuclear / Radiochemistry |
Isotopes |
Stoichiometry |
Solids
Miscellaneous experiments  Damerel, Charlotte I.
Offers three demonstrations, the first involving molecular models illustrating the generation of optical isomers in a laboratory synthesis; the second demonstrating that liquid sodium chloride conducts and electric current; and the third examining the flow of electric current in an electrochemical galvanic cell.
Damerel, Charlotte I. J. Chem. Educ. 1952, 29, 296.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
An experiment on the law of multiple proportions  Secrist, John H.
It is suggested that the reduction of cuprous and cupric oxides serves as a satisfactory laboratory demonstration of the law of multiple proportions.
Secrist, John H. J. Chem. Educ. 1952, 29, 283.
Stoichiometry |
Oxidation / Reduction
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Cork-ball experiments on crystalline and molecular structure  Davidson, Norman
Cork balls and pins are used to construct models of crystalline and molecular structures.
Davidson, Norman J. Chem. Educ. 1952, 29, 249.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling
Effects of molecular shapes  Foster, Laurence S.
A brief discussion of basic molecular shapes and how they help to determine the physical and chemical properties of substances.
Foster, Laurence S. J. Chem. Educ. 1952, 29, 156.
Molecular Properties / Structure
On accenting observations in chemistry  Campbell, J. A.
A chemical equations is, for many a student, such a complete abstraction that he would be hard put to describe the actual observations that would be made in a process for which he was supplied the complete equation.
Campbell, J. A. J. Chem. Educ. 1951, 28, 634.
Reactions |
Stoichiometry |
Nomenclature / Units / Symbols
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Letters  Seeger, Walfried
Commentary on determining the combining weights of zinc or cadmium by dissolving them in HCl or aqua regia.
Seeger, Walfried J. Chem. Educ. 1951, 28, 397.
Stoichiometry
Letters  Ferreira, Ricardo C.
The author suggests a different approach to instruction regarding balancing chemical equations.
Ferreira, Ricardo C. J. Chem. Educ. 1951, 28, 285.
Stoichiometry
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure
Molecular models of silicates for lecture demonstrations  Noyce, William K.
Describes the construction and use of molecular models of silicates for lecture demonstrations.
Noyce, William K. J. Chem. Educ. 1951, 28, 29.
Molecular Properties / Structure |
Molecular Modeling