TIGER

Journal Articles: 62 results
Interactive Demonstrations for Mole Ratios and Limiting Reagents  Crystal Wood and Bryan Breyfogle
The objective of this study was to develop interactive lecture demonstrations based on conceptual-change learning theory. Experimental instruction was designed for an introductory chemistry course for nonmajors to address misconceptions related to mole ratios and limiting reagents
Wood, Crystal; Breyfogle, Bryan. J. Chem. Educ. 2006, 83, 741.
Learning Theories |
Reactions |
Stoichiometry |
Student-Centered Learning
Revisiting Molar Mass, Atomic Mass, and Mass Number: Organizing, Integrating, and Sequencing Fundamental Chemical Concepts  Stephen DeMeo
It is often confusing for introductory chemistry students to differentiate between molar mass, atomic mass, and mass number as well as to conceptually understand these ideas beyond a surface level. One way to improve understanding is to integrate the concepts, articulate their relationships, and present them in a meaningful sequence.
DeMeo, Stephen. J. Chem. Educ. 2006, 83, 617.
Descriptive Chemistry |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Physical Properties
Evaluating Students' Conceptual Understanding of Balanced Equations and Stoichiometric Ratios Using a Particulate Drawing  Michael J. Sanger
A total of 156 students were asked to provide free-response balanced chemical equations for a classic multiple-choice particulate-drawing question first used by Nurrenbern and Pickering. The balanced equations and the number of students providing each equation are reported in this study. The most common student errors included a confusion between the concepts of subscripts and coefficients and including unreacted chemical species in the equation.
Sanger, Michael J. J. Chem. Educ. 2005, 82, 131.
Stoichiometry |
Kinetic-Molecular Theory
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
The Origin of Stoichiometry Problems  William B. Jensen
In response to a reader query, the column discusses the question of when quantitative stoichiometry problems first began to appear in introductory textbooks, and especially the role of the American chemist, Josiah Parsons Cooke, in this process.
Jensen, William B. J. Chem. Educ. 2003, 80, 1248.
Stoichiometry
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Alternative units in which to express atomic weight.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  George Gorin
Alternative units in which to express atomic weight.
Gorin, George. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Learning the Functional Groups: Keys to Success  Shannon Byrd and David P. Hildreth
Classification activity and scheme for learning functional groups.
Byrd, Shannon; Hildreth, David P. J. Chem. Educ. 2001, 78, 1355.
Nomenclature / Units / Symbols
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Correctly Expressing Atomic Weights   Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Proposal on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2000, 77, 1438.
Nomenclature / Units / Symbols |
Learning Theories
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
CheMentor Software System by H. A. Peoples  reviewed by Brian P. Reid
CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit.
Reid, Brian P. J. Chem. Educ. 1997, 74, 1047.
Stoichiometry
A Simple, Discovery-Based Laboratory Exercise: The Molecular Mass Determination of Polystyrene  Greg A. Slough
Identification of an unknown polymer using silica gel TLC sheets and IR spectroscopy.
Slough, Greg A. J. Chem. Educ. 1995, 72, 1031.
Stoichiometry |
IR Spectroscopy |
Molecular Properties / Structure |
Thin Layer Chromatography
Conservation of Matter  Meyer, Edwin F.
Letter pointing out that the demonstration referred to allows a quantitative measurement of the molecular weight of carbon dioxide.
Meyer, Edwin F. J. Chem. Educ. 1995, 72, 764.
Physical Properties |
Stoichiometry
Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry  Gorin, George
Demonstrates that the mole is little different from other units of measurement.
Gorin, George J. Chem. Educ. 1994, 71, 114.
Nomenclature / Units / Symbols
The metric system  Mason, Lynn M.
Metric conversions commonly encountered in chemistry and biology, with tests over each lesson.
Mason, Lynn M. J. Chem. Educ. 1992, 69, 818.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Chemometrics
A BASIC program for computing reactant combinations from approximate elemental analysis data  Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu
129. A computer program has been developed for determining the number of moles of reactants participating in a reaction in addition to calculating the molecular formula for the analytical data.
Senthilkumar, Udayampalayam P.; Vijayalakshmi, Rajagopalan; Jeyaraman, Ramasubbu J. Chem. Educ. 1991, 68, 773.
Laboratory Computing / Interfacing |
Stoichiometry |
Quantitative Analysis
Avogadro's number, moles, and molecules  McCullough, Thomas, CSC
A simple diagram that relates Avogadro's number, moles, and number of atoms / molecules.
McCullough, Thomas, CSC J. Chem. Educ. 1990, 67, 783.
Nomenclature / Units / Symbols |
Stoichiometry
Pop-up units converter  Filby, Gordon; Klusmann, Martin
Program that provides conversion factors and calculations among a variety of units.
Filby, Gordon; Klusmann, Martin J. Chem. Educ. 1990, 67, 770.
Nomenclature / Units / Symbols
Analysis of organic acids: A freshman laboratory experiment  Griswold, John R.; Rauner, Richard A.
In this experiment students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol.
Griswold, John R.; Rauner, Richard A. J. Chem. Educ. 1990, 67, 516.
Acids / Bases |
Titration / Volumetric Analysis |
Stoichiometry |
Precipitation / Solubility
A proposition about the quantity of which mole is the SI unit  Rocha-Filho, Romeu C.
In this note, after a brief review of the evolution of the meaning of the term mole and a discussion of intrinsic properties of matter, it is proposed that the quantity measured using the SI base unit mole is numerousness, an intrinsic property of samples of matter.
Rocha-Filho, Romeu C. J. Chem. Educ. 1990, 67, 139.
Stoichiometry
Stoichiometry to the rescue (a calculation challenge)   Ramette, Richard W.
Presentation of a question that would be suitable for a take-home exam or a problem set in a general or analytical chemistry course.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 800.
Amines / Ammonium Compounds |
Gases |
Stoichiometry
A multi-topic problem for general chemistry   Burness, James H.
A 'marathon' problem which requires specific knowledge in several areas while requiring that the student recognize how these areas are related.
Burness, James H. J. Chem. Educ. 1988, 65, 145.
Stoichiometry |
Transport Properties |
Electrolytic / Galvanic Cells / Potentials |
Crystals / Crystallography
Reaction stoichiometry and suitable "coordinate systems"  Tykodi, R. J.
Methods for dealing with problems involving reactions stoichiometry: unitize and scale up, factor-label procedure, de Donder ratios, and titration relations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 958.
Stoichiometry |
Titration / Volumetric Analysis |
Chemometrics
An aqueous problem with an interesting solution  Thomas, Nicholas C.
Flow diagram outlining the steps to calculating the number of water molecules in one drop of water and the length of all these molecules stretched end to end.
Thomas, Nicholas C. J. Chem. Educ. 1987, 64, 611.
Water / Water Chemistry |
Stoichiometry
What can we do about Sue: A case study of competence  Herron, J. Dudley; Greenbowe, Thomas J.
A case study of a "successful" student who is representative of other successful students that are not prepared to solve novel problems.
Herron, J. Dudley; Greenbowe, Thomas J. J. Chem. Educ. 1986, 63, 528.
Stoichiometry |
Learning Theories
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
Why teach the gas laws?  Davenport, Derek A.
Justification for teaching the gas laws.
Davenport, Derek A. J. Chem. Educ. 1985, 62, 505.
Gases |
Stoichiometry
Toward a more rational terminology  Tykodi, R. J.
Recommended changes in the terms atomic weight, molecular weight, gram atomic / molecular / formula weights, gram equivalent weight, specific heat / volume / density, and chemical equation.
Tykodi, R. J. J. Chem. Educ. 1985, 62, 241.
Nomenclature / Units / Symbols
A novel classification of concentration units  MacCarthy, Patrick
Concentration units can be a source of confusion for students. This article presents a treatment on this topic that may help students understand the differences between these units.
MacCarthy, Patrick J. Chem. Educ. 1983, 60, 187.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Investigation of secondary school students' understanding of the mole concept in Italy  Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori
Results of a small-scale investigation to ascertain the knowledge of chemistry among students entering first-year university courses in science.
Cervellati, R.; Montuschi, A.; Perugini, D.; Grimellini-Tomasini, N.; Balandi, B. Pecori J. Chem. Educ. 1982, 59, 852.
Stoichiometry
Setting high standards   Feinstein, H. I.
A question is contributed that will scaffold student learning of quantitative analysis skills.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 567.
Quantitative Analysis |
Stoichiometry
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Adopting SI units in introductory chemistry  Davies, William G.; Moore, John W.
Conventions associated with SI units, conversion relationships commonly used in chemistry, and a roadmap method for solving stoichiometry problems.
Davies, William G.; Moore, John W. J. Chem. Educ. 1980, 57, 303.
Nomenclature / Units / Symbols |
Chemometrics
The chemical formula. Part I: Development  Kolb, Doris
The origin of the chemical formula, the problem of isomers, nucleus theory, radical theories, residue theory, type theory, extension of the type theory, valence theory, graphic formulas, and contribution of Cannizzaro.
Kolb, Doris J. Chem. Educ. 1978, 55, 44.
Stoichiometry
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
The identity of chemical substances: A first laboratory experiment for elementary chemistry students  Fernandez, Jack E.
Students are given two pure substances and asked to determine whether they are the same or different.
Fernandez, Jack E. J. Chem. Educ. 1975, 52, 726.
Stoichiometry
The mole and Avogadro's number. A forced fusion of ideas for teaching purposes  Hawthorne, Robert M., Jr.
History of Avogadro's number and the mole and their increasing association with one another.
Hawthorne, Robert M., Jr. J. Chem. Educ. 1973, 50, 282.
Stoichiometry
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
Avogadro's number from the volume of a monolayer  Moynihan, Cornelius T.; Goldwhite, Harold
This article comments on and makes suggestions regarding the conduct of and treatment of data in the popular experiment in which Avogadro's number is estimated from the volume of a monolayer on a water surface.
Moynihan, Cornelius T.; Goldwhite, Harold J. Chem. Educ. 1969, 46, 779.
Stoichiometry |
Molecular Properties / Structure
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Application of diophantine equations to problems in chemistry  Crocker, Roger
The mathematical method of diophantine equations is shown to apply to two problems in chemistry: the balancing of chemical equations, and determining the molecular formula of a compound.
Crocker, Roger J. Chem. Educ. 1968, 45, 731.
Mathematics / Symbolic Mathematics |
Stoichiometry
The MKS temperature scale  Georgian, John C.
A temperature scale to fit into the MKS system of units is proposed.
Georgian, John C. J. Chem. Educ. 1966, 43, 414.
Nomenclature / Units / Symbols
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Minimum molecular weight approach for determining empirical formulas  Harwood, H. James
Describes the determination of empirical formulas from "minimum molecular weight," the molecular weight divided by the number of atoms of an element present in a molecule.
Harwood, H. James J. Chem. Educ. 1965, 42, 222.
Molecular Properties / Structure |
Stoichiometry
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
The carbon-12 scale of atomic masses  Labbauf, Abbas
Examines the concept of atomic weight and the rise and coexistence of the oxygen and carbon scales of atomic mass.
Labbauf, Abbas J. Chem. Educ. 1962, 39, 282.
Nomenclature / Units / Symbols |
Physical Properties
Editorially speaking  Kieffer, William F.
Discusses differences between mass and weight.
Kieffer, William F. J. Chem. Educ. 1962, 39, 275.
Physical Properties |
Nomenclature / Units / Symbols
Molecular weights by cryoscopy: A general chemistry laboratory experiment  Mikulak, Robert; Runquist, Olaf
Presents an experiment determining the cryoscopic constant of cyclohexanol.
Mikulak, Robert; Runquist, Olaf J. Chem. Educ. 1961, 38, 557.
Nomenclature / Units / Symbols
Moles and equivalents: Quantities of matter  Cohen, Irwin
Examines the various means of describing and measuring quantities of matter, including the mole and the equivalent.
Cohen, Irwin J. Chem. Educ. 1961, 38, 555.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Foy, John R.
Suggests a modification to an earlier proposed definition for the term mole.
Foy, John R. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Bieber, Theodore I.
Provides a concise definition for the mole.
Bieber, Theodore I. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Cohen, Irwin
Proposes use of the term cardinal weight.
Cohen, Irwin J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
A redefinition of "mole"  Lee, Shiu
Proposes improvements to a set of terms related to gram formula weights.
Lee, Shiu J. Chem. Educ. 1961, 38, 549.
Stoichiometry |
Nomenclature / Units / Symbols
Editorially speaking  Kieffer, William K.
Calls attention to an article in this issue of the Journal on the mole concept.
Kieffer, William K. J. Chem. Educ. 1961, 38, 51.
Stoichiometry
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Solution of problems in chemistry  Trousdale, Everett A.
Presents a method for analyzing and solving mole calculations.
Trousdale, Everett A. J. Chem. Educ. 1958, 35, 299.
Chemometrics |
Stoichiometry
Estimation of Avogadro's number: An experiment for general chemistry laboratory  King, L. Carroll; Neilsen, E. K.
This procedure involves measuring a film of oleic acid on water.
King, L. Carroll; Neilsen, E. K. J. Chem. Educ. 1958, 35, 198.
Stoichiometry
Letters  Pokras, Lewis
The author proposes the term "senacule" as analagous to molecule and to be used to refer to ionic species.
Pokras, Lewis J. Chem. Educ. 1958, 35, 159.
Nomenclature / Units / Symbols
Gram equivalent weights  Meldrum, William B.
The purpose of this paper is to review briefly the subject of equivalent weights and the more directly applicable gram equivalents and to offer a general method by which they may be deduced from chemical equations.
Meldrum, William B. J. Chem. Educ. 1955, 32, 48.
Nomenclature / Units / Symbols |
Stoichiometry
Otis Coe Johnson and redox equations  Bennett, George W.
It is the purpose of this paper to point out what is basic verity and what is empiricism in Johnson's method for balancing oxidation-reduction equations.
Bennett, George W. J. Chem. Educ. 1954, 31, 157.
Oxidation / Reduction |
Oxidation State |
Stoichiometry
Letters to the editor  Standen, Anthony
Helping students to understand the experiment they have done is a difficult task; experiments that claim to "prove" physical laws or determine Avogadro's number compound this problem.
Standen, Anthony J. Chem. Educ. 1954, 31, 46.
Stoichiometry