TIGER

Journal Articles: 686 results
Molecular Models of Peroxides and Albendazoles  William F. Coleman
This month's Featured Molecules are albendazole and benzoyl peroxide.
Coleman, William F. J. Chem. Educ. 2008, 85, 1710.
Consumer Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical  Kate J. Graham, Brian J. Johnson, T. Nicholas Jones, Edward J. McIntee, and Chris P. Schaller
Describes an open-ended laboratory practical that challenges students to evaluate when different purification techniques are appropriate.
Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P. J. Chem. Educ. 2008, 85, 1644.
IR Spectroscopy |
Microscale Lab |
Molecular Properties / Structure |
NMR Spectroscopy |
Physical Properties |
Separation Science
Molecular Models of Natural Products  William F. Coleman
This months Featured Molecules focus on natural products and include blattellquinone, a sex pheromone secreted by female German cockroaches to attract males, and (R)-limonene, a secondary metabolite found in citrus fruit peels.
Coleman, William F. J. Chem. Educ. 2008, 85, 1584.
Molecular Modeling |
Molecular Properties / Structure |
Natural Products
Molecules and Medicine (E. J. Corey, Barbara Czakó, and László Kürti)  Robert E. Buntrock
Looking for a book on common drugs and pharmaceuticals? On diseases and medical conditions? On pharmacology? In addition, do you need some background in chemistry to handle all of this information? If you want all of this, and in addition want it under one cover, then this is the book for you.
Buntrock, Robert E. J. Chem. Educ. 2008, 85, 1495.
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Molecular Properties / Structure |
Proteins / Peptides |
Synthesis |
Toxicology
Author of "The Flyleaf Periodic Table" Responds  Roy W. Clark
Since publication of our letter about the multiple forms of periodic tables presented in the flyleaf of textbooks I have received many replies. To these readers and any others who were puzzled by our recommendation I offer this explanation.
Clark, Roy W. J. Chem. Educ. 2008, 85, 1493.
Periodicity / Periodic Table
The Periodic Table: Facts or Committees?  William B. Jensen
I would like to offer two observations relative to the recent letter of Clark and White on the representation of the f-block elements in the periodic table that relate to some disturbing trends in the attitudes of the chemical community towards the nature and use of the periodic tableattitudes that are implicit, though perhaps not intentionally so, in their letter.
Jensen, William B. J. Chem. Educ. 2008, 85, 1491.
Periodicity / Periodic Table
Response to "The Flyleaf Periodic Table"  Laurence Lavelle
Clark and White wonder why the chemistry education community has not uniformly adopted just one form of the periodic table. Part of the answer is that the majority who are silent on this issue do not want to be attacked by the vocal proponents who insist that lanthanum and actinium must be in the f-block and lutetium and lawrencium must be in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1491.
Periodicity / Periodic Table
The Flyleaf Table: An Alternative  Philip J. Stewart
In their consideration of three ways of treating the f-block elements in the standard periodic table, Clark and White opt to footnote a set 15-elements-wide, including both La and Lu, Ac, and Lr. Their only grounds seem to be that this is what IUPAC chose in 2005, but that decision sounds like an attempt to please everyone, which in the end will please no one.
Stewart, Philip J. J. Chem. Educ. 2008, 85, 1490.
Periodicity / Periodic Table
Artistic Periodic Table in Honor of Mendeleev  Antonio Marchal Ingrain
A large periodic table was placed on the main faade of the Sciences Building at the University of Jan (Spain) in November 2007 in honor of Mendeleev on the 100th anniversary of his death and in recognition of the Spanish Year of Science.
Ingrain, Antonio Marchal. J. Chem. Educ. 2008, 85, 1489.
Periodicity / Periodic Table
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
Molecular Models of Polymers Used in Sports Equipment  William F. Coleman
The Featured Molecules this month are a number of monomers and their associated polymers used in making equipment for a variety of high-impact sports. The molecules provide students with an introduction to an important area of applied chemistry and also enable them to examine complex structures using the models they have seen applied to small molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1456.
Molecular Modeling |
Molecular Properties / Structure |
Applications of Chemistry
Elemental Chem Lab  Antonio Joaquín Franco Mariscal
Three puzzles use the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs.
Franco Mariscal, Antonio Joaquín. J. Chem. Educ. 2008, 85, 1370.
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols |
Periodicity / Periodic Table
Molecular Models of EDTA and Other Chelating Agents  William F. Coleman
EDTA and related chelating agents, including EGTA, DCTA, NTA, BAPTA, and DTPA, are this months Featured Molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1296.
Molecular Modeling |
Molecular Properties / Structure
A Non-Mercury Thermometer Alternative for Use in Older Melting Point Apparatuses  Lois K. Ongley, Clayton S. Kern, and Barry W. Woods
This work demonstrates that lab-calibrated thermocouples are a statistically accurate and economically reasonable substitute for mercury thermometers to measure the melting point temperature for organic compounds in older Mel-Temp devices.
Ongley, Lois K.; Kern, Clayton S.; Woods, Barry W. J. Chem. Educ. 2008, 85, 1263.
Calibration |
Laboratory Equipment / Apparatus |
Molecular Properties / Structure |
Physical Properties |
Laboratory Management
Helping Students Assess the Relative Importance of Different Intermolecular Interactions  Paul G. Jasien
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipoledipole interactions, and H-bonding on the normal boiling points for a series of simple, straight-chain organic compounds. Application of this model may be useful in addressing student misconceptions related to the additivity of intermolecular interactions.
Jasien, Paul G. J. Chem. Educ. 2008, 85, 1222.
Chemometrics |
Molecular Properties / Structure |
Noncovalent Interactions |
Physical Properties
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
Stilling Waves with Ordered Molecular Monolayers  Ed Vitz
The amazing ability of a film of oil one molecule thick to dissipate the relatively large energy of water waves can be readily demonstrated, but an explanation of the effect has been elusive until recently.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1064.
Lipids |
Molecular Properties / Structure |
Noncovalent Interactions |
Surface Science |
Water / Water Chemistry |
Fatty Acids
Molecular Models of Real and Mock Illicit Drugs from a Forensic Chemistry Activity  William F. Coleman
The Featured Molecules for this month have been drawn from a forensic chemistry exercise in which model compounds are used to simulate the behavior of various drugs in a series of chemical tests. The compounds considered include chlorpromazine (Thorazine) and phenothiazine, both involved in the manufacture of antipsychotic drugs.
Coleman, William F. J. Chem. Educ. 2008, 85, 880.
Drugs / Pharmaceuticals |
Forensic Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Identification of an Unknown Compound by Combined Use of IR, 1H NMR, 13C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination  Louis J. Liotta and Magdalena James-Pederson
In this introductory organic chemistry experiment, students are expected to operate NMR, IR, and GCMS instrumentation to obtain spectra which are interpreted to elucidate the chemical structure of the assigned compounds without the benefit of a list of possible unknowns.
Liotta, Louis J.; James-Pederson, Magdalena. J. Chem. Educ. 2008, 85, 832.
Gas Chromatography |
Instrumental Methods |
IR Spectroscopy |
Mass Spectrometry |
Molecular Properties / Structure |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
The Flyleaf Periodic Table  Roy W. Clark and Gary D. White
The restriction of periodic tables to the flyleafs of textbooks results in the inconsistent vivisection and subscripting of the lanthanoids and actinoids.
Clark, Roy W.; White, Gary D. J. Chem. Educ. 2008, 85, 497.
Periodicity / Periodic Table
Molecular Models of Antioxidants and Radicals  William F. Coleman
This months Featured Molecules include L-ascorbic acid (vitamin C), trans-cinnamic acid, citric acid monohydrate, Fremy's salt (nitrosodisulfonate)dianion, hydroquinone, salicylic acid, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), and (R,R,R)-a-tocopherol (vitamin E).
Coleman, William F. J. Chem. Educ. 2008, 85, 464.
Applications of Chemistry |
Molecular Properties / Structure |
Molecular Modeling
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Molecular Models of Lycopene and Other Carotenoids  William F. Coleman
This month's Featured Molecules include the carotenoids lycopene and beta-carotene.
Coleman, William F. J. Chem. Educ. 2008, 85, 320.
Food Science |
Molecular Modeling |
Molecular Properties / Structure
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
Reply to A. F.Photooxidation of Bilirubin to Biliverdin and Bilirubin Structure  William F. Coleman
The JCE Featured Molecules Editor replies to criticisms of a previous Featured Molecule.
Coleman, William F. J. Chem. Educ. 2008, 85, 202.
Dyes / Pigments |
Photochemistry |
Molecular Properties / Structure |
Molecular Modeling
New! JCE Web-Ready Software for All Your Students  
Institutions and individuals can now subscribe to JCE Web Software and access its entire collection of Web-ready titles.
J. Chem. Educ. 2008, 85, 170.
Professional Development |
Periodicity / Periodic Table |
Enrichment / Review Materials
The Different Periodic Tables of Dmitrii Mendeleev  Michael Laing
Between 1869 and 1905 the Russian chemist Dmitrii Mendeleev published several tables with different arrangements of the chemical elements. Four of these are compared with periodic tables by Russian scientists from 1934 and 1969.
Laing, Michael. J. Chem. Educ. 2008, 85, 63.
Descriptive Chemistry |
Enrichment / Review Materials |
Periodicity / Periodic Table
The New Periodic Table Live!  
We have brought back everyone's favorite program: Periodic Table Live! It has seen many improvements while retaining its sterling qualities. Perhaps best of all, the current version is available free to everyone from JCE Online and the ChemEd Digital Library.
J. Chem. Educ. 2008, 85, 22.
Periodicity / Periodic Table
Molecular Models of Dyes  William F. Coleman
The JCE Featured Molecules for this month include the triarylmethane and xanthene dyes fluorescein, erythrosin B, thymolphthalein, and rhodamine B.
Coleman, William F. J. Chem. Educ. 2007, 84, 1798.
Dyes / Pigments |
Molecular Modeling |
Molecular Properties / Structure
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
Origin of the Formulas of Dihydrogen and Other Simple Molecules  Andrew Williams
The logic and experimental data are described with which chemists originally deduced the formulas of fundamental substances such as H2, H2O, Cl2, NH3, CH4, and HCl. It is argued that high school and first-year undergraduate students would gain substantially from exposure to this process.
Williams, Andrew. J. Chem. Educ. 2007, 84, 1779.
Enrichment / Review Materials |
Molecular Properties / Structure
Dancing Crystals: A Dramatic Illustration of Intermolecular Forces  Donald W. Mundell
Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution and previous demonstrations of surface motion are explored.
Mundell, Donald W. J. Chem. Educ. 2007, 84, 1773.
Aromatic Compounds |
Liquids |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Physical Properties |
Surface Science |
Noncovalent Interactions
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
Molecular Models of Compounds in Maple Syrup  William F. Coleman
This months Featured Molecules includes compounds found in honey and maple syrup.
Coleman, William F. J. Chem. Educ. 2007, 84, 1650.
Molecular Properties / Structure |
Molecular Modeling
Structures for the ABO(H) Blood Group: Which Textbook Is Correct?  John M. Risley
Six textbooks and two Internet sites show different structures for the A, B, and O(H) antigens of the ABO(H) blood group, but none of them are correct. This article emphasizes the correct molecular structures because it is important to distinguish between those carbohydrates that make up the antigens and those that are not part of the antigenic structures.
Risley, John M. J. Chem. Educ. 2007, 84, 1546.
Bioorganic Chemistry |
Carbohydrates |
Natural Products |
Molecular Properties / Structure
Pre-Service Teacher as Researcher: The Value of Inquiry in Learning Science  Janice M. Hohloch, Nathaniel Grove, and Stacey Lowery Bretz
An action research project to reform a chemistry course required of elementary and middle childhood pre-service teachers incorporated a hands-on approach to learning chemistry, modeled teaching science through inquiry, and emphasized the value of research experience.
Hohloch, Janice M.; Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2007, 84, 1530.
Chromatography |
Molecular Properties / Structure |
Nonmajor Courses |
Professional Development |
Undergraduate Research |
Student-Centered Learning |
Standards National / State
Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet  Bruce Mattson
When a neodymium magnet is brought near a suspended glass tube containing a small amount of liquid oxygen, the tube is attracted to the magnet, demonstrating oxygen's paramagnetism. In larger quantities the blue color of liquid oxygen is readily observable.
Mattson, Bruce. J. Chem. Educ. 2007, 84, 1296.
Descriptive Chemistry |
Gases |
Magnetic Properties |
MO Theory |
Molecular Properties / Structure
Mendeleev on the Periodic Law: Selected Writings, 1869–1905 (William B. Jensen, ed.)  Theodor Benfey
The periodic properties of the elements is the chemists central organizing principle. Here are 13 of Mendeleevs complete or partial publications that illuminate his developing ideas on periodicity.
Benfey, Theodor. J. Chem. Educ. 2007, 84, 1279.
Descriptive Chemistry |
Periodicity / Periodic Table |
Theoretical Chemistry
News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor–Acceptor Kinships"  Henry A. Bent and Frank Weinhold
Proposes that alternative display topologies such as a 2D "left-step" or "step-pyramid" table or 3D "periodic towers" can supplement or supplant the standard periodic table by better emphasizing higher-order patterns of chemical association and reactivity, rather than the physical resemblances of standard-state elemental substances.
Bent, Henry A.; Weinhold, Frank. J. Chem. Educ. 2007, 84, 1145.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Mistake of Having Students Be Mendeleev for Just a Day  Brett Criswell
This article discusses several conceptual features underlying a genuine understanding of the periodic table and describes a set of activities focused on promoting such awareness in students using the FERA (focus, explore, reflect, and apply) learning cycle model.
Criswell, Brett. J. Chem. Educ. 2007, 84, 1140.
Periodicity / Periodic Table
CARBOHYDECK: A Card Game To Teach the Stereochemistry of Carbohydrates  Manuel João Costa
This paper describes CARBOHYDECK, a card game that may replace or complement lectures identifying and differentiating monosaccharide isomers.
Costa, Manuel João. J. Chem. Educ. 2007, 84, 977.
Aldehydes / Ketones |
Carbohydrates |
Molecular Properties / Structure |
Stereochemistry |
Enrichment / Review Materials |
Student-Centered Learning
A2: Element or Compound?  Marilyne Stains and Vicente Talanquer
Particulate questions are used to investigate the mental association between the concepts of molecule and compound in chemistry students with different levels of academic preparation. A significant proportion of students misclassify molecular elements as chemical compounds, and this association is stronger in students with higher levels of preparation.
Stains, Marilyne; Talanquer, Vicente. J. Chem. Educ. 2007, 84, 880.
Molecular Properties / Structure
Molecular Models of DNA  William F. Coleman
The Featured Molecules this month are components of DNA and include purine and pyrimidine;the four corresponding deoxyribonucleosides and deoxyribonucleotides; a two-base-pair fragment showing the AT and GC hydrogen-bonded complements; several small 24-base-pair DNA fragmentspolyAT, polyGC; and a random array of bases.
Coleman, William F. J. Chem. Educ. 2007, 84, 809.
Molecular Modeling |
Molecular Properties / Structure
Aromatic Bagels: An Edible Resonance Analogy  Shirley Lin
Describes a classroom demonstration involving the use of a bagel and cream cheese as an analogy for benzene that emphasizes the deficiencies of using a single Lewis structure to describe this structure.
Lin, Shirley. J. Chem. Educ. 2007, 84, 779.
Aromatic Compounds |
Lewis Structures |
Resonance Theory |
Molecular Properties / Structure
Primo Levi and The Periodic Table: Teaching Chemistry Using a Literary Text  Viktoria Klara Lakatos Osorio, Peter Wilhelm Tiedemann, and Paulo Alves Porto
Describes the use of a problem-solving activity with first-year undergraduate students based on an excerpt from Primo Levi's book The Periodic Table.
Osorio, Viktoria Klara Lakatos; Tiedemann, Peter Wilhelm; Porto, Paulo Alves. J. Chem. Educ. 2007, 84, 775.
Metals |
Periodicity / Periodic Table |
Reactions |
Student-Centered Learning
The Origin of the s, p, d, f Orbital Labels  William B. Jensen
Traces the origins of the s, p, d, and f orbital labels.
Jensen, William B. J. Chem. Educ. 2007, 84, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Electronic Structure Principles and Aromaticity  P. K. Chattaraj, U. Sarkar, and D. R. Roy
Electronic structure principles dictate that aromatic molecules are associated with low energy, polarizability, and electrophilicity but high hardness values, while antiaromatic molecules possess the opposite characteristics. These relationships are demonstrated through B3LYP/6-311G** calculations on benzene and cyclobutadiene.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. J. Chem. Educ. 2007, 84, 354.
Aromatic Compounds |
Molecular Properties / Structure |
Quantitative Analysis |
Theoretical Chemistry |
Alkenes |
Quantum Chemistry
Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling  John A. Bumpus, Anne Lewis, Corey Stotts, and Christopher J. Cramer
Four experiments suitable for use in the undergraduate instructional laboratory demonstrate the use of computational chemistry and molecular-modeling procedures to calculate selected physical and chemical properties of several high explosives and other energetic compounds.
Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J. J. Chem. Educ. 2007, 84, 329.
Computational Chemistry |
Gases |
Physical Properties |
Molecular Modeling |
Molecular Properties / Structure
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
A Mnemonic for Representative Element Groups  Timothy Chambers and Jennifer Arab
It is unclear whether memorizing nonsense-words is any simpler than the task it aims to ease.
Chambers, Timothy; Arab, Jennifer. J. Chem. Educ. 2006, 83, 1761.
Nonmajor Courses |
Periodicity / Periodic Table
A Mnemonic for Representative Element Groups  Timothy Chambers and Jennifer Arab
It is unclear whether memorizing nonsense-words is any simpler than the task it aims to ease.
Chambers, Timothy; Arab, Jennifer. J. Chem. Educ. 2006, 83, 1761.
Nonmajor Courses |
Periodicity / Periodic Table
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Molecular Model of Creatine Synthesis  William F. Coleman
The Featured Molecules for this month come from the synthesis of creatine and illustrate some of the limitations associated with the computation of molecular structure.
Coleman, William F. J. Chem. Educ. 2006, 83, 1657.
Molecular Modeling |
Molecular Properties / Structure |
Bioorganic Chemistry
Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry  David G. DeWit
Describes a course module designed to afford practice in applying the principles encountered throughout the general chemistry sequence to understanding and predicting chemical reactivity and the products of simple inorganic reactions.
DeWit, David G. J. Chem. Educ. 2006, 83, 1625.
Acids / Bases |
Descriptive Chemistry |
Learning Theories |
Metals |
Nonmetals |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions
Astrochemistry Examples in the Classroom  Reggie L. Hudson
In this article some recent developments in astrochemistry are suggested as examples for the teaching of acid-base chemistry, molecular structure, and chemical reactivity. Suggestions for additional reading are provided, with an emphasis on readily-accessible materials.
Hudson, Reggie L. J. Chem. Educ. 2006, 83, 1611.
Acids / Bases |
Astrochemistry |
IR Spectroscopy |
Molecular Properties / Structure |
Brønsted-Lowry Acids / Bases
Fountain Pen Ink  William F. Coleman
This months Featured Molecules are involved in the composition and stability of inks and include gallic and gallotannic acid.
Coleman, William F. J. Chem. Educ. 2006, 83, 1568.
Molecular Modeling |
Molecular Properties / Structure
A Polymer in Everyday Life: The Isolation of Poly(vinyl alcohol) from Aqueous PVA Glues. An Undergraduate Chemistry Experiment   Yueh-Huey Chen and Jing-Fun Yaung
The IR spectra of three common and related polymers are used to identify functional groups and rationalize molecular structures.
Chen, Yueh-Huey; Yaung, Jing-Fun. J. Chem. Educ. 2006, 83, 1534.
Applications of Chemistry |
Aqueous Solution Chemistry |
Esters |
IR Spectroscopy |
Molecular Properties / Structure
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Photochemical Oxidation of Bilirubin to Biliverdin  William F. Coleman
The Featured Molecules for this month are related to the photochemical oxidation of bilirubin to biliverdin. Biliverdin is a breakdown product of hemoglobin which is reduced by biliverdin reductase to bilirubin, the molecule that is responsible for neonatal jaundice.
Coleman, William F. J. Chem. Educ. 2006, 83, 1329.
Photochemistry |
Molecular Modeling |
Molecular Properties / Structure
Using Physical Models of Biomolecular Structures To Teach Concepts of Biochemical Structure and Structure Depiction in the Introductory Chemistry Laboratory  Gordon A. Bain, John Yi, Mithra Beikmohamadi, Timothy M. Herman, and Michael A. Patrick
Custom-made physical models of alpha-helices and beta-sheets, the zinc finger moiety, beta-globin, and green fluorescent protein are used to introduce students in first-year chemistry to the primary, secondary, and tertiary structure of proteins.
Bain, Gordon A.; Yi, John; Beikmohamadi, Mithra; Herman, Timothy M.; Patrick, Michael A. J. Chem. Educ. 2006, 83, 1322.
Amino Acids |
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Unique Demonstration Model of DNA  Jonathan P. L. Cox
Describes a physical demonstration model of DNA for the classroom. The model comprises two types of building blocks that can be put together rapidly to produce an abstract structure that portrays several of the gross architectural features of idealized B-DNA.
Cox, Jonathan P. L. J. Chem. Educ. 2006, 83, 1319.
Molecular Biology |
Molecular Properties / Structure |
Student-Centered Learning |
Nucleic Acids / DNA / RNA
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Copper and Nickel Complex Ions  William F. Coleman
The Featured Molecules this month include all eight isomeric forms of [Ni(en)3]2+, demonstrating the effects of ligand backbone conformation.
Coleman, William F. J. Chem. Educ. 2006, 83, 1248.
Amino Acids |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Amino Acids  William F. Coleman
The Featured Molecules this month are the 20 standard alpha-amino acids found in proteins. The molecules are presented in two formats, the neutral form and the ionized form found in solution at physiologic pH.
Coleman, William F. J. Chem. Educ. 2006, 83, 1103.
Amino Acids |
Proteins / Peptides |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
Acrostic Puzzles in the Classroom  Dorothy Swain
Acrostic puzzles are an effective vehicle to expose students to the history and philosophy of science without lecturing.
Swain, Dorothy. J. Chem. Educ. 2006, 83, 589.
Atomic Properties / Structure |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Periodicity / Periodic Table
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
The Chemistry of Popcorn: Polymers of Glucose  William F. Coleman
The Featured Molecules this month are all polymers of glucose and include cellobiose, maltose, 10-mer of cellulose, 40-mer of amylose, and an amylopectin fragment.
Coleman, William F. J. Chem. Educ. 2006, 83, 413.
Molecular Modeling |
Molecular Properties / Structure |
Carbohydrates
Mechanisms That Interchange Axial and Equatorial Atoms in Fluxional Processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal Vibrational Modes  Marion E. Cass, King Kuok Hii, and Henry S. Rzepa
Teaching the Berry pseudorotation mechanism presents particular pedagogic problems due to both its dynamic and three dimensional character. The approach described here illustrates these processes using interactive animations embedded in a Web page.
Cass, Marion E.; Hii, King Kuok; Rzepa, Henry S. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Mechanisms of Reactions |
NMR Spectroscopy |
Nonmetals
Using Jmol To Help Students Better Understand Fluxional Processes   William F. Coleman and Edward W. Fedosky
This new WebWare neatly combines instructional text and Jmol interactive, animated illustrations to teach mechanisms that need to be clearly visualized in order to be well understood.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Mechanisms of Reactions |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Nonmetals
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
The History of Element 43—Technetium  Roberto Zingales
The author is grateful for additional information that allowed him to correct an earlier mistake.
Zingales, Roberto. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The Origins of the Symbols A and Z for Atomic Weight and Number  William B. Jensen
Traces the origins of the symbols A and Z for atomic weight and atomic number.
Jensen, William B. J. Chem. Educ. 2005, 82, 1764.
Nuclear / Radiochemistry |
Periodicity / Periodic Table
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
An Animated Interactive Overview of Molecular Symmetry  Marion E. Cass, Henry S. Rzepa, David R. Rzepa, and Charlotte K. Williams
An Animated Interactive Overview of Molecular Symmetry is a series of Web pages designed to help instructors teach molecular symmetry. These pages combine interactive images and instructional text that allow students to examine and explore the operations and elements that give rise to molecular symmetry.
Cass, Marion E.; Rzepa, Henry S.; Rzepa, David R.; Williams, Charlotte K. J. Chem. Educ. 2005, 82, 1742.
Group Theory / Symmetry |
Molecular Properties / Structure
3D Molecular Symmetry Shockwave: A Web Application for Interactive Visualization and Three-Dimensional Perception of Molecular Symmetry  Nickolas D. Charistos, Constantinos A. Tsipis, and Michail P. Sigalas
3D Molecular Symmetry Shockwave is a Web-based application for interactive visualization and three-dimensional perception of molecular symmetry. The user interface is simple, and students learn how to use the program from the built-in help screens.
Charistos, Nickolas D.; Tsipis, Constantinos A.; Sigalas, Michail P. J. Chem. Educ. 2005, 82, 1741.
Group Theory / Symmetry |
Molecular Modeling |
Molecular Properties / Structure
Teaching Molecular Symmetry with JCE WebWare  William F. Coleman and Edward W. Fedosky
Presents two tools, 3D Molecular Symmetry Shockwave and An Animated Interactive Overview of Molecular Symmetry, that illustrate and help teach molecular symmetry.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2005, 82, 1741.
Computational Chemistry |
Molecular Properties / Structure |
Group Theory / Symmetry
The Use of the Free, Open-Source Program Jmol To Generate an Interactive Web Site To Teach Molecular Symmetry  Marion E. Cass and Henry S. Rzepa
Describes the use of Jmol, a free, open-source code program, for the presentation of interactive materials to teach molecular symmetry.
Cass, Marion E.; Rzepa, Henry S. J. Chem. Educ. 2005, 82, 1736.
Group Theory / Symmetry |
Molecular Properties / Structure
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
Predicting the Atomic Weights of the Trans-Lawrencium Elements: A Novel Application of Dobereiner's Triads  Sami A. Ibrahim
Dobereiner's concept of triads remain useful for predicting the properties of the super-heavy elements (113118) and for providing reasonable estimates of the atomic weights of all 16 trans-lawrencium elements.
Ibrahim, Sami A. J. Chem. Educ. 2005, 82, 1658.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Main-Group Elements |
Transition Elements
Fully Exploiting the Potential of the Periodic Table through Pattern Recognition  Emeric Schultz
This article describes an approach to learning chemical concepts that uses simple rules and pattern recognition to generate the formulas of the oxides and hydrides of selected elements.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 1649.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Student-Centered Learning
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment  Gerald R. Van Hecke, Kerry K. Karukstis, Hanhan Li, Hansford C. Hendargo, Andrew J. Cosand, and Marja M. Fox
This experiment features an investigative approach designed for the introductory science or engineering major and integrates concepts in the fields of chemistry, biology, and physics. Derived from faculty research interests, this novel experiment gives students the opportunity to draw conclusions from tests performed to illustrate the connection between molecular structure and macroscopic properties. The chemical synthesis of the compounds studied further enhances the connection between molecular structure and macroscopic physical properties. The results of two separate physical measurements, refractometry and absorption spectroscopy, are combined to calculate a microscopic, but very practical, property of chiral nematic liquidsthe pitch of the helix formed in the liquid crystalline phase.
Van Hecke, Gerald R.; Karukstis, Kerry K.; Li, Hanhan; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M. J. Chem. Educ. 2005, 82, 1349.
Chirality / Optical Activity |
Crystals / Crystallography |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Acids / Bases |
Esters |
Physical Properties |
Physical Properties
Some Footnotes on the History of Masurium  H. J. Wagner
Some additional comments on a recent article by R. Zingales about the history of element 43.
Wagner, H. J. J. Chem. Educ. 2005, 82, 1309.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The Chemistry of Coffee  William F. Coleman
The paper by Marino Petracco provides a hearty blend of molecules for this month. The author deals with coffee at a number of different levels ranging from the economic and social to the still perplexing questions of flavor and aroma. The associated molecules demonstrate a range of structural features that students will benefit from examining in three dimensions.
Coleman, William F. J. Chem. Educ. 2005, 82, 1167.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Misconceptions in Sign Conventions: Flipping the Electric Dipole Moment  James W. Hovick and J. C. Poler
Reexamination of a central concept from the perspective of a new subdiscipline should not introduce misconceptions about that concept. When misconceptions introduced through chemical language can be avoided, we should change the way we speak.
Hovick, James W.; Poler, J. C. J. Chem. Educ. 2005, 82, 889.
Molecular Properties / Structure |
Noncovalent Interactions
8:31 a.m. Belly Flop: Attitude Adjustment through Weekly Feature Molecules  Sonya J. Franklin, Norbert J. Pienta, and Melissa D. Fry
A series of molecules or molecular systems were described to students in the second semester of general chemistry as a way to convey that "everything is a chemical", to demonstrate the relevance of chemistry in their everyday lives, and to promote student engagement in a class that was offered in the early morning.
Franklin, Sonya J.; Pienta, Norbert J.; Fry, Melissa D. J. Chem. Educ. 2005, 82, 847.
Descriptive Chemistry |
Enrichment / Review Materials |
Applications of Chemistry |
Consumer Chemistry |
Molecular Properties / Structure |
Student-Centered Learning
Use Correct Projection  V. K. Kapoor
If a substituent in a two-dimensional representation of a three dimensional molecule is to be shown as lying below the plane of the paper it should be more appropriately indicated by an inverted broken wedge.
Kapoor, V. K. J. Chem. Educ. 2005, 82, 838.
Enrichment / Review Materials |
Molecular Properties / Structure |
Molecular Modeling
Physical Chemistry at the Nanometer Scale  K. W. Hipps
An overview is provided of the Petroleum Research Fund sponsored summer school, "Physical Chemistry at the Nanometer Scale." Several articles resulting from the school (and printed in this issue) are introduced and placed in perspective from the standpoint of how they might be used in the undergraduate curriculum.
Hipps, K. W. J. Chem. Educ. 2005, 82, 693.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science
More Elementary Riddles  Kevin Cunningham
Four chemical riddles are presented, each highlighting an element (hydrogen, arsenic, selenium, and beryllium) and some of its significant properties. Each riddle is accompanied by a full explanation of its clues and their relationship to characteristics of that element.
Cunningham, Kevin. J. Chem. Educ. 2005, 82, 539.
Main-Group Elements |
Metals |
Nonmetals |
Periodicity / Periodic Table |
Physical Properties
Connected Chemistry  Mike Stieff
Connected Chemistry, a novel learning environment for teaching chemistry, is appropriate for use in both high school and undergraduate chemistry classrooms. Connected Chemistry comprises several molecular simulations designed to enable instructors to teach chemistry using the perspective of emergent phenomena. That is, it allows students to see observed macro-level chemical phenomena, like many other scientific phenomena, as resultant from the interactions of many individual agents on a micro-level.
Stieff, Mike. J. Chem. Educ. 2005, 82, 494.
Molecular Properties / Structure |
Molecular Modeling |
Constructivism
Simple Dynamic Models for Hydrogen Bonding Using Velcro-Polarized Molecular Models  Emeric Schultz
This article describes the use of models that dynamically illustrate the unique characteristics of weak intermolecular interactions, specifically hydrogen bonds. The models clearly demonstrate that H-bonds can break and reform while covalent bonds stay intact. The manner in which the models form and break H-bonds reflects the geometric and statistical manner in which H-bonding actually occurs and is not contrived. The use of these models addresses a significant area of student misconceptions. The construction of these molecular models is described.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 401.
Molecular Properties / Structure |
Molecular Modeling |
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Mage: A Tool for Developing Interactive Instructional Graphics  Stephen F. Pavkovic
This article demonstrates some of the advantages of the Mage program: (i) construction of instructional Mage data files is straightforward and results in clear, geometrically correct images; (ii) Mage images may be viewed directly from a Java-capable Web page; (iii) several other formats may be converted to kinemages in order to use the Mage applet. This paper also discusses a related student activity.
Pavkovic, Stephen F. J. Chem. Educ. 2005, 82, 167.
Molecular Properties / Structure
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
Chocolate: Theobromine and Caffeine  William F. Coleman
Theobromine and caffeine are both methyl-xanthines. Theobromine is a smooth muscle stimulant, while caffeine is predominately a central nervous system stimulant.
Coleman, William F. J. Chem. Educ. 2004, 81, 1232.
Molecular Properties / Structure |
Molecular Modeling
Exploring the Structure–Function Relationship of Macromolecules at the Undergraduate Level  Belinda Pastrana-Rios
The undergraduate teaching initiatives discussed in this manuscript take advantage of a state-of-the-art visualization center devoted to teaching and research activities.
Pastrana-Rios, Belinda. J. Chem. Educ. 2004, 81, 837.
Molecular Properties / Structure |
Biophysical Chemistry |
Biotechnology
How Many Digits Should We Use in Formula or Molar Mass Calculations?  Christer Svensson
This article addresses the question often asked by students, "How many digits should I use when calculating the formula or molar mass of a substance?
Svensson, Christer. J. Chem. Educ. 2004, 81, 827.
Molecular Properties / Structure |
Learning Theories
Boron Clusters  William F. Coleman
The review paper by Russell N. Grimes on boron clusters reminds us both of the past impact that these interesting structures have had on the development of our understanding of cluster chemistry and on the future development of what one might refer to as "post-fullerene" clusters.
Coleman, William F. J. Chem. Educ. 2004, 81, 768.
Molecular Modeling |
Molecular Properties / Structure
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Big Picture  William F. Coleman
Fully manipulable Chime versions of important biological molecules (such as chlorophyll), inks (such as pen ink), CFCs, hydrocarbon fuels, plastics (such as Lexan polycarbonate), and molecules with medical applications (such as aspirin and novocaine).
Coleman, William F. J. Chem. Educ. 2004, 81, 604.
Molecular Modeling |
Molecular Properties / Structure
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
A "Polypeptide Demonstrator"  Addison Ault
I have used a telephone Handset Coil Cord as a simple and convenient model for the structure of a polypeptide.
Ault, Addison. J. Chem. Educ. 2004, 81, 196.
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure
Chemistry Perfumes Your Daily Life  Anne-Dominique Fortineau
This article gives a brief history of perfumery.
Fortineau, Anne-Dominique. J. Chem. Educ. 2004, 81, 45.
Consumer Chemistry |
Natural Products |
Applications of Chemistry |
Molecular Properties / Structure
The "Dissing" of Niels Bohr  Andrew R. Peterson
Contributions made by Bohr to the Periodic Law.
Peterson, Andrew R. J. Chem. Educ. 2004, 81, 33.
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
E-Mail Molecules—Individualizing the Large Lecture Class  Carl C. Wamser
All students in the organic chemistry class are assigned a unique set of nine molecules to report on as optional extra credit assignments. The molecules are taken from a list containing over 200 molecules on the class Web site; they represent an assortment of biologically relevant compounds, from acetaminophen to yohimbine.
Wamser, Carl C. J. Chem. Educ. 2003, 80, 1267.
Molecular Properties / Structure
Discovery Videos: A Safe, Tested, Time-Efficient Way To Incorporate Discovery-Laboratory Experiments into the Classroom  Lyubov Hoffman Laroche, Gary Wulfsberg, and Barbara Young
Using videos to bring discovery-laboratory experiments to classrooms with poor or no lab facilities or equipment, or activities that involve potentially hazardous materials.
Laroche, Lyubov Hoffman; Wulfsberg, Gary; Young, Barbara. J. Chem. Educ. 2003, 80, 962.
Periodicity / Periodic Table |
Enrichment / Review Materials
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
The Proper Place for Hydrogen in the Periodic Table  Marshall W. Cronyn
Case for hydrogen to be placed above carbon in the periodic table.
Cronyn, Marshall W. J. Chem. Educ. 2003, 80, 947.
Main-Group Elements |
Periodicity / Periodic Table
The Periodic Table as a Mnemonic Device for Writing Electronic Configurations  Suzanne T. Mabrouk
Method for using the periodic table as a mnemonic device for writing electronic configurations.
Mabrouk, Suzanne T. J. Chem. Educ. 2003, 80, 894.
Atomic Properties / Structure |
Nonmajor Courses |
Periodicity / Periodic Table
Purple or Colorless—Which Way Up? An Entertaining Solubility Demonstration  Trevor M. Kitson
Discrepant demonstration involving immiscible mixture of water colored with potassium permanganate and hexane.
Kitson, Trevor M. J. Chem. Educ. 2003, 80, 892.
Aqueous Solution Chemistry |
Solutions / Solvents |
UV-Vis Spectroscopy |
Noncovalent Interactions |
Molecular Properties / Structure |
Physical Properties
Laboratory Sequence in Computational Methods for Introductory Chemistry  Jason A. Cody and Dawn C. Wiser
Description of a four-week laboratory sequence that exposes students to instrumentation (FT-NMR, GC) and computational chemistry.
Cody, Jason A.; Wiser, Dawn C. J. Chem. Educ. 2003, 80, 793.
Chromatography |
Computational Chemistry |
Noncovalent Interactions |
MO Theory |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Gas Chromatography
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
The Strange Case of Mole Airlines Flight 1023  Karl F. Jones
Forensic chemistry mystery / puzzle involving determining formulas based on chemical compositions.
Jones, Karl F. J. Chem. Educ. 2003, 80, 407.
Drugs / Pharmaceuticals |
Stoichiometry |
Molecular Properties / Structure |
Enrichment / Review Materials |
Applications of Chemistry |
Forensic Chemistry
Periodic Table Live! 3rd Edition: Abstract of Special Issue 17  Nicholas B. Adelman, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, Alton J. Banks, John C. Kotz, William R. Robinson, and Susan Young
CD-ROM containing an interactive journey through the periodic table; includes information about each element, biographies of discoverers, videos of reactions, sources and uses, macro and atomic properties, and crystalline structures.
Adelman, Nicholas B.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Banks, Alton J.; Kotz, John C.; Robinson, William R.; Young, Susan. J. Chem. Educ. 2002, 79, 1487.
Descriptive Chemistry |
Periodicity / Periodic Table |
Solid State Chemistry |
Atomic Properties / Structure |
Physical Properties |
Reactions |
Crystals / Crystallography
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Correction to Featured Molecule of July 2002 (re J. Chem. Educ. 2002, 79, 772)  
Correct formula of anthracene.
J. Chem. Educ. 2002, 79, 1071.
Laboratory Management |
Physical Properties |
Molecular Properties / Structure
Structure and Nuclear Magnetic Resonance. An Experiment for the General Chemistry Laboratory  Rosa M. Dávila and R. K. Widener
Lab exercise to introduce first-year students to the concepts of functional groups and isomerism, as well as using NMR spectroscopy to determine simple molecular structures.
Dávila, Rosa M.; Widener, R. K. J. Chem. Educ. 2002, 79, 997.
NMR Spectroscopy |
Molecular Properties / Structure |
Instrumental Methods
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know  Guinevere A. Giffin, Steven R. Boone, Renée S. Cole, Scott E. McKay, and Robert Kopitzke
Summary of the chemistry of a variety of sports and athletics; topics include golf, football, tennis, and hockey, as well as sports medicine, performance-enhancing drugs, sports supplements and drinks, and the couch potato.
Giffin, Guinevere A.; Boone, Steven R.; Cole, Renée S.; McKay, Scott E.; Kopitzke, Robert. J. Chem. Educ. 2002, 79, 813.
Consumer Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
A Simple Experiment for the Determination of Molecular Weights of Gases Lighter Than Air  Van T. Lieu and Gene E. Kalbus
A simple method for the determination of molecular weights of gases lighter than air.
Lieu, Van T.; Kalbus, Gene E. J. Chem. Educ. 2002, 79, 473.
Gases |
Molecular Properties / Structure |
Physical Properties
Letter Matrix Puzzle on the Symbols of Elements  V. D. Kelkar
A 3x3 letter matrix puzzle based on the symbols of 35 elements.
Kelkar, V. D. J. Chem. Educ. 2002, 79, 456.
Periodicity / Periodic Table |
Enrichment / Review Materials
The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory  Frazier Nyasulu, John Macklin, and William Cusworth III
Examination of the spectrum of liquid oxygen and testing several hypotheses to explain the pattern of spectral lines observed.
Nyasulu, Frazier; Macklin, John; Cusworth, William, III. J. Chem. Educ. 2002, 79, 356.
MO Theory |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Semimetallicity?  Stephen J. Hawkes
Analysis of whether semimetals are semiconductors and distinctions between metals, semimetals, and nonmetals.
Hawkes, Stephen J. J. Chem. Educ. 2001, 78, 1686.
Atomic Properties / Structure |
Metals |
Periodicity / Periodic Table |
Nonmetals |
Physical Properties |
Solid State Chemistry |
Conductivity
"Dishing Out" Stereochemical Principles  Harold Hart
Demonstrating the concepts of chiral centers and enantiomers using plastic dishes.
Hart, Harold. J. Chem. Educ. 2001, 78, 1632.
Chirality / Optical Activity |
Molecular Modeling |
Stereochemistry |
Molecular Properties / Structure |
Enantiomers
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
The Use of Stick Figures to Visualize Fischer Projections  Laurie S. Starkey
Using stick figures to help students visualize the three-dimensional orientations represented by Fischer projections.
Starkey, Laurie S. J. Chem. Educ. 2001, 78, 1486.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Demonstrating Chirality: Using a Mirror with Physical Models to Show Non-superimposability of Chiral Molecules with Their Mirror Images  Michael J. Collins
Using a mirror with physical models to show non-superimposability of chiral molecules with their mirror images.
Collins, Michael J. J. Chem. Educ. 2001, 78, 1484.
Chirality / Optical Activity |
Enantiomers |
Molecular Modeling |
Molecular Properties / Structure
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
Using Computer-Based Visualization Strategies to Improve Students' Understanding of Molecular Polarity and Miscibility  Michael J. Sanger and Steven M. Badger II
Study of how the use of visualization strategies associated with dynamic computer animations and electron density plots affect students' conceptual understanding of molecular polarity and miscibility.
Sanger, Michael J.; Badger, Steven M., II. J. Chem. Educ. 2001, 78, 1412.
Molecular Properties / Structure |
Solutions / Solvents |
Molecular Modeling |
Molecular Mechanics / Dynamics
The Mole, the Periodic Table, and Quantum Numbers: An Introductory Trio  Mali Yin and Raymond S. Ochs
Suggestions for presenting and developing three key ideas in chemistry: the mole, the periodic table, and quantum numbers.
Yin, Mali; Ochs, Raymond S. J. Chem. Educ. 2001, 78, 1345.
Nonmajor Courses |
Periodicity / Periodic Table |
Stoichiometry |
Atomic Properties / Structure
Blood-Chemistry Tutorials: Teaching Biological Applications of General Chemistry Material  Rachel E. Casiday, Dewey Holten, Richard Krathen, and Regina F. Frey
Four, Web-based tutorials that deal with chemical processes in the blood and provide an integrated biological context for a variety of chemical concepts.
Casiday, Rachel E.; Holten, Dewey; Krathen, Richard; Frey, Regina F. J. Chem. Educ. 2001, 78, 1210.
Applications of Chemistry |
Medicinal Chemistry |
Proteins / Peptides |
Acids / Bases |
Equilibrium |
Molecular Properties / Structure
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Molecular Modeling in the Undergraduate Chemistry Curriculum  Martin B. Jones
Project to expose all chemistry students at all levels to computer-based molecular modeling.
Jones, Martin B. J. Chem. Educ. 2001, 78, 867.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Introducing Stereochemistry to Non-science Majors  Hannia Luján-Upton
Two exercises to introduce concepts associated with stereochemistry such as "sameness", superimposability, chirality, enantiomers, optical activity, polarimetry, and racemic mixtures; one compares chirality in hands with the achiral nature of two textbooks, the other involves a murder mystery.
Luján-Upton, Hannia. J. Chem. Educ. 2001, 78, 475.
Chirality / Optical Activity |
Stereochemistry |
Nonmajor Courses |
Molecular Properties / Structure
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Dog with Ball Joins Flying Bird
(re
J. Chem. Educ. 1999, 76, 1656)  Richard S. Treptow
Comparing structural models to simple figures.
Treptow, Richard S. J. Chem. Educ. 2001, 78, 31.
Molecular Properties / Structure |
Carboxylic Acids |
Molecular Modeling
Infrared Spectroscopy in the General Chemistry Lab  Margaret A. Hill
Three laboratory exercises in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.
Hill, Margaret A. J. Chem. Educ. 2001, 78, 26.
Instrumental Methods |
IR Spectroscopy |
Molecular Properties / Structure
The Science Teacher: Winter Break 2001  Steve Long
Summary or chemistry-related articles in the May through November 2000 issues of The Science Teacher.
Long, Steve. J. Chem. Educ. 2001, 78, 22.
Acids / Bases |
Forensic Chemistry |
Molecular Properties / Structure |
Stoichiometry |
Agricultural Chemistry
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
The Other Double Helix--The Fascinating Chemistry of Starch  Robert D. Hancock and Bryon J. Tarbet
The chemistry of starch, particularly the structure of starch and starch granules.
Hancock, Robert D.; Tarbet, Bryon J. J. Chem. Educ. 2000, 77, 988.
Bioorganic Chemistry |
Carbohydrates |
Food Science |
Stereochemistry |
Applications of Chemistry |
Molecular Properties / Structure
A Living Periodic Table  James L. Marshall
A complete "living" periodic table of samples of all the elements through uranium is described. In many instances a sample of an element is accompanied by a direct commercial application. This periodic table is very helpful in enabling the student to gain a hands-on understanding of the true nature of the elements--as opposed to the more usual compilation of mere abstract data.
Marshall, James L. J. Chem. Educ. 2000, 77, 979.
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements |
Descriptive Chemistry |
Applications of Chemistry
Chemistry Comes Alive!, Volume 4: Abstract of Special Issue 25 on CD-ROM  Jerrold J. Jacobsen, Gordon Bain, Kara Bruce, and John W. Moore
Chemistry Comes Alive!, Volume 4 is the fourth in a series of CD-ROMs for Macintosh and Windows computers. Volume 4 contains two main topics, Reactions in Aqueous Solution and Reactions of the Elements.
Jacobsen, Jerrold J.; Bain, Gordon; Bruce, Kara; Moore, John W. J. Chem. Educ. 2000, 77, 799.
Periodicity / Periodic Table |
Aqueous Solution Chemistry |
Descriptive Chemistry
Elementary "Who Am I" Riddles  R. Aldrin Denny, R. Lakshmi, H. Chitra, and Nandini Devi
Elementary riddles that highlight some properties of elements and their compounds and may provide a change of pace in a freshman chemistry lecture or in a quiz.
Denny, R. Aldrin; Lakshmi, R.; Chitra, H.; Devi, Nandini. J. Chem. Educ. 2000, 77, 477.
Periodicity / Periodic Table
Reply to Coulombic Models in Chemical Bonding  Smith, Derek W.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Smith, Derek W. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Coulombic Models in Chemical Bonding  Sacks, Lawrence J.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Sacks, Lawrence J. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Drawing Lewis Structures from Lewis Symbols: A Direct Electron-Pairing Approach  Wan-Yaacob Ahmad and Mat B. Zakaria
We describe a different, more student-friendly approach to writing Lewis structures for covalent molecules and ions based on Lewis theory and Abegg's rule. Several rules for selecting central atoms are provided. Separate sets of rules are provided for diatomic molecules and ions and for polyatomic molecules and ions.
Ahmad, Wan-Yaacob; Zakaria, Mat B. J. Chem. Educ. 2000, 77, 329.
Molecular Properties / Structure |
Lewis Structures
News from Online: The Power of the Voice  Carolyn Sweeney Judd
Useful online chemistry resources.
Judd, Carolyn Sweeney. J. Chem. Educ. 2000, 77, 299.
Periodicity / Periodic Table |
Gases
The Periodic Round Table (by Gary Katz)  reviewed by Glen E. Rodgers
The "table" consists of four sets of two finely finished hardwood discs each with the elemental symbols and their corresponding atomic numbers pleasingly and symmetrically wood-burned into their faces.
Rodgers, Glen E. J. Chem. Educ. 2000, 77, 164.
Periodicity / Periodic Table
Correction to Using Overhead Projectors to Simulate X-ray Diffraction Experiments.  Dragojlovic, Veljko
Correction to Figure 1 [1999, 76, 1240-1241]
Dragojlovic, Veljko J. Chem. Educ. 2000, 77, 160.
Crystals / Crystallography |
X-ray Crystallography |
Molecular Properties / Structure
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
Liver and Onions: DNA Extraction from Animal and Plant Tissues  Karen J. Nordell, Anne-Marie L. Jackelen, S. Michael Condren, George C. Lisensky, and Arthur B. Ellis*
This activity, which allows students to extract DNA from plant and animal cells, serves as a spectacular example of the complexity of biochemical structure and function and fits well with a discussion of nucleic acids, hydrogen bonding, genetic coding, and heredity. DNA extraction can also be used in conjunction with a discussion of polymers and their properties.
Nordell, Karen J.; Jackelen, Anne-Marie L.; Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1999, 76, 400A.
Hydrogen Bonding |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
The Solubility of Ionic Solids and Molecular Liquids  C. Baer and Sheila M. Adamus
The solubilities of three ionic salts (NaCl, PbCl2, and KAl(SO4)2.12H2O) in water are measured at four temperatures. The concept of recrystallization is introduced as students cool a high-temperature solution and observe crystal formation. Spreadsheet calculations are performed with the group data, which are then graphed, and students observe the wide variance in solubility behavior for the three salts.
Baer, Carl; Adamus, Sheila M. J. Chem. Educ. 1999, 76, 1540.
Noncovalent Interactions |
Laboratory Computing / Interfacing |
Liquids |
Molecular Properties / Structure |
Solutions / Solvents
Using Overhead Projector to Simulate X-ray Diffraction Experiments  Veljko Dragojlovic
A demonstration to simulate X-ray diffraction experiments can be performed using an overhead projector. As a classroom activity, the spacing between the lines of a grating or, once the spacing is known, the wavelength of diffracted light can be calculated.
Dragojlovic, Veljko. J. Chem. Educ. 1999, 76, 1240.
Crystals / Crystallography |
Molecular Properties / Structure |
X-ray Crystallography
Letters  
Better treatment of the inner transition elements.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 1064.
Periodicity / Periodic Table |
Inner Transition Elements
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Illustrating Newman Projections by Using Overhead Transparencies  L. Phillip Silverman and John Barbaro
A method of illustrating the Newman projection of a molecule using an overhead projector is described. This method, which uses two overhead transparencies linked by a thumbtack, provides both an easy and a clear way to present this type of conformational analysis to large lecture classes.
Silverman, L. Phillip; Barbaro, John. J. Chem. Educ. 1999, 76, 630.
Learning Theories |
Stereochemistry |
Molecular Properties / Structure
Periodic Puns for the Classroom  Paul E. Vorndam
Some puns on the names of the elements are presented.
Vorndam, Paul E. J. Chem. Educ. 1999, 76, 492.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Learning Theories
The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)  reviewed by Jeffrey D. Bracken
This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also.
Bracken, Jeffrey D. J. Chem. Educ. 1999, 76, 475.
Periodicity / Periodic Table |
Geochemistry |
Descriptive Chemistry
Periodic Table Live! 2nd Edition  Alton J. Banks, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, John C. Kotz, and Susan Young
Description of the JCE CD Periodic Table Live! 2nd Edition.
Banks, Alton J.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Kotz, John C.; Young, Susan. J. Chem. Educ. 1999, 76, 447.
Periodicity / Periodic Table
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
A Different Approach to a 3-D Periodic System Including Stable Isotopes  Alexandru T. Balaban
On a Periodic System with the two dimensions represented by Periods and Columns, one may stack each stable nuclide of an element along the third dimension. This "Downtown Area" representation is helpful for interconnecting concepts of: element, isotope or nuclide (stable vs. radioactive), atomic weight, atomic number, mass number.
Balaban, Alexandru T. J. Chem. Educ. 1999, 76, 359.
Periodicity / Periodic Table |
Isotopes |
Nuclear / Radiochemistry
Periodic Tables of Elemental Abundance  Steven I. Dutch
Patterns of element abundance in the sun, chondrite meteorites, and the continental crust of the earth and the moon are portrayed on a periodic table. The abundance of each element is represented by a circle whose radius is proportional to the logarithm of the element's abundance.
Dutch, Steven I. J. Chem. Educ. 1999, 76, 356.
Astrochemistry |
Geochemistry |
Periodicity / Periodic Table
A Novel Multipurpose Model Set for Teaching General Chemistry  H. O. Gupta and Brahm Parkash
Teaching general chemistry requires a simple and inexpensive model set capable of demonstrating all the common structures in organic, inorganic, and physical chemistry. This paper describes our endeavour to develop such a model set.
Gupta, H. O.; Parkash, Brahm. J. Chem. Educ. 1999, 76, 204.
Molecular Properties / Structure |
Molecular Modeling
Why Gold and Copper Are Colored but Silver Is Not  Ariel H. Guerrero, Héctor J. Fasoli, and José Luis Costa
Interpretation of the yellow color of gold based on an adequate external electronic configuration (s1d10/s2d9) and s and d sublevels close enough to allow transition between them to proceed significantly.
Guerrero, Ariel H.; Fasoli, Hctor J.; Costa, Jos Luis. J. Chem. Educ. 1999, 76, 200.
Periodicity / Periodic Table |
Metals |
Descriptive Chemistry
Effect of Experience on Retention and Elimination of Misconceptions about Molecular Structure and Bonding  James P. Birk and Martha J. Kurtz
A test designed to uncover misconceptions in molecular structure and bonding was administered to students from high school through graduate school and to some college faculty. The study tracked the disappearance of these misconceptions over a time span of 10 years of student experience, along with the development of accepted conceptions.
Birk, James P.; Kurtz , Martha J. J. Chem. Educ. 1999, 76, 124.
Molecular Properties / Structure |
Learning Theories
Spectroscopy of Simple Molecules  C. Baer and K. Cornely
A spectroscopy experiment in which students utilize IR and NMR spectroscopy to identify the structures of three unknowns from a list of 15 carefully chosen simple organic molecules. In taking IR and NMR spectra, students learn to use state-of-the-art instrumentation that is used by practicing chemists.
Baer, Carl; Cornely, Kathleen. J. Chem. Educ. 1999, 76, 89.
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Chain Gang-The Chemistry of Polymers (edited by Mickey Sarquis)  David M. Collard
After a brief introduction to some basic concepts, the book presents a series of 23 polymer experiments spanning topics of chemistry, physical properties, analysis, and processing. Each experiment is recommended as either a hands-on activity or demonstration for various grade levels. A guide for the teacher suggests how the experiment can be used to illustrate topics in the science curriculum.
Collard, David M. J. Chem. Educ. 1999, 76, 32.
Molecular Properties / Structure
Cut-Out Molecular Models  Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria.
Suggestions for improvement to the original demonstration.
Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria. J. Chem. Educ. 1999, 76, 28.
Molecular Modeling |
Molecular Properties / Structure |
Stoichiometry
Stereowordimers-Minding Your P's and Q's  Edward G. Neeland
The use of words having different colored sides is a excellent way to introduce stereochemical concepts that might not be easily grasped when using molecular examples. We have found that concepts such as enantiomers, diastereomers, identical molecules, chirality, achirality, mirror planes of symmetry, and internal planes of symmetry are readily understood by students when using stereowordimer examples.
Neeland, Edward G. J. Chem. Educ. 1998, 75, 1573.
Stereochemistry |
Diastereomers |
Enantiomers |
Molecular Properties / Structure
The Natural Selection of the Chemical Elements (by R. J. P. Williams and J. J. R. Fraústo da Silva)  George B. Kauffman
A book whose ambitious objective is "to show the relationship of every kind of material around us, living and nonliving, to the properties of the chemical elements of the periodic table." The entire book possesses a strong environmental and interdisciplinary emphasis.
Kauffman, George B. J. Chem. Educ. 1998, 75, 1559.
Periodicity / Periodic Table |
Descriptive Chemistry
How Good Is the Quantum Mechanical Explanation of the Periodic System?  Eric R. Scerri
The use of quantum mechanics, or more specifically, orbitals and electronic configurations in teaching general chemistry is now such a widespread trend that it would be utterly futile to try to reverse it. Moreover, orbitals and configurations have been extremely useful in providing a theoretical framework for the unification of a multitude of chemical facts.
Scerri, Eric R. J. Chem. Educ. 1998, 75, 1384.
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
Vanillin (the author replies)  Hocking, Martin
Additional information regarding salicylic acid.
Hocking, Martin J. Chem. Educ. 1998, 75, 1203.
Aldehydes / Ketones |
Applications of Chemistry |
Medicinal Chemistry |
Molecular Properties / Structure
Vanillin  Calloway, Dean
Incorrect structural formula for methyl salicylate.
Calloway, Dean J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Letters  
Incorrect structural formula for methyl salicylate.
J. Chem. Educ. 1998, 75, 1203.
Medicinal Chemistry |
Applications of Chemistry |
Aldehydes / Ketones |
Molecular Properties / Structure
Tetrahedral Bond Angle  Ferreira, Ricardo
Easy way to calculate the terahedral bond angle.
Ferreira, Ricardo J. Chem. Educ. 1998, 75, 1087.
Molecular Properties / Structure
Intermolecular Forces in Introductory Chemistry Studied by Gas Chromatography, Computer Models, and Viscometry  Jonathan C. Wedvik, Charity McManaman, Janet S. Anderson, and Mary K. Carroll
Students performing gas chromatographic (GC) analyses of mixtures of n-alkanes and samples that simulate crime scene evidence discover that liquid mixtures can be separated rapidly into their components based upon intermolecular forces. Each group of students is given a liquid sample that simulates one collected at an arson scene, and the group is required to determine the identity of the accelerant. Students also examine computer models to better visualize how molecular structure affects intermolecular forces: London forces, dipole-dipole interactions, and hydrogen bonding.
Wedvik, Jonathan C.; McManaman, Charity; Anderson, Janet S.; Carroll, Mary K. J. Chem. Educ. 1998, 75, 885.
Theoretical Chemistry |
Chromatography |
Noncovalent Interactions |
Gas Chromatography |
Molecular Modeling |
Forensic Chemistry |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Molecular Properties / Structure
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
In Defense of Quantum Numbers  Robert M. Richman
A recent paper has argued that the derivation of the periodic table using quantum numbers is a topic that should be eliminated from introductory chemistry courses because it is too abstract, mysterious, and esoteric. A rebuttal is offered based on the claim that it would be wrong to omit discussions of the inductive approach of Mendeleev and the deductive approach initiated by Schroedinger, because they compose the consummate example of that interaction of empirical and rational epistemologies that defines how chemists think.
Richman, Robert M. J. Chem. Educ. 1998, 75, 536.
Learning Theories |
Periodicity / Periodic Table |
Quantum Chemistry
Illustrating Tetrahedral Carbons in Organic Compounds  Stella D. Elakovich
This paper describes a method of illustrating the tetrahedral nature of carbons using an overhead projector and molecular models.
Stella D. Elakovich. J. Chem. Educ. 1998, 75, 479.
Learning Theories |
Molecular Properties / Structure
Simplified Lewis Structure Drawing for Nonscience Majors  Barnabe B. Miburo
Lewis structures are drawn using a simplified novel method with the following features: 1) the atoms used are brought in carrying all their valence electrons; 2) bonds are created by pairing up valence electrons between the central atoms and peripheric atoms; 3) anions are formed by addition of electrons to single electrons on appropriate atoms, while cations are formed by removal of single electrons.
Miburo, Barnabe B. J. Chem. Educ. 1998, 75, 317.
Learning Theories |
Lewis Structures |
Nonmajor Courses |
Molecular Properties / Structure
Portraying the Structure of Micelles  F. M. Menger, R. Zana, and B. Lindman
The schematic of a micelle is given as an attempt to "disprove" the appearance of the spokes of a wheel.
Menger, F. M.; Zana, R.; Lindman, B. J. Chem. Educ. 1998, 75, 115.
Micelles |
Molecular Properties / Structure |
Molecular Modeling
A Simple Demonstration of How Intermolecular Forces Make DNA Helical  Michael F. Bruist
The usage of stacked identical boxes can be used to demonstrate the helical shape of DNA by the effect of intermolecular forces.
Bruist, Michael F. J. Chem. Educ. 1998, 75, 53.
Molecular Properties / Structure |
Hydrogen Bonding |
Noncovalent Interactions |
Molecular Modeling
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
Fostering Curiosity-Driven Learning through Interactive Multimedia Representations of Biological Molecules  Abby L. Parrill and Jacquelyn Gervay
A series of QuickTime movies have been developed and are available over the World Wide Web (WWW) to help evoke student curiosity about organic chemistry. When viewed in series the movies start with a 'big picture' view based on crystallographic data and narrow in on the basic concepts needed to understand that scientific observation.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 1141.
Molecular Properties / Structure |
Molecular Modeling
Two Comments on Bond Angles  P. Glaister
The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry.
Glaister, P. J. Chem. Educ. 1997, 74, 1086.
Molecular Properties / Structure
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
Chemical Behavior  Paul G. Jasien
In order to increase student understanding of the seemingly confusing behavior of chemical substances involved in environmental chemistry, an analogy between chemical and human behavior is presented. The analogy focuses on how the same individual can behave differently due to his/her social surroundings.
Jasien, Paul G. J. Chem. Educ. 1997, 74, 943.
Molecular Properties / Structure |
Nonmajor Courses |
Consumer Chemistry |
Atmospheric Chemistry
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0  reviewed by Allen D. Hunter
Chemistry drawing and NMR prediction packages.
Hunter, Allen D. . J. Chem. Educ. 1997, 74, 905.
NMR Spectroscopy |
Molecular Modeling |
Molecular Properties / Structure
Hot and Spicy versus Cool and Minty as an Example of Organic Structure-Activity Relationships  Doris R. Kimbrough
Structures of substances found in spices and food that we normally associate with "hot" (or spicy) and "cool" (or minty) flavors are presented and discussed. Functional group similarities within the two groups provide an interesting example of the relationship between molecular structure and molecular function.
Kimbrough, Doris R. J. Chem. Educ. 1997, 74, 861.
Molecular Properties / Structure |
Natural Products |
Plant Chemistry |
Applications of Chemistry
A General Chemistry Experiment Incorporating Synthesis and Structural Determination  Hal Van Ryswyk
An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin.
Van Ryswyk, Hal. J. Chem. Educ. 1997, 74, 842.
Instrumental Methods |
Microscale Lab |
Synthesis |
Molecular Properties / Structure |
Gas Chromatography |
Mass Spectrometry |
Fourier Transform Techniques |
Spectroscopy
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Use of Pom Pons To Illustrate Cubic Crystal Structures  Susan G. Cady
Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons.
Cady, Susan G. J. Chem. Educ. 1997, 74, 794.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
The Periodic Building of the Elements: Can a Periodic Table Be Transformed into a Stereo One?  Fu-cheng He, Xiang-yuan Li
A periodic table of any size can be transformed into a stereo model which is called the Periodic Building of the Elements (PBE). To construct the PBE a submodel of the main group and the transition elements should be made in advance, and then a submodel of the lanthanides and the actinides is made in a simple procedure. The whole model is obtained by simply combining these two submodels together.
He, Fu-cheng; Li, Xiang-yuan . J. Chem. Educ. 1997, 74, 792.
Periodicity / Periodic Table
VSEPR Theory Demo  Janice Parker
This article describes a procedure to demonstrate electron pair repulsion (or molecular arrangement) using cow magnets and simple laboratory equipment.
Parker, Janice. J. Chem. Educ. 1997, 74, 776.
Atomic Properties / Structure |
Molecular Properties / Structure |
VSEPR Theory
Periodic Table Live! Abstract of Special Issue 17  Alton J. Banks, Jon L. Holmes, John C. Kotz, Susan Young, Paul F. Schatz, John W. Moore
Periodic Table Live! combines on a single CD-ROM the digital video from the Periodic Table CD (1) with the graphical and descriptive databases of the elements from the Illustrated Periodic Table (2) and Chemistry Navigator (3) to form a unified, easy-to-use, dynamic tour of the periodic table. Also the Chemistry Navigator and Illustrated Periodic Table upgrades.
Banks, Alton J.; Holmes Jon L.; Kotz, John C.; Young, Susan; Schatz, Paul F.; Moore, John W. J. Chem. Educ. 1997, 74, 445.
Periodicity / Periodic Table
From UNIX to PC via X-Windows: Molecular Modeling for the General Chemistry Lab  Donald Pavia and Mark Wicholas
A 3-hour experiment that attempts to illustrate the relationship between molecular geometry as predicted by the VSEPR model and valence bond theory. As a pre-laboratory take-home exercise, students are given a list of 23 species and asked to predict bond angles, geometry, and hybridization.
Pavia, Donald; Wicholas, Mark. J. Chem. Educ. 1997, 74, 444.
VSEPR Theory |
Molecular Properties / Structure
Three Programs for DOS: Abstract of Volume 10B, Number 1 2. Periodic Table Games  John S. Martin
The Periodic Table Games are intended to expose students to the vocabulary of chemistry: formulas, combination rules, and descriptive chemistry. They may be played by an individual against the computer, or by several competing players.
Martin, John S. J. Chem. Educ. 1997, 74, 346.
Descriptive Chemistry |
Periodicity / Periodic Table |
Nomenclature / Units / Symbols
Die Chemischen Elemente: Ein Streifzug durch das Periodensystem by Lucien F. Trueb  reviewed by George B. Kauffman
A Ramble through the Periodic System is divided into two parts: Part I, "The Conception of the Elements and the Periodic System" (14 pp), and Part II, "The Elements" (381 pp). The first considers the idea of the elements from Democritus to Lavoisier, the discovery and development of the periodic system, and the origin of the elements, including nucleosynthesis. The second, consisting of 23 chapters, describes each of the elements from hydrogen and its isotopes (16 pp) to the heaviest of the known transactinides (element 112).
Kauffman, George B. J. Chem. Educ. 1997, 74, 344.
Periodicity / Periodic Table
Discovery-Based Stereochemistry Tutorials Available on the World Wide Web  Abby L. Parrill and Jacquelyn Gervay
The WWW offers the ability to develop interactive, discovery-based tutorials for use as study tools, and multimedia offers significant improvements in the display of three-dimensional objects. As part of a chemical education research program, three stereochemistry tutorials were developed to capitalize on these advantages.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 329.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
Four Programs for Windows: Abstract of Volume 4D, Number 2: Alkanes in Motion  Jae Hyun Kim
Alkanes in Motion depicts the molecular motion of hydrocarbons in the gas phase. Four animations from the collection are presented here. These four animations consist of two animations each of hexane and octadecane, one animation calculated to show translational motion and one to show vibrational motion.
Kim, Jae Hyun. J. Chem. Educ. 1996, 73, 1079.
Molecular Modeling |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Gases
NMR Shielding and the Periodic Table  I. P. Gerothanassis and C. G. Kalodimos
The object of this article is to find periodic, structurally significant observables that can be correlated to the nuclear shielding or alternatively to investigate whether chemical shift can be used to intensify the periodic disposition of valence electrons.
Gerothanassis, I. P.; Kalodimos, C. G. J. Chem. Educ. 1996, 73, 801.
NMR Spectroscopy |
Periodicity / Periodic Table |
Instrumental Methods
An Easily Constructed and Versatile Molecular Model  Sandra A. Hernandez, Nora M. Rodriguez, and Oscar Quinzani
This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves.
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar V. J. Chem. Educ. 1996, 73, 748.
Molecular Modeling |
Atomic Properties / Structure |
Molecular Properties / Structure
Interactive Computer Visualization in the Introductory Chemistry Curriculum  Victoria M. Bragin
This project explores the use of technological innovations to facilitate learning in introductory chemistry courses by those with a poor academic background, while also challenging those prepared to master the curriculum.
Bragin, Victoria M. J. Chem. Educ. 1996, 73, 747.
Gases |
Rate Law |
Kinetic-Molecular Theory |
Titration / Volumetric Analysis |
Periodicity / Periodic Table |
Electrochemistry
Electronic Configuration Pattern Found in Pascal's Triangle  Robert L. Duncan
A simple method for revealing the electronic configuration pattern within Pascal's Triangle is discussed. The origin of this unique pattern may be part of a combinatoric and is suggested a link may be made to quantum mechanics. Based on this triangular array an alternate representation of the Periodic Table is presented.
Duncan, Robert L. J. Chem. Educ. 1996, 73, 742.
Periodicity / Periodic Table |
Quantum Chemistry |
Atomic Properties / Structure
SIRS: Simulations and Interactive Resources, III  Martin, John S.
Simulations and Interactive Resources (SIRs) are designed to support interactive lectures in introductory chemistry. This third issue of SIRs includes five new SIRs as well as updated and final versions of all previously published SIRs.
Martin, John S. J. Chem. Educ. 1996, 73, 722.
Periodicity / Periodic Table |
Equilibrium |
Gases |
Thermodynamics |
Reactions |
Electrochemistry |
Kinetics
Teaching VSEPR: The Plastic Egg Model  James P. Birk and Soraya Abbassian
We describe the construction and use of a set of models based on plastic eggs, which afford advantages over the previously described models.
James P. Birk and Soraya Abbassian. J. Chem. Educ. 1996, 73, 636.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model  Ronald J. Gillespie, James N. Spencer, and Richard S. Moog
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model.
Ronald J. Gillespie, James N. Spencer, and Richard S. Moog. J. Chem. Educ. 1996, 73, 622.
Atomic Properties / Structure |
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
The Helium-Neon Laser-Induced Fluorescence Spectrum of Molecular Iodine: An Undergraduate Laboratory Experiment  John S. Muenter
The wavelength analyzed fluorescence spectrum provides accurate values of spectroscopic properties for the ground state electronic configuration of I2. From these spectroscopic properties students calculate the bond length, harmonic oscillator force constant, and a Birge-Sponer estimate of the bond dissociation energy.
Muenter, John S. J. Chem. Educ. 1996, 73, 576.
Fluorescence Spectroscopy |
Molecular Properties / Structure |
Lasers
Group Project Format in First-Semester General Chem Lab  Theresa C. Varco-Shea, Jeanne Darlington, and Marilyn Turnbull
Recent changes in the laboratory portion of our general chemistry course have included group projects, writing reports, and oral presentations.
Varco-Shea, Theresa C.; Darlington, Jeanne; Turnbull, Marilyn. J. Chem. Educ. 1996, 73, 536.
Periodicity / Periodic Table
Tape and Tetrahedra  John W. Hill
I have found a simple solution to the problem of visualizing the tetrahedron. I use masking tape or labeling tape to connect the hydrogen atoms to one another. The tape represents the edges of the tetrahedron; the four hydrogen atoms are the corners.
Hill, John W. J. Chem. Educ. 1996, 73, 531.
Molecular Modeling |
Atomic Properties / Structure |
Molecular Properties / Structure
Why Don't Water and Oil Mix?  Katia Pravia and David F. Maynard
To develop an understanding of the molecular interactions of polar and nonpolar molecules, we have developed two simple and extremely useful overhead projection demonstrations that help students conceptualize the solubility rules.
Katia Pravia and David F. Maynard. J. Chem. Educ. 1996, 73, 497.
Hydrogen Bonding |
Covalent Bonding |
Precipitation / Solubility |
Molecular Properties / Structure
An Excel 4.0 Add-in Function to Calculate Molecular Mass  Christian Hauck
185. In this paper, a Microsoft Excel 4.0 add-in function is presented, which consists of a parser to interpret molecular formulas and a database containing three values for the atomic masses for every element: the mass number of the most abundant isotope, the mass of the most abundant isotope, and the atomic weight.
Hauck, Christian. J. Chem. Educ. 1996, 73, 433.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
CAI for Chemistry  Lesile Glasser, John D. Bradley, George Brink, and Pam van Zyl
These six programs provide an opportunity for interactive practice of general chemistry material.
Glasser, L.; Bradley, J. D.; Brink, G.; van Zyl, P. . J. Chem. Educ. 1996, 73, 323.
Nuclear / Radiochemistry |
Precipitation / Solubility |
Electrochemistry |
Periodicity / Periodic Table
MOLSYM: A Program on Molecular Symmetry and Group Theory  Vazquez-Vidal, Luis
184. Program MOLSYM provides teachers, students, and researchers with tools for dealing with diverse aspects of molecular symmetry and applying them to specific examples and problems.
Vazquez-Vidal, Luis J. Chem. Educ. 1996, 73, 321.
Molecular Properties / Structure |
Group Theory / Symmetry
Chemistry on the Web  Richard D. Mounts
181. Information on obtaining, installing, and using Web browsers and Web viewers is included. Chemical MIME objects, which are 3-dimensional representations of molecular structures, are used as examples of a type of resource available on the Web that is of special interest to chemists.
Mounts, Richard D. J. Chem. Educ. 1996, 73, 68.
Molecular Properties / Structure |
Molecular Modeling
Difficulties with the Geometry and Polarity of Molecules: Beyond Misconceptions  Carlos Furió and Ma Luisa Calatayud
In chemistry, research on student understanding and misconceptions has been conducted in several conceptual areas. Recent studies have been carried out on misconceptions of covalent bonding and structure of molecules.
Furio, Carlos; Calatayud, Ma Luisa. J. Chem. Educ. 1996, 73, 36.
Molecular Properties / Structure |
Constructivism
Low Cost 3-D Viewing of Chemical Structures  Wong, Yue-Ling; Yip, Ching-Wan
Generating 3-D stereoscopic projections using a anaglyphic (red-blue) pair processed with Adobe PhotoShop.
Wong, Yue-Ling; Yip, Ching-Wan J. Chem. Educ. 1995, 72, A237.
Molecular Modeling |
Molecular Properties / Structure
Visual Basic and Dynamic Data Exchange: Controlling Windows Applications  Porter, Timothy L.; Maxka, Jim; Abes, John
Description of general methods of controlling HyperChem through Visual Basic and dynamic data exchange (DDE).
Timothy L. Porter; Jim Maxka and John Abes. J. Chem. Educ. 1995, 72, A236.
Molecular Modeling |
Molecular Properties / Structure
Chemistry, The Molecular Science (Olmsted, John, III; Williams, George M.)  Eichstadt, Karen E.
Molecular approach to general chemistry.
Eichstadt, Karen E. J. Chem. Educ. 1995, 72, A107.
Descriptive Chemistry |
Molecular Properties / Structure
A Simple, Discovery-Based Laboratory Exercise: The Molecular Mass Determination of Polystyrene  Greg A. Slough
Identification of an unknown polymer using silica gel TLC sheets and IR spectroscopy.
Slough, Greg A. J. Chem. Educ. 1995, 72, 1031.
Stoichiometry |
IR Spectroscopy |
Molecular Properties / Structure |
Thin Layer Chromatography
A Mnemonic Method for Assigning the Electronic Configurations of Atoms  Nerea Iza and Manuel Gil
An algorithm for determining electronic configurations.
Iza, Nerea; Gil, Manuel. J. Chem. Educ. 1995, 72, 1025.
Atomic Properties / Structure |
Periodicity / Periodic Table
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Paper Models for Fullerenes C60-C84   John M. Beaton
Photocopyable patterns to construct C60-C84.
J. Chem. Educ. 1995, 72, 863.
Main-Group Elements |
Molecular Modeling |
Molecular Properties / Structure |
Alkenes
Animation of Imaginary Frequencies at the Transition State  Robert H. Higgins
176. Software tutorial for strengthening spatial skills and an understanding of stereochemistry in exploring molecular structures.
Higgins, Robert H. J. Chem. Educ. 1995, 72, 699.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
First-Year Chemistry in the Context of the Periodic Table   Sheila D. Woodgate
Integration of descriptive chemistry into chemistry curricula, particularly inorganic chemistry.
Woodgate, Sheila D. J. Chem. Educ. 1995, 72, 618.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Descriptive Chemistry |
Oxidation State |
Acids / Bases
Common Textbook and Teaching Misrepresentations of Lewis Structures   Laila Suidan, Jay K. Badenhoop, Eric D. Glendening, and Frank Weinhold
Clarifying leading Lewis structures using computational software.
Suidan, Laila; Badenhoop, Jay K.; Glendening, Eric D.; Weinhold, Frank. J. Chem. Educ. 1995, 72, 583.
Lewis Structures |
Covalent Bonding |
Quantum Chemistry |
Molecular Properties / Structure
MolVib 2.0  Huber, Daniel; Wagner, Paul
Software to illustrate molecular vibrations.
Huber, Daniel; Wagner, Paul J. Chem. Educ. 1995, 72, 492.
Molecular Properties / Structure |
Molecular Modeling
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
The Periodic Table CD  Banks, Alton J; Holmes, Jon L.
Description of the Periodic Table CD, containing a database of still images and motion sequences of reactions and uses/applications of each chemical element.
Banks, Alton J; Holmes, Jon L. J. Chem. Educ. 1995, 72, 409.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Reactions
Presenting the Periodic System with Pictures  Bolmgren, Ingmari
Simulating Mendeleev's development of the periodic table by organizing colored cardboard circles.
Bolmgren, Ingmari J. Chem. Educ. 1995, 72, 337.
Periodicity / Periodic Table |
Main-Group Elements
Cubic and Related Structures of Many Types of Crystals: A Single Illuminated Model  Rich, Ronald L.
Instructions for constructing a three-dimensional, lighted model to illustrate the positions of atoms in many different crystalline structures.
Rich, Ronald L. J. Chem. Educ. 1995, 72, 172.
Crystals / Crystallography |
Laboratory Equipment / Apparatus |
Geochemistry |
Molecular Modeling |
Molecular Properties / Structure
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
The Periodic Table Video Disk: Second Edition  Banks, Alton J.
A database of visual information about the chemical elements.
Banks, Alton J. J. Chem. Educ. 1995, 72, 126.
Periodicity / Periodic Table |
Descriptive Chemistry
Studying Activity Series of Metals: Using Deep-Learning Strategies  Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai
Uses a unit of the activity series of metals to demonstrate the teaching of the interrelationships between chemical concepts by linking new information to previously known material.
Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai J. Chem. Educ. 1995, 72, 51.
Metals |
Periodicity / Periodic Table |
Transition Elements
Tetrahedral Geometry Made Simple  Woolf, A. A.
Technique for evaluating the geometry of tetrahedral close packing using right-angled triangles and trigonometry.
Woolf, A. A. J. Chem. Educ. 1995, 72, 19.
Molecular Properties / Structure |
Crystals / Crystallography
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
The Illustrated Periodic Table  Kotz, John C.; Moore, John W.; Schatz, Paul F.
The Illustrated Periodic Table provides means for exploring the properties of chemical elements using a graphics-oriented environment.
Kotz, John C.; Moore, John W.; Schatz, Paul F. J. Chem. Educ. 1994, 71, 1063.
Periodicity / Periodic Table
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
A Student's Travels, Close Dancing, Bathtubs, and the Shopping Mall: More Analogies in Teaching Introductory Chemistry   Rayner-Canham, Geoff
Four analogies are described for use in introductory chemistry classes.
Rayner-Canham, Geoff J. Chem. Educ. 1994, 71, 943.
Atomic Properties / Structure |
Molecular Properties / Structure |
Equilibrium
Chemistry Navigator  Kotz, John C.; Young, Susan
Chemistry Navigator is a hyperbook-database of information in the form of descriptive text, numerical values of properties, full color photos of chemicals and reactions, three dimensional molecular structures, QuickTime animations of structural features, and graphs showing periodic trends, relative elemental abundances, and other properties.
Kotz, John C.; Young, Susan J. Chem. Educ. 1994, 71, 941.
Reactions |
Molecular Properties / Structure |
Periodicity / Periodic Table
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
Molecular Modeling for the Introductory Organic Chemistry Courses  Keeffe, James R.
Award in the Course and Curriculum Development (CCD) program for FY1994.
Keeffe, James R. J. Chem. Educ. 1994, 71, 508.
Molecular Modeling |
Molecular Properties / Structure
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
Solid State Structures for MacMolecule  Mayer, Ludwig A.
Provides an effective visualization of extended structure solids.
Mayer, Ludwig A. J. Chem. Educ. 1994, 71, 421.
Solid State Chemistry |
Solids |
Molecular Modeling |
Molecular Properties / Structure
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
Visualization of the Abstract in General Chemistry  Paselk, Richard A.
A series of software programs for beginning chemistry, including a series of modules addressing the fundamental phenomena associated with bonding, the microscopic phenomena underlying commonly observed systems, and a reference periodic table.
Paselk, Richard A. J. Chem. Educ. 1994, 71, 225.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Periodicity / Periodic Table
Data-Driven Chemistry: Building Models of Molecular Structure (Literally) from Electron Diffraction Data  Hanson, Robert M.; Bergman, Sara A.
How electron diffraction data can be presented as evidence for molecular structure to first-year students.
Hanson, Robert M.; Bergman, Sara A. J. Chem. Educ. 1994, 71, 150.
Molecular Properties / Structure |
Molecular Modeling
The Periodic Table and the Human Element (Emsley, John)  Kauffman, George B.; Kauffman, Laurie M.
Review of videos centered on personal stories told through the elements.
Kauffman, George B.; Kauffman, Laurie M. J. Chem. Educ. 1993, 70, A51.
Periodicity / Periodic Table
"Qual": From a different viewpoint  Laing, Michael
Author contends that traditional teaching techniques in inorganic chemistry need to be reconsidered.
Laing, Michael J. Chem. Educ. 1993, 70, 666.
Periodicity / Periodic Table |
Metals |
Qualitative Analysis |
Coordination Compounds
Bleaching with Chlorine: Another Tomato Juice Demonstration   Nemetz, Thomas M.; Ball, David W.
Bubbling chlorine gas through tomato juice produces dramatic color changes. This paper provides safe instructions for the demonstration.
Nemetz, Thomas M.; Ball, David W. J. Chem. Educ. 1993, 70, 154.
Periodicity / Periodic Table |
Reactions
Dimitri Mendeleyev: Father of the Periodic Table (Films for the Humanities and Sciences)  Kauffman, George B.
This videocassette gives a multifaceted portrait of the periodic table's creator, Dimitri Ivanovich Mendeleyev.
Kauffman, George B. J. Chem. Educ. 1992, 69, A140.
Periodicity / Periodic Table
Drawing Lewis structures: A step-by-step approach  Ahmad, Wan-Yaacob; Omar, Siraj
A simple step-by-step approach for deriving Lewis structures for students studying introductory chemistry.
Ahmad, Wan-Yaacob; Omar, Siraj J. Chem. Educ. 1992, 69, 791.
Lewis Structures |
VSEPR Theory |
Molecular Properties / Structure
Argon-potassium atomic weight inversion in the periodic table.  Arnikar, H. J.
An explanation for the Ar-K inversion in terms of the nuclear characteristics of the naturally occurring isotopes of these elements.
Arnikar, H. J. J. Chem. Educ. 1992, 69, 687.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Geochemistry |
Isotopes
A paper-pattern system for the construction of fullerene molecular models  Beaton, John M.
Paper cut-out models of C60, C70, C80, and C76 with Td and D2 symmetry.
Beaton, John M. J. Chem. Educ. 1992, 69, 610.
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Group Theory / Symmetry
A method for building simple physical models: Representing the structures of nucleic acids  Benedetti, Giorgio; Morosetti, Stefano.
A low-resolution model made from inexpensive and common materials that retains the essentials structural features of a three-dimensional high-resolution structure.
Benedetti, Giorgio; Morosetti, Stefano. J. Chem. Educ. 1992, 69, 569.
Molecular Properties / Structure |
Molecular Modeling
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Representing isomeric structures: Five applications.  Thall, Edwin.
Five applications of a new method that the author calls Representing Isomeric Structures, in which arrows are used to point to unique sites on the carbon skeleton to represent functional groups.
Thall, Edwin. J. Chem. Educ. 1992, 69, 447.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
The best Aufbau mnemonic: The periodic table  Ludwig, Oliver G.
Using the periodic table exclusively to rationalize electron assignments has the advantage of emphasizing the experimental aspect of the science and avoids giving the impression that chemistry is nothing but a set of mysterious rules.
Ludwig, Oliver G. J. Chem. Educ. 1992, 69, 430.
Atomic Properties / Structure |
Periodicity / Periodic Table
Illustration of Mn and Mw in chain-growth polymerization using a simplified model: An undergraduate polymer chemistry laboratory exercise  Snyder, Donald M.
This exercise helps to attain three pedagogical objectives. Laying out the chains illustrates that a polymer is composed of a mixture of various chain lengths, the random-number assembly of the chain illustrates the statistical aspects of chain growth, the limited number of chains and chain length of the chain allows direct calculation of the number of chains and the weight averages of the chains.
Snyder, Donald M. J. Chem. Educ. 1992, 69, 422.
Physical Properties |
Molecular Properties / Structure
A chemical literature/periodic table exercise for general chemistry.  Schneider, Marilyn J.
This article describes an exercise where students are assigned an element and asked to research recent work on the element.
Schneider, Marilyn J. J. Chem. Educ. 1992, 69, 232.
Periodicity / Periodic Table
Periodic properties in a family of common semiconductors: Experiments with light emitting diodes  Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B.
The prevalence of LED's and their low cost make LED's ideal for classroom demonstrations or laboratory experiments showing the connection between periodic trends in physical/chemical properties and a common high tech device.
Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B. J. Chem. Educ. 1992, 69, 151.
Periodicity / Periodic Table |
Semiconductors
Molecular anthropomorphism: A creative writing exercise  Miller, Larry L.

Miller, Larry L. J. Chem. Educ. 1992, 69, 141.
Molecular Properties / Structure
KC? Discoverer with Knowledgeable Counselor  Cabrol, Daniel; Moore, John W.; Rittenhouse, Rita C.
KC? Discoverer is a program that permits students and faculty to explore a wide range of properties of the elements and is closely coordinated with the periodic table.
Cabrol, Daniel; Moore, John W.; Rittenhouse, Rita C. J. Chem. Educ. 1992, 69, 40.
Physical Properties |
Periodicity / Periodic Table
MacMendeleev: A program for exploring the periodic table (Clardy, Jon)  Bertrand, Gary L.
A review for a software program that serves as a database for properties of the elements.
Bertrand, Gary L. J. Chem. Educ. 1991, 68, A291.
Periodicity / Periodic Table |
Physical Properties
A divertimento on the symbols of the elements  Earl, Boyd L.
Ideas for games using the symbols of the elements.
Earl, Boyd L. J. Chem. Educ. 1991, 68, 1011.
Periodicity / Periodic Table
A procedure for determining formulas for the simple p-block oxoacids  Kildahl, Nicholas K.
Formulae for p-block oxoacids baffle high school and undergraduate students. This paper presents a procedure for developing these formulas based on the concept of total coordination number of the central atom in the molecule or ion.
Kildahl, Nicholas K. J. Chem. Educ. 1991, 68, 1001.
Acids / Bases |
Periodicity / Periodic Table
Collecting and using the chemical elements  Solomon, Sally; Bates, Donald J.
The Royal Society of Chemistry "Periodic Table of Elements" poster succeeds in attracting the attention of people who walk past it. This paper discusses the assembly of the element display, prices, sources, and handling tips for each element and specific suggestions about how to use the elements in classroom situations.
Solomon, Sally; Bates, Donald J. J. Chem. Educ. 1991, 68, 991.
Periodicity / Periodic Table
KC? Discoverer: Exploring the properties of the chemical elements  Liebel, Michael
This software program allows users to explore a large number of properties of the elements. The program can find all elements associated with a certain property, graph numeric properties against other numeric properties, list elements, sort elements, and use the periodic table to select elements.
Liebel, Michael J. Chem. Educ. 1991, 68, 956.
Periodicity / Periodic Table |
Physical Properties |
Chemometrics |
Descriptive Chemistry
A short qualitative analysis scheme without hazardous wastes  Petty, John T.
A description of laboratory procedures that utilize the important pedagogy of qualitative analysis schemes while being more safe to perform than the traditional procedures.
Petty, John T. J. Chem. Educ. 1991, 68, 942.
Descriptive Chemistry |
Metals |
Qualitative Analysis |
Periodicity / Periodic Table
The preparation of halogen waters   Diemente, Damon
Aqueous solutions of halogens can provide important demonstrations regarding periodicity, however many instructors are understandably hesitant to handle halogens. This author discusses the safe handling of halogens.
Diemente, Damon J. Chem. Educ. 1991, 68, 932.
Periodicity / Periodic Table |
Aqueous Solution Chemistry
Explaining resonance - a colorful approach  Abel, Kenton B.; Hemmerlin, William M.
An analogy using color to help students understand that a resonance molecule does not shift back and forth between Lewis Structures, but is in fact a hybrid of the two structures.
Abel, Kenton B.; Hemmerlin, William M. J. Chem. Educ. 1991, 68, 834.
Resonance Theory |
Lewis Structures |
Molecular Properties / Structure
A simple laboratory experiment illustrating the relative nature of atomic weights  Huff, Randolph B.; Evans, David W.
The concept of atomic weight scale remains a source of confusion for beginning chemistry students. This paper proposes a simple lab experience that could help students better understand this idea.
Huff, Randolph B.; Evans, David W. J. Chem. Educ. 1991, 68, 675.
Atomic Properties / Structure |
Periodicity / Periodic Table
How to get more from ionization energies in the teaching of atomic structure  Mirone, Paolo
A wealth of experimental data could be exploited more extensively and profitably than what is presently done in the teaching of atomic structure.
Mirone, Paolo J. Chem. Educ. 1991, 68, 132.
Atomic Properties / Structure |
Periodicity / Periodic Table
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
MolVib: Visualizing molecular vibrations  Huber, Daniel
A software program that features animations that aid in visualizing molecular vibrations. This program can be used appropriately in several levels of chemistry.
Huber, Daniel J. Chem. Educ. 1991, 68, 39.
Atomic Properties / Structure |
Molecular Properties / Structure
Desktop Molecular Modeller (Appleyard, John; Crabbe, James C.)  Smith, Douglas A.
Desktop Molecular Modeller is a molecular modeling, editing, and display package.
Smith, Douglas A. J. Chem. Educ. 1990, 67, A164.
Molecular Modeling |
Molecular Properties / Structure
ATOMS - Atomic Structure Display (Dowty, Eric)  Jacobson, Robert A.
The intent of this program is to provide a ready means of displaying structures of molecules, polymers and/or crystals.
Jacobson, Robert A. J. Chem. Educ. 1990, 67, A163.
Molecular Properties / Structure |
Crystals / Crystallography
Introduction to Modern Inorganic Chemistry, Fourth Edition (Mackay, K.M.; Mackay, R.A.)  Boschmann, Erwin
The authors put forth a two-fold strategy; to provide a broad base through a study of the periodic table and to treat selected topics in depth.
Boschmann, Erwin J. Chem. Educ. 1990, 67, A52.
Periodicity / Periodic Table
An easily constructed model of twin trigonal pyramids penetrating each other  Yamana, Shukichi
A model of twin trigonal pyramids penetrating each other made from two sealed envelopes.
Yamana, Shukichi J. Chem. Educ. 1990, 67, 1029.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Molecular weight determination by boiling-point elevation of a urea solution  Thomas, Nicholas C.; Saisuwan, Patsy
Avoids the problems associated with determining the molecular weight of an unknown by measuring the freezing-point depression of the unknown in naphthalene solution.
Thomas, Nicholas C.; Saisuwan, Patsy J. Chem. Educ. 1990, 67, 971.
Molecular Properties / Structure |
Physical Properties
A model for valence shell electron-pair repulsion theory  Prall, Bruce R.
Using magnets as models to demonstrate VSEPR theory.
Prall, Bruce R. J. Chem. Educ. 1990, 67, 961.
VSEPR Theory |
Molecular Properties / Structure
Molecular shape prediction and the lone-pair electrons on the central atom  Al-Mousawi, Saleh M.
Procedures for predicting the shapes of simple molecules and ions using the total number of valence electrons they contain.
Al-Mousawi, Saleh M. J. Chem. Educ. 1990, 67, 861.
Molecular Properties / Structure
Periodic chart pedagogy  Yoder, Claude H.; Yoder, Carolyn S.
Questions based upon a hypothetical set of quantum numbers and their relationships; includes answers.
Yoder, Claude H.; Yoder, Carolyn S. J. Chem. Educ. 1990, 67, 759.
Periodicity / Periodic Table |
Atomic Properties / Structure
Molecular models constructed in an easy way: Part 2. Models constructed by using tetrahedral units as building blocks  He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan
How a group of molecular models can be constructed from tetrahedral units made from paper ribbon.
He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan J. Chem. Educ. 1990, 67, 650.
Molecular Modeling |
Molecular Properties / Structure
"New" schemes for applying the Aufbau principle  Freeman, Robert D.
Two, essentially identical schemes for remembering how to write electronic configurations are not really new.
Freeman, Robert D. J. Chem. Educ. 1990, 67, 576.
Atomic Properties / Structure |
Periodicity / Periodic Table
A numerical period table and the f-series chemical elements  Osorio, Hernan von Marttens
A numerical periodic table and its advantages (determining electronic configurations).
Osorio, Hernan von Marttens J. Chem. Educ. 1990, 67, 563.
Periodicity / Periodic Table |
Transition Elements
Cotton swabs help to visualize structures  Ali, Saqib; Mazhar, M.
Using cotton swabs help to visualize atomic and molecular structures.
Ali, Saqib; Mazhar, M. J. Chem. Educ. 1990, 67, 558.
Molecular Modeling |
Molecular Properties / Structure
Molecular models constructed in an easy way: Part 1. Models of tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, and capped octahedron  He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan
An improved technique for making various molecular models using polyhedral units constructed from a strip of paper.
He, Fu-cheng; Liu, Lu-bin; Li, Xiang-yuan J. Chem. Educ. 1990, 67, 556.
Molecular Modeling |
Molecular Properties / Structure
Molecular diffusion coefficients: Experimental determination and demonstration.  Fate, Gwendolyn; Lynn, David G.
This demonstration highlights the dependence of molecular transport on molar mass and temperature.
Fate, Gwendolyn; Lynn, David G. J. Chem. Educ. 1990, 67, 536.
Transport Properties |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Applying KC?DISCOVERER in the introductory chemistry laboratory  Furstenau, Ronald P.; Amend, John R.
115. Bits and pieces, 44. KC?DISCOVERER contains a wide variety of physical and chemical properties of the elements.
Furstenau, Ronald P.; Amend, John R. J. Chem. Educ. 1990, 67, 500.
Periodicity / Periodic Table
Lewis structure skills: Taxonomy and difficulty levels  Brady, Joseph A.; Milbury-Steen, John N.; Burmeister, John L.
The Office of Academic Computing and Instructional Technology at the University of Delaware committed itself to developing an intelligent tutoring system for drawing Lewis dot structures. An early prototype collected considerable data about student performance, which revealed the relative difficulty of the required skills.
Brady, Joseph A.; Milbury-Steen, John N.; Burmeister, John L. J. Chem. Educ. 1990, 67, 491.
Molecular Properties / Structure
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
A mnemonic for oxy-anions  Hawkes, Steven J.
A mnemonic rule for oxy-anions which utilizes the periodic table.
Hawkes, Steven J. J. Chem. Educ. 1990, 67, 149.
Periodicity / Periodic Table
Demonstrations for nonscience majors: Using common objects to illustrate abstract concepts  Laurita, William
Some concrete examples of common chemical phenomena designed for a class of nonscience majors.
Laurita, William J. Chem. Educ. 1990, 67, 60.
Nonmajor Courses |
Atomic Properties / Structure |
Molecular Properties / Structure
Visualization of electron clouds in atoms and molecules  Douglas, John E.
110. Visualization of the electron orbital concept continues to challenge and intrigue chemical educators. [October and November 1989 Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Douglas, John E. J. Chem. Educ. 1990, 67, 42.
Atomic Properties / Structure |
Molecular Properties / Structure
Molecular models for the do-it-yourselfer  Birk, James P.; Foster, John
Instructions for making molecular models from styrofoam balls and wooden dowels.
Birk, James P.; Foster, John J. Chem. Educ. 1989, 66, 1015.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Identifying polar and nonpolar molecules  Tykodi, R. J.
A scheme based on the ideas of molecular symmetry for determining the polar / nonpolar nature of simple molecules.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1007.
Molecular Properties / Structure |
Physical Properties
Videodisc display program  Rose, Martin
The "Videodisc Display Program" is specifically designed to display video sequences from "The Periodic Table Videodisc".
Rose, Martin J. Chem. Educ. 1989, 66, 927.
Periodicity / Periodic Table
The electronic periodic chart of the elements  von Marttens Osorio, Hernan; Goldschmidt, Alfonso
A scheme for the arrangement of the elements that allows students to understand and write down the electronic configuration of any given element.
von Marttens Osorio, Hernan; Goldschmidt, Alfonso J. Chem. Educ. 1989, 66, 758.
Periodicity / Periodic Table |
Atomic Properties / Structure
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
"The Periodic Stack"  Farris, Mike
A Hypercard stack that operates on a data base of information about the properties and reactions of the chemical elements.
Farris, Mike J. Chem. Educ. 1989, 66, 756.
Periodicity / Periodic Table |
Descriptive Chemistry |
Physical Properties
The periodic table - A new arrangement  Laing, Michael
Suggestion for a new arrangement of elements in the periodic table to best indicate the relationships between subgroups.
Laing, Michael J. Chem. Educ. 1989, 66, 746.
Periodicity / Periodic Table
Let us make the table periodic  Campbell, J. Arthur
Making the periodic table look periodic.
Campbell, J. Arthur J. Chem. Educ. 1989, 66, 739.
Periodicity / Periodic Table
Viewing stereo drawings  Srinivasan, A. R.; Olson, Wilma K.
Using stereo triptych representations in place of conventional stereo diagrams.
Srinivasan, A. R.; Olson, Wilma K. J. Chem. Educ. 1989, 66, 664.
Molecular Properties / Structure |
Stereochemistry
Teaching a model for writing Lewis structures  Pardo, Juan Quilez
A general procedure for the representation of Lewis structures.
Pardo, Juan Quilez J. Chem. Educ. 1989, 66, 456.
Lewis Structures |
Molecular Properties / Structure |
Molecular Modeling
A simple qualitative technique for pattern recognition in structure-activity relationships  Roy, Glenn
Acetate Overlay Repeating Topology Assay (AORTA) provides an inexpensive way to introduce high school or college students to the ever expanding library of structure-taste relationships without the need of a computer.
Roy, Glenn J. Chem. Educ. 1989, 66, 435.
Qualitative Analysis |
Molecular Properties / Structure |
Aromatic Compounds
Ammonium hydroxide does not exist  Yoke, John
No matter how the s and three p orbitals are hybridized, nitrogen can form a maximum of only four bonds.
Yoke, John J. Chem. Educ. 1989, 66, 310.
Atomic Properties / Structure |
Molecular Properties / Structure
Designing a periodic table: A laboratory approach  Irons, Mary E.
What follows is a laboratory approach to help students gain some insight to the relationship of the elements on the table and also to help students review the scientific method.
Irons, Mary E. J. Chem. Educ. 1989, 66, 155.
Periodicity / Periodic Table
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Periodic law (Curry,E.; Chandler, J.; Mackay, L.)  Lechner, Joseph H.; Gardlund, Sharon L.
Two reviews of a software program which serves as a data base for 20 items of information on the first 103 elements.
Lechner, Joseph H.; Gardlund, Sharon L. J. Chem. Educ. 1988, 65, A333.
Periodicity / Periodic Table |
Descriptive Chemistry
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Write an autobiography of an element  Vanorden, Naola
A clever and creative assignment for students to learn chemistry and sharpen their communication skills.
Vanorden, Naola J. Chem. Educ. 1988, 65, 995.
Descriptive Chemistry |
Periodicity / Periodic Table
How to use crystallographic information in teaching first-year chemistry   Bevan, D. J. M.; Taylor, M. R.; Rossi, M.
These authors describe material appropriate for inclusion in a first-year chemistry lecture course. This article stresses how basic chemical principles have been derived from crystallographic results. A potential instructor need not have crystallographic training to incorporate these lectures.
Bevan, D. J. M.; Taylor, M. R.; Rossi, M. J. Chem. Educ. 1988, 65, 477.
X-ray Crystallography |
Crystals / Crystallography |
Molecular Properties / Structure
A colorful demonstration to simulate orbital hybridization  Emerson, David W.
A simple, colorful demonstration involving nothing more than several beakers of colored water can speed up student comprehension of hybrid orbitals at the introductory level.
Emerson, David W. J. Chem. Educ. 1988, 65, 454.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
An overhead demonstration of some descriptive chemistry of the halogens and LeChtelier's principle  Hansen, Robert C.
Colorful demonstrations that illustrate Le Chtelier's principle, solubility rules, and periodic trends.
Hansen, Robert C. J. Chem. Educ. 1988, 65, 264.
Equilibrium |
Descriptive Chemistry |
Periodicity / Periodic Table
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
Relative atomic mass scale: A teaching aid  Baumgartner, Erwin; Benitez, Carlos; Cirelli, Alicia Fernandez; Flores, Luz Lastres
Relative atomic mass can be a confusing concept for students and a source of frustration for instructors. These authors propose an idea called a RAM scale.
Baumgartner, Erwin; Benitez, Carlos; Cirelli, Alicia Fernandez; Flores, Luz Lastres J. Chem. Educ. 1988, 65, 16.
Atomic Properties / Structure |
Periodicity / Periodic Table
The Molecular Animator (Howbert, J. Jeffrey)  Smith, Alan G.
Allows molecules to be viewed in three-dimensions.
Smith, Alan G. J. Chem. Educ. 1987, 64, A286.
Molecular Modeling |
Molecular Properties / Structure
Chemical Elements (Fleisher, Paul)  Harrison, Thomas G.
A computer program designed to help first-year students learn more about the chemical elements.
Harrison, Thomas G. J. Chem. Educ. 1987, 64, A25.
Descriptive Chemistry |
Periodicity / Periodic Table |
Enrichment / Review Materials
Electronegativity: A mnemonic rule  Kapellos, S.; Mavrides, A.
A rule for the electronegativities of the second and third row elements.
Kapellos, S.; Mavrides, A. J. Chem. Educ. 1987, 64, 941.
Atomic Properties / Structure |
Periodicity / Periodic Table
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Werner and Jorgensen: Presenting history with a computer  Whisnant, David M.
85. A computer simulation designed to illustrate the process of science - how theories develop, how change occurs, and how scientists behave.
Whisnant, David M. J. Chem. Educ. 1987, 64, 688.
Molecular Properties / Structure |
Coordination Compounds
The new format for the periodic table of elements: Concerns of a high school chemistry teacher  Krishnan, C. V.
Change in the format used to designate subgroups of elements in the periodic table will add to the confusion of high school students.
Krishnan, C. V. J. Chem. Educ. 1987, 64, 558.
Periodicity / Periodic Table
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
Lewis structures for compounds with expanded octets  Malerich, Charles J.
A simple method for recognizing expanded octets given only the molecular formula of the compound.
Malerich, Charles J. J. Chem. Educ. 1987, 64, 403.
Lewis Structures |
Molecular Properties / Structure
Which will evaporate first?  Stenmark, Allan
The evaporation rate of various short-chain alcohols and diethyl ether are compared.
Stenmark, Allan J. Chem. Educ. 1987, 64, 351.
Physical Properties |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure |
Alcohols |
Ethers
Periodic table message question  Wieder, Milton J.
This question presents an interesting technique for testing students' grasp of trends in periodicity.
Wieder, Milton J. J. Chem. Educ. 1987, 64, 320.
Periodicity / Periodic Table |
Atomic Properties / Structure
Using chemistry's crystal ball  Allen, Bill
An exercise requiring students to identify nine elements, each suggested by a set of four to six clues describing physical and chemical properties of an element.
Allen, Bill J. Chem. Educ. 1987, 64, 227.
Periodicity / Periodic Table |
Physical Properties |
Descriptive Chemistry |
Enrichment / Review Materials
Methane pistol  Skinner, James F.
This simple demonstration leaves a lasting impression of the importance of intermolecular forces and hydrogen bonding.
Skinner, James F. J. Chem. Educ. 1987, 64, 171.
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
ChemPlate and Hopkins, a template and font for drawing molecular structures with the Macintosh computer  Hwu, Jih Ru.; Wetzel, John M.; Robl, Jeffrey A.
80. Features, use, and results of ChemPlate and Hopkins, software for drawing molecular structures with a Macintosh computer.
Hwu, Jih Ru.; Wetzel, John M.; Robl, Jeffrey A. J. Chem. Educ. 1987, 64, 135.
Molecular Properties / Structure
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
Stretched elastomers: A case of decreasing length upon heating  Clough, S. B.
Demonstrating and explaining the decrease in length of a heated rubber band.
Clough, S. B. J. Chem. Educ. 1987, 64, 42.
Thermodynamics |
Molecular Properties / Structure
An upward view of the periodic table: Getting to the bottom of it  Guenther, William B.
Develops the 18-group basis of the periodic table; shows that, while the 1-18 designations can give unambiguous information to students, no printed designations are needed for teaching; and shows how to obtain unique, physical group definitions that avoid the problems of conflicting and changeable chemical interpretations.
Guenther, William B. J. Chem. Educ. 1987, 64, 9.
Periodicity / Periodic Table |
Atomic Properties / Structure
A BASIC program for the calculation of elemental compositions from structural formulas  Smith, Roger A.; Spencer, Robin W.
78. Bits and pieces, 32. The authors have written a computer program in BASIC that will calculate the molecular weights and elemental compositions from a structural formula.
Smith, Roger A.; Spencer, Robin W. J. Chem. Educ. 1986, 63, 1076.
Molecular Properties / Structure |
Stereochemistry
FACES (features associated with chemical entities): II. Hydrocarbon isomers and their graphs  Larsen, Russell D.
The FACES program is modified in order to be able to display the structural features of compounds.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 1067.
Molecular Properties / Structure
The periodic table as a data base  Goth, George W.
76. Bits and pieces, 31. A software program helps students better understand periodicity.
Goth, George W. J. Chem. Educ. 1986, 63, 836.
Periodicity / Periodic Table
Teaching the concept of resonance with transparent overlays  Richardson, W. S.
The overlap method can be useful in the development of the concept of a partial charge on the atoms of an ion.
Richardson, W. S. J. Chem. Educ. 1986, 63, 518.
Resonance Theory |
Molecular Properties / Structure
Features associated with chemical elements (FACES)  Larsen, Russell D.
72. Chemical education is in need of new and better visual representation for correlating and condensing the vast amount of experimental data that has been accumulated for chemical and physical phenomenon. The periodic table in this note represents these properties through various facial features, allowing for an identification of patterns in the table.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 505.
Periodicity / Periodic Table
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Exploring chemistry by computer: KC? Discoverer   Feng, Aw; Moore, John W.
70. Bits and pieces, 28. This program provides students with a computer-searchable handbook of chemical facts for all the elements.
Feng, Aw; Moore, John W. J. Chem. Educ. 1986, 63, 327.
Descriptive Chemistry |
Periodicity / Periodic Table
Molecular size and Raoult's Law  Kovac, Jeffrey
An additional cause for deviations from Raoult's Law that is rarely, if ever, mentioned in freshman chemistry texts.
Kovac, Jeffrey J. Chem. Educ. 1985, 62, 1090.
Molecular Properties / Structure |
Physical Properties |
Solutions / Solvents |
Gases
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
Determination of molecular dimensions using monolayers: Another approach  McNaught, Ian J.; Peckham, Gavin D.
A preliminary activity to help students understand the concept and calculations of the determination of molecular dimensions using monolayers.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1985, 62, 795.
Molecular Properties / Structure |
Chemometrics
IUPAC table of atomic weights to four significant figures  Greenwood, N. N.; Peiser, H. S.
Masses for the first 103 elements scaled so the mass of 12C is exactly 12.
Greenwood, N. N.; Peiser, H. S. J. Chem. Educ. 1985, 62, 744.
Atomic Properties / Structure |
Periodicity / Periodic Table
The transuranium elements  Seaborg, Glenn T.
History of the discovery of the transuranium elements.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 463.
Transition Elements |
Metals |
Periodicity / Periodic Table
Revised atomic form periodic table  Strong, Frederick C., III
A circular periodic table.
Strong, Frederick C., III J. Chem. Educ. 1985, 62, 456.
Atomic Properties / Structure |
Periodicity / Periodic Table
Measuring the atomic or molecular mass of a gas with a tire gauge and a butane lighter fluid can  Bodner, George M.; Magginnis, Lenard J.
Also demonstrating the mass of air and the dependence of the pressure of a gas on the mass of the sample.
Bodner, George M.; Magginnis, Lenard J. J. Chem. Educ. 1985, 62, 434.
Atomic Properties / Structure |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Gases
Molecular geometry  Desseyn, H. O.; Herman, M. A.; Mullens, J.
We should teach our students that many factors influence molecular geometry and that the relative importance of these factors is complicated; considers the VSEPR, Mulliken-Walsh, and electrostatic force theories.
Desseyn, H. O.; Herman, M. A.; Mullens, J. J. Chem. Educ. 1985, 62, 220.
Molecular Properties / Structure |
VSEPR Theory
Gram formula weights and fruit salad  Felty, Wayne L.
Effective analogy and explanation of gram formula weights.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 61.
Stoichiometry |
Atomic Properties / Structure |
Molecular Properties / Structure
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
MOLEC, Review II (Owen, G. Scott; Currie, James O.)  Hull, Leslie
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Hull, Leslie J. Chem. Educ. 1984, 61, A246.
Molecular Properties / Structure
MOLEC, Review I (Owen, G. Scott; Currie, James O.)  Coleman, William F.
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Coleman, William F. J. Chem. Educ. 1984, 61, A245.
Molecular Properties / Structure
Chain Structure and Conformation of Macromolecules (Bovey, Frank A.; Jelinski, Lynn W.)  Carraher, Charles E., Jr.
The first seven chapters are based on lectures delivered in 1981 at MIT.
Carraher, Charles E., Jr. J. Chem. Educ. 1984, 61, A209.
Molecular Properties / Structure |
Stereochemistry |
Conformational Analysis |
NMR Spectroscopy
A simple polarimeter and experiments utilizing an overhead projector  Dorn, H. C.; Bell, H.; Birkett, T.
Design and application of an overhead polarimeter that relies on small amounts of chiral solution and provides a "dual beam" light source for direct comparison of plane-polarized light emerging from chiral and achiral media.
Dorn, H. C.; Bell, H.; Birkett, T. J. Chem. Educ. 1984, 61, 1106.
Laboratory Equipment / Apparatus |
Chirality / Optical Activity |
Stereochemistry |
Molecular Properties / Structure
The effect of polarity on solubility  Nordstrom, Brian H.
Students observe that iodine dissolves readily in 1,1,1-trichloroethane but not water.
Nordstrom, Brian H. J. Chem. Educ. 1984, 61, 1009.
Precipitation / Solubility |
Solutions / Solvents |
Molecular Properties / Structure |
Water / Water Chemistry
A useful model for the "lock and key" analogy  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
A model that nicely illustrates this principle is the "SOMA" puzzle cube.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1984, 61, 967.
Molecular Modeling |
Molecular Properties / Structure |
Molecular Recognition |
Enzymes
Accurate molecular dimensions from stearic acid monolayers  Lane, Charles A.; Burton, D. Edward; Crabb, Charles C.
Improvements to the fatty acid monolayer experiment to determine molecular dimensions.
Lane, Charles A.; Burton, D. Edward; Crabb, Charles C. J. Chem. Educ. 1984, 61, 815.
Molecular Properties / Structure |
Fatty Acids
Use of Plexiglas planes with molecular model kits  Fulkrod, John E.
Using Plexiglass to serve as a plane of reference in molecular models of organic molecules.
Fulkrod, John E. J. Chem. Educ. 1984, 61, 773.
Molecular Modeling |
Molecular Properties / Structure
Teaching VSEPR theory  McKenna, Anna G.; McKenna, Jack F.
Suggestions for teaching VSEPR theory for coordination numbers 2-6.
McKenna, Anna G.; McKenna, Jack F. J. Chem. Educ. 1984, 61, 771.
VSEPR Theory |
Molecular Properties / Structure
[Brand] rand the name with the linkage of the same  Garrett, James M.
Tool for helping to remember the configuration of the glucosidic linkages in maltose and cellobiose.
Garrett, James M. J. Chem. Educ. 1984, 61, 665.
Carbohydrates |
Molecular Properties / Structure
E-Z s,p  Leach, John M.
Easier method for recalling the filling order of orbitals.
Leach, John M. J. Chem. Educ. 1984, 61, 652.
Atomic Properties / Structure |
Periodicity / Periodic Table
Analogies that indicate the size of atoms and molecules and the magnitude of Avogardo's number  Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T.
Three analogies to help students imagine the sizes of atoms, molecules, and Avogadro's number.
Alexander, M. Dale; Ewing, Gordo J.; Abbott, Floyd T. J. Chem. Educ. 1984, 61, 591.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry
On the filling order of orbitals (aufbau order)  Karp, Steward
Two of the suggested mnemonic devices are more trouble than they are worth.
Karp, Steward J. Chem. Educ. 1984, 61, 565.
Atomic Properties / Structure |
Periodicity / Periodic Table
R/S: Apple stereochemistry program  Barone, Rene; Meyer, Roger; Arbelot, Michel
51. Bits and pieces, 20. Computer program for helping students to learn R/S conventions.
Barone, Rene; Meyer, Roger; Arbelot, Michel J. Chem. Educ. 1984, 61, 524.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Enrichment / Review Materials
The amazing periodic table  Finholt, James
A simple activity to help students understand the experimental basis for the periodic table.
Finholt, James J. Chem. Educ. 1984, 61, 190.
Periodicity / Periodic Table
Recommended format for the periodic table of the elements  Loening, K. L.
This format provides an unequivocal designation for each subgroup in the 18-column periodic table.
Loening, K. L. J. Chem. Educ. 1984, 61, 136.
Periodicity / Periodic Table
The "6N+2 Rule" for writing Lewis octet structures  Zandler, Melvin E.; Talaty, Erach R.
Applying the "6N+2 Rule" to writing Lewis octet structures.
Zandler, Melvin E.; Talaty, Erach R. J. Chem. Educ. 1984, 61, 124.
Lewis Structures |
Molecular Properties / Structure
Another procedure for writing Lewis structures  Clark, Thomas J.
A simple procedure for writing a correct Lewis structure for a molecule or ion containing only s- and p-block elements.
Clark, Thomas J. J. Chem. Educ. 1984, 61, 100.
Lewis Structures |
Molecular Properties / Structure
The density and apparent molecular weight of air  Harris, Arlo D.
Simple procedure for determining the density and apparent molecular weight of air.
Harris, Arlo D. J. Chem. Educ. 1984, 61, 74.
Atmospheric Chemistry |
Gases |
Molecular Properties / Structure |
Physical Properties
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Absolute configuration in a Fischer projection: a simple approach  Bhushan, Ravi; Bhattacharjee, G.
First year undergraduates find it hard to assign absolute configuration to a chiral center when the lowest priority group is either to the left or right of the horizontal line.
Bhushan, Ravi; Bhattacharjee, G. J. Chem. Educ. 1983, 60, 191.
Chirality / Optical Activity |
Molecular Properties / Structure |
Molecular Modeling
Drawing of ball and stick type molecular models with hidden line elimination   Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake
37. Bits and pieces, 14. These authors have developed a simple computer program for drawing molecular structures by microcomputers.
Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake J. Chem. Educ. 1983, 60, 98.
Molecular Mechanics / Dynamics |
Molecular Properties / Structure
A computer program for representing molecules as 3-D models   Kalcher, K.
37. Bits and pieces, 14. A computer program is described here that was developed to give students an adequate impression of sterical configurations by drawing molecules where spheres represent the atoms and connection lines between the bonds.
Kalcher, K. J. Chem. Educ. 1983, 60, 96.
Molecular Properties / Structure
A fluorescence lecture demonstration  Bozzelli, Joseph W.
A fluorescence demonstration can be related to several aspects of molecular theory and quantized energy levels; suggests eight different fluorescent dye solutions.
Bozzelli, Joseph W. J. Chem. Educ. 1982, 59, 787.
Photochemistry |
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry |
Dyes / Pigments
Why teach the electron configuration of the elements are we do?  Millikan, Roger C.
Out of 106 elements in the table of electron configurations, there are 29 special cases - rules that only work 73% of the time seem hardly worth teaching.
Millikan, Roger C. J. Chem. Educ. 1982, 59, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table
The estimation of Avogadro's number using cetyl alcohol as the monolayer  Feinstein, H. I.; Sisson, Robert F., III
Results and calculations using cetyl alcohol as the monolayer in estimating Avogadro's number.
Feinstein, H. I.; Sisson, Robert F., III J. Chem. Educ. 1982, 59, 751.
Stoichiometry |
Molecular Properties / Structure |
Chemometrics
General chemistry for engineers  Kybett, B. D.
A logical way introduce polymers into the general chemistry course. From "The Goals of General Chemistry - A Symposium."
Kybett, B. D. J. Chem. Educ. 1982, 59, 724.
Physical Properties |
Molecular Properties / Structure
On the crosslinked structure of rubber: Classroom demonstration or experiment: A quantitative determination by swelling  Sperling, L. H.; Michael, T. C.
Uses a rubber band to examine the crosslinked behavior of rubber.
Sperling, L. H.; Michael, T. C. J. Chem. Educ. 1982, 59, 651.
Applications of Chemistry |
Polymerization |
Molecular Properties / Structure
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
A new look at surface films  Hanson, Allen L.
Improvements to the monolayer film experiment commonly used to determine the size of a molecule.
Hanson, Allen L. J. Chem. Educ. 1982, 59, 379.
Surface Science |
Molecular Properties / Structure
A unified approach to the study of chemical reactions in freshman chemistry  Cassen, T.; DuBois, Thomas D.
An approach that aims to provide students with the background that will enable them to make reasonable predictions as to the likely products of a chemical reaction.
Cassen, T.; DuBois, Thomas D. J. Chem. Educ. 1982, 59, 377.
Reactions |
Atomic Properties / Structure |
Oxidation State |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Periodicity / Periodic Table
A different approach to hybridization and geometric structure of simple molecules and ions  Eberlin, Diana; Monroe, Manus
A step-by-step teaching technique that directly correlates hydridization with structure.
Eberlin, Diana; Monroe, Manus J. Chem. Educ. 1982, 59, 285.
Molecular Properties / Structure
Group IA elements: Chemical properties (a); Group IA elements: Chemical properties (b)  Dombrink, Kathleen J.
Film loop that demonstrates reactions between alkali metals and halogens.
Dombrink, Kathleen J. J. Chem. Educ. 1982, 59, 260.
Periodicity / Periodic Table |
Reactions |
Metals
Graphic display of molecular structures from crystallographic data  Keat, Rodney
25. Bits and pieces, 9. PROJECT-X is a program that translates X-ray crystallographic data into orthographic projections.
Keat, Rodney J. Chem. Educ. 1982, 59, 128.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
Infrared spectrum of methanol: A first-year student experiment  Boehm, Garth; Dwyer, Mark
This paper describes an experiment in infrared spectroscopy designed to complement an alternative course, and the audiovisual system which supports this experiment.
Boehm, Garth; Dwyer, Mark J. Chem. Educ. 1981, 58, 809.
MO Theory |
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure
Building a periodic table  Fowler, Linda S.
The activity described in this paper yielded comments such as, "I've never had so much fun taking a test. That was great" and "That lady must be crazy - that was impossible". Student understanding of periodic trends are authentically challenged and assessed in this problem.
Fowler, Linda S. J. Chem. Educ. 1981, 58, 634.
Periodicity / Periodic Table
Protein denaturation: A physical chemistry project lab  Pickering, Miles; Crabtree, Robert H.
This experiment links physical chemistry with biology and can be done with in advanced freshman course.
Pickering, Miles; Crabtree, Robert H. J. Chem. Educ. 1981, 58, 513.
Proteins / Peptides |
Biophysical Chemistry |
Molecular Properties / Structure
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
A classroom learning cycle: Using diagrams to classify matter  James, Helen J.; Nelson, Samuel L.
A learning cycle is developed that deals with the classification of matter and is designed to provide students with an understanding in terms of atom, molecule, element, compound, solution, and heterogeneous matter. [Debut]
James, Helen J.; Nelson, Samuel L. J. Chem. Educ. 1981, 58, 476.
Physical Properties |
Learning Theories |
Periodicity / Periodic Table |
Constructivism
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
Tetrahedral bonding in CH4. An alternative explanation  Rees, Thomas
Using the VSEPR theory to conduct a thought experiment regarding the bonding and structure of methane.
Rees, Thomas J. Chem. Educ. 1980, 57, 899.
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Empirical formulas - A ratio problem  Knox, Kerro
A problem involving an analogy between ratios of boys to girls given their average weights and percentage composition of the class by weight.
Knox, Kerro J. Chem. Educ. 1980, 57, 879.
Chemometrics |
Molecular Properties / Structure
A novel method of representing orbitals in three dimensions  Chenier, Philip J.
Suggested convention for drawing orbitals in three dimensions.
Chenier, Philip J. J. Chem. Educ. 1980, 57, 788.
Molecular Properties / Structure
Groups and subgroups in the periodic table of the elements: A proposal of modification in the nomenclature  Araneo, Antonio
A proposal to eliminate the "A" and "B" designations of subgroups and replace them with letters referring directly to the electronic structures of atoms.
Araneo, Antonio J. Chem. Educ. 1980, 57, 784.
Periodicity / Periodic Table |
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Dense, denser, densest  Conroy, Lawrence E.
Iridium is more dense than osmium.
Conroy, Lawrence E. J. Chem. Educ. 1980, 57, 528.
Physical Properties |
Metals |
Periodicity / Periodic Table
Crossword puzzle of the elements  Barr, Irene
Crossword puzzle of the elements; solution of page 500 of this issue.
Barr, Irene J. Chem. Educ. 1980, 57, 495.
Periodicity / Periodic Table
Optical Activity  Mickey, Charles D.
Historical background of stereoisomerism, the properties of light, the principles of a polarimeter, and optically active compounds.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 442.
Stereochemistry |
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Walnut models of simple molecules  Niac, Gavril; Florea, Cornel
Using natural walnut formations to illustrate the geometry of simple molecules.
Niac, Gavril; Florea, Cornel J. Chem. Educ. 1980, 57, 429.
Molecular Properties / Structure |
Molecular Modeling |
Natural Products |
VSEPR Theory
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Name the compound contest (Corridor demonstration)  Koubek, Edward
Providing molecular models for students to identify for credit or prizes.
Koubek, Edward J. Chem. Educ. 1980, 57, 308.
Molecular Properties / Structure
Rotation of plane-polarized light: A simple model  Hill, Roger R.; Whatley, Barrie G.
A simple model that explains why enantiomers of a chiral compound rotate light in different directions.
Hill, Roger R.; Whatley, Barrie G. J. Chem. Educ. 1980, 57, 306.
Photochemistry |
Molecular Modeling |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers |
Molecular Properties / Structure
An element a day keeps theory at bay  Potts, Richard A.
Incorporating a brief discussion of the chemistry of a different element into each day's lecture.
Potts, Richard A. J. Chem. Educ. 1980, 57, 290.
Periodicity / Periodic Table |
Descriptive Chemistry
Molecular Geometry  Mickey, Charles D.
Methods for determining molecular geometry and the application of VSEPR theory to real molecules.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 210.
Molecular Properties / Structure |
VSEPR Theory
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
4s Sometimes is below 3d - the author replies  Pilar, Frank L.
Reply to criticism of original article.
Pilar, Frank L. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
4s Sometimes is below 3d  Carlton, Terry S.
Seeks to correct flaws in cited article.
Carlton, Terry S. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
A low-cost classroom demonstration of the Aufbau Principle  Hanley, James R. III; Hanley, James R., Jr.
Uses golf balls placed in egg cartons to represent the placement of electrons in orbitals.
Hanley, James R. III; Hanley, James R., Jr. J. Chem. Educ. 1979, 56, 747.
Atomic Properties / Structure |
Periodicity / Periodic Table
A simple inexpensive model for student discovery of VSEPR  Halpern, Marc
A simple model made from yarn and four wooden spheres.
Halpern, Marc J. Chem. Educ. 1979, 56, 531.
VSEPR Theory |
Molecular Modeling |
Molecular Properties / Structure
Empirical formulas  Ryan, Dennis P.
This question forces one to duplicate the line of reasoning used by Dalton in his initial formulation of atomic weights; it tests for the ability to deduce atomic sizes and to calculate empirical formulas.
Ryan, Dennis P. J. Chem. Educ. 1979, 56, 528.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Periodicity / Periodic Table
Computer quiz on the periodic table  Wasson, J. S.
An interactive computer (Fortran) program entitled PERIOD.
Wasson, J. S. J. Chem. Educ. 1979, 56, 527.
Periodicity / Periodic Table |
Enrichment / Review Materials
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
"The bounce principle"  Smith, Douglas D.
A demonstration involving "alive" and "dead" rubber balls. Submitted by "Doc the Clown".
Smith, Douglas D. J. Chem. Educ. 1979, 56, 338.
Physical Properties |
Molecular Properties / Structure
The aromatic ring  Kolb, Doris
Historic analysis and attempts to explain the structure of benzene, the concept of resonance, Huckel's rule, polycyclic aromatic compounds, non-classical aromatic compounds, and a definition for aromaticity.
Kolb, Doris J. Chem. Educ. 1979, 56, 334.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Word search puzzle  Claus, Alison S.
This puzzle contains the names of all elements from hydrogen to hahnium (element 105).
Claus, Alison S. J. Chem. Educ. 1979, 56, 44.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements
Plastics: Utilizing the properties of string-like molecules  J. Chem. Educ. Staff
A summary of the properties of common polymers.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 42.
Polymerization |
Molecular Properties / Structure |
Applications of Chemistry
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Using the Aufbau principle   Whitmer, John C.
This question is written with the belief that general chemistry students should not only attain an understanding of the Aufbau principle enabling them to write down electron configurations, they ought also recognize the correspondence between the quantum numbers and the structures of the periodic table.
Whitmer, John C. J. Chem. Educ. 1978, 55, 515.
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
Synthesis and properties of an optically active complex: A polarimeter experiment for general chemistry  Hunt, Harold R., Jr.
Synthesizing and determining the optical rotation of d-Co(phen)3(ClO4)3.2H2O.
Hunt, Harold R., Jr. J. Chem. Educ. 1977, 54, 710.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Synthesis |
Coordination Compounds
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Computer games in chemistry  Smith, Stanley G.; Chabay, Ruth
Describes several chemistry computer games, including one involving organic synthesis.
Smith, Stanley G.; Chabay, Ruth J. Chem. Educ. 1977, 54, 688.
Periodicity / Periodic Table |
Synthesis |
Enrichment / Review Materials
Compact compact  Nelson, Gregory V.
Using a cardboard mailing tube to demonstrate the rigidity of the folding pattern and the flexibility of a non-helical region in a protein.
Nelson, Gregory V. J. Chem. Educ. 1977, 54, 578.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides
Synthesis in an integrated curriculum  Yoder, Claude H.
Outline of a four-year chemistry program culminating in a senior course "Synthesis and Determination of Structure," for which a separate outline is provided.
Yoder, Claude H. J. Chem. Educ. 1977, 54, 572.
Synthesis |
Molecular Properties / Structure
Emphasis on elements  J. Chem. Educ. Staff
Lists major metals and minerals, current metal reserves, and elemental composition of the human body and the oceans. [Debut]
J. Chem. Educ. Staff J. Chem. Educ. 1977, 54, 551.
Periodicity / Periodic Table |
Geochemistry |
Metals
Pre-vacation experiment: The effect of temperature and torsion on the structure of a saccharide  Ford, Linda Kay
An experiment in which students prepare salt-water taffy.
Ford, Linda Kay J. Chem. Educ. 1977, 54, 550.
Carbohydrates |
Molecular Properties / Structure
Drinking-straw polyhedral models in structural chemistry  Mak, Thomas C. W.; Lam, C. N.; Lau, O. W.
Instructions for constructing a variety of molecular and crystal structures based on various ways of packing regular and semi-regular polyhedra made from plastic drinking straws.
Mak, Thomas C. W.; Lam, C. N.; Lau, O. W. J. Chem. Educ. 1977, 54, 438.
Molecular Properties / Structure |
Molecular Modeling
Teaching ion-ion, ion-dipole, and dipole-dipole interactions  Yoder, Claude H.
Shows how electrostatic interactions can be expressed quantitatively through Coulomb's law and taught at a variety of places in the chemistry curriculum.
Yoder, Claude H. J. Chem. Educ. 1977, 54, 402.
Molecular Properties / Structure
Molecular geometries and "repulsive ratings"  Arlotto, Roy J.
A procedure to help students rationalize VSEPR theory.
Arlotto, Roy J. J. Chem. Educ. 1977, 54, 306.
Molecular Properties / Structure |
VSEPR Theory
Illustrating infrared spectroscopy using commercially available plastic films  Webb, John; Rasmussen, Malcolm; Selinger, Ben
Collecting and comparing the IR spectra of commercially available plastic films.
Webb, John; Rasmussen, Malcolm; Selinger, Ben J. Chem. Educ. 1977, 54, 303.
Spectroscopy |
IR Spectroscopy |
Molecular Properties / Structure
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Vitalizing the lecture. Lap-dissolve projection  Harpp, David N.; Snyder, James P.
Describes and provides examples of the lap-dissolve effect, a technique that uses two 35mm slide projectors to convey changing images in a large lecture setting.
Harpp, David N.; Snyder, James P. J. Chem. Educ. 1977, 54, 68.
Molecular Properties / Structure |
Mechanisms of Reactions
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Construction of models which demonstrate planes  Clark, Thomas J.
Models demonstrating planes of interest can be easily constructed from framework molecular models and polystyrene casting resin.
Clark, Thomas J. J. Chem. Educ. 1975, 52, 628.
Molecular Properties / Structure |
Molecular Modeling
The experimental values of atomic electron affinities. Their selection and periodic behavior  Chen, E. C. M.; Wentworth, W. E.
Presents experimental values of atomic electron affinities and discusses their determination.
Chen, E. C. M.; Wentworth, W. E. J. Chem. Educ. 1975, 52, 486.
Atomic Properties / Structure |
Periodicity / Periodic Table
Deflection of falling solvents by an electric field  Brindle, I. D.; Tomlinson, R. H.
Using the deflection of a falling liquid by an electrically charged rod to demonstrate the polarity of molecules is misleading at best.
Brindle, I. D.; Tomlinson, R. H. J. Chem. Educ. 1975, 52, 382.
Molecular Properties / Structure |
Electrochemistry
Strand polarity: Antiparallel molecular interactions in nucleic acids  Davidson, Michael W.; Wilson, W. David
121. The illustrations in many biochemistry textbooks indicates a parallel polarity in DNA, but in truth DNA is antiparallel.
Davidson, Michael W.; Wilson, W. David J. Chem. Educ. 1975, 52, 323.
Molecular Properties / Structure
A simple model of an a[alpha]-helix  Hiegel, Gene A.
A simple model of an a[alpha]-helix made from a toilet tissue tube.
Hiegel, Gene A. J. Chem. Educ. 1975, 52, 231.
Molecular Properties / Structure |
Molecular Modeling
Preparation and color of azo-dyes  Mosher, Melvyn W.; Ansell, Jay M.
A simple experiment to relate the color of certain substituted azo-dyes to their visible absorption spectra.
Mosher, Melvyn W.; Ansell, Jay M. J. Chem. Educ. 1975, 52, 195.
Dyes / Pigments |
Synthesis |
Molecular Properties / Structure |
Aromatic Compounds |
Student-Centered Learning
Rediscovery in a course for nonscientists. Use of molecular models to solve classical structural problems  Wood, Gordon W.
Describes exercises using simple ball and stick models that students with no chemistry background can solve in the context of the original discovery.
Wood, Gordon W. J. Chem. Educ. 1975, 52, 177.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nonmajor Courses
Reduction of copper(II) oxide by alkanes of low molecular weight  Hoffman, A. B.; Hoffman, A. J.
This paper describes a laboratory where general chemistry students investigate the reduction of CuO by alkanes of low molecular weight.
Hoffman, A. B.; Hoffman, A. J. J. Chem. Educ. 1974, 51, 418.
Oxidation / Reduction |
Molecular Properties / Structure
A stereochemical model for illustrating pseudorotation of five-coordinate atoms  Riess, Jean G.
Design of an inexpensive, articulated model that simulates intramolecular isomerization or fluxional behavior on five-coordinate atoms.
Riess, Jean G. J. Chem. Educ. 1973, 50, 850.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
Regularities and relations among ionization potentials of nontransition elements  Liebman, Joel F.
Provides several semiempirical procedures for investigating ionization potentials.
Liebman, Joel F. J. Chem. Educ. 1973, 50, 831.
Atomic Properties / Structure |
Periodicity / Periodic Table
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
The paramagnetism of O2  Lethbridge, J. W.; Davies, M. B.
A simple but more spectacular demonstration of the paramagnetism of O2.
Lethbridge, J. W.; Davies, M. B. J. Chem. Educ. 1973, 50, 656.
Magnetic Properties |
Molecular Properties / Structure
A magnetic analogy for demonstrating some VSEPR principles  Schobert, Harold H.
Bar magnets and iron filings are used to simulate atomic nuclei and illustrate the difference in the degree of localization of electron density of bonding and non-bonding pairs.
Schobert, Harold H. J. Chem. Educ. 1973, 50, 651.
VSEPR Theory |
Molecular Properties / Structure
A simple demonstration of enantiomerism  Richards, K. E.
Design for a wooden box containing a mirror that uses a molecular model to demonstrate enantiomerism.
Richards, K. E. J. Chem. Educ. 1973, 50, 632.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Determining the molecular weight of N-fatty acids by thin layer chromatography  Singh, Eric J.; Zuspan, Frederick P.
Simple procedure for determining the molecular weight of N-fatty acids by thin layer chromatography.
Singh, Eric J.; Zuspan, Frederick P. J. Chem. Educ. 1973, 50, 625.
Molecular Properties / Structure |
Physical Properties |
Thin Layer Chromatography |
Chromatography |
Fatty Acids
An overhead projection demonstration of optical activity  Hill, John W.
An overhead projection demonstration of optical activity the makes use of two polarizing lenses and an optically active compound.
Hill, John W. J. Chem. Educ. 1973, 50, 574.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Carbohydrates
Overhead projection of stereographic images  Crozat, Madeleine M.; Watkins, Steven F.
A simple technique that employs an overhead projector, colored filters, and colored transparent overlays to create three-dimensional images of molecules for viewing by up to thirty students simultaneously.
Crozat, Madeleine M.; Watkins, Steven F. J. Chem. Educ. 1973, 50, 374.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
A criticism of the valence shell electron pair repulsion model as a teaching device  Drago, Russell S.
The factors that influence the geometry of molecules are much more complicated than the VSEPR model would lead one to believe.
Drago, Russell S. J. Chem. Educ. 1973, 50, 244.
VSEPR Theory |
Molecular Properties / Structure
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Strength of chemical bonds  Christian, Jerry D.
Demonstrating the strength of chemical bonds by scaling a molecule up to a macroscopic size.
Christian, Jerry D. J. Chem. Educ. 1973, 50, 176.
Covalent Bonding |
Molecular Properties / Structure |
Metallic Bonding
The helix coil transition of DNA  Steinert, Roger; Hudson, Bruce
The design and use of a photometer to detect the transition of DNA from the double helix to random coil form.
Steinert, Roger; Hudson, Bruce J. Chem. Educ. 1973, 50, 129.
Molecular Properties / Structure |
Photochemistry |
Spectroscopy |
Laboratory Equipment / Apparatus
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of chemical principles and their solutions.
Campbell, J. A. J. Chem. Educ. 1973, 50, 128.
Enrichment / Review Materials |
Proteins / Peptides |
pH |
Carbohydrates |
Molecular Properties / Structure
The science of chemistry: periodic properties and chemical behavior (Howald, Reed A.; Manch, Walter A.)  Leonard, Jack E.

Leonard, Jack E. J. Chem. Educ. 1972, 49, A698.
Periodicity / Periodic Table
Simple harmonic motion - A graphic demonstration  Magliulo, Anthony R.
A kymograph is adapted to the study of the vibration of a linear diatomic molecule.
Magliulo, Anthony R. J. Chem. Educ. 1972, 49, 640.
Molecular Properties / Structure
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Gimmicks for mid-year motivation  Adams, Richard C.
Suggestions include directions for making peanut brittle, examining common, antiquated names for chemical compounds, and periodic puns.
Adams, Richard C. J. Chem. Educ. 1972, 49, 536.
Periodicity / Periodic Table |
Consumer Chemistry |
Nomenclature / Units / Symbols
Electron configuration diagram  Krupsaw, Marylin; Ng, George
A simpler schematic diagram for remembering the order of filling subshells when constructing electron configurations.
Krupsaw, Marylin; Ng, George J. Chem. Educ. 1972, 49, 433.
Atomic Properties / Structure |
Periodicity / Periodic Table
Why is the oxygen in water negative?  Liebman, Joel F.
Oxygen in water is negative because a negative charge, unlike a positive, can be stabilized using ground state ionic resonance structures.
Liebman, Joel F. J. Chem. Educ. 1972, 49, 415.
Water / Water Chemistry |
Molecular Properties / Structure |
Oxidation State
A modified Rast method for molecular weights  Wawzonek, Stanley
Avoiding problems associated with the Rast method for determining molecular weights.
Wawzonek, Stanley J. Chem. Educ. 1972, 49, 399.
Molecular Properties / Structure |
Physical Properties
The chlorophyll cat  Hardcastle, J. E.
A short poem and cartoon representation of the chlorophyll structure.
Hardcastle, J. E. J. Chem. Educ. 1972, 49, 364.
Plant Chemistry |
Photosynthesis |
Molecular Properties / Structure |
Proteins / Peptides
Construction of a framework model of DNA. A class project  Anderson, John A.
A model of DNA is constructed from plastic tubing as a class project.
Anderson, John A. J. Chem. Educ. 1972, 49, 329.
Molecular Modeling |
Molecular Properties / Structure
Solubility of lead bromide in nitrate media. A study of ionic interactions  Cooper, J. N.
Students are asked to determine, as a class, the solubility of lead bromide at a fixed temperature in solutions covering a range of known sodium nitrate concentrations.
Cooper, J. N. J. Chem. Educ. 1972, 49, 282.
Periodicity / Periodic Table |
Solutions / Solvents |
Aqueous Solution Chemistry
The use of a dye in the Dumas method of determining molecular weight  Tibbetts, Donald L.; Salter, E. Mimie
Using iodine to color a liquid in order to determine when its vaporative heating must be stopped.
Tibbetts, Donald L.; Salter, E. Mimie J. Chem. Educ. 1972, 49, 182.
Dyes / Pigments |
Physical Properties |
Molecular Properties / Structure
An octagonal prismatic periodic table  Kow, Tang Wah
Presents an octagonal, prismatic periodic table
Kow, Tang Wah J. Chem. Educ. 1972, 49, 59.
Periodicity / Periodic Table
Computer generated display and manipulation of a general molecule  Portigal, Larry D.; Minicozzi, William P.
Availability of the Molecular Display Program (MOLDSP) and algorithms written in Fortran IV that transform topological and geometrical information into dynamic molecular displays.
Portigal, Larry D.; Minicozzi, William P. J. Chem. Educ. 1971, 48, 790.
Molecular Properties / Structure |
Molecular Modeling
Size of a molecule. Or what's in a shape?  Demchik, Michael J.; Demchik, Virginia C.
The authors describe an experiment which helps students understand why oleic acid is essentially insoluble in water.
Demchik, Michael J.; Demchik, Virginia C. J. Chem. Educ. 1971, 48, 770.
Lipids |
Molecular Properties / Structure |
Molecular Modeling |
Physical Properties |
Solutions / Solvents |
Fatty Acids
A simple molecular weight experiment  Kalbus, Lee; Petrucci, Ralph H.
The authors share a method that is conceptually similar to the Dumas method and students have had considerable success.
Kalbus, Lee; Petrucci, Ralph H. J. Chem. Educ. 1971, 48, 107.
Molecular Properties / Structure |
Quantitative Analysis
The periodic system of chemical elements: A history of the first hundred years (van Spronsen, J. W.)  Oesper, Ralph. E.

Oesper, Ralph. E. J. Chem. Educ. 1970, 47, A856.
Periodicity / Periodic Table
Mendeleev's law: A demonstration  Emerson, Kenneth
This demonstration simulates Mendeleev's efforts to organize the elements into a periodic table.
Emerson, Kenneth J. Chem. Educ. 1970, 47, A67.
Periodicity / Periodic Table
Aufbau principle: A simple model for demonstration  Sagi, Seetarama Raju
This electrical model of the atom used light bulbs to illustrate how the electron density gradually increases around the nucleus with successive additions of electrons to the various orbitals.
Sagi, Seetarama Raju J. Chem. Educ. 1970, 47, 648.
Atomic Properties / Structure |
Periodicity / Periodic Table
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
Is ammonia like water?  Gill, J. B.
This article sets out to compare some of the properties of the two most widely studied solvents, water and liquid ammonia, and in particular illustrate some comparative aspects that are not normally considered.
Gill, J. B. J. Chem. Educ. 1970, 47, 619.
Water / Water Chemistry |
Molecular Properties / Structure |
Aqueous Solution Chemistry
Polymer models  Carraher, Charles E., Jr.
A child's "pop-it-bead" set or polystyrene spheres or corks with holes drilled through them and connected with a shoestring can be used to illustrate some relationships of structure to polymer properties.
Carraher, Charles E., Jr. J. Chem. Educ. 1970, 47, 581.
Molecular Properties / Structure |
Molecular Modeling |
Polymerization
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
A weevil's loss is our gain or sex strikes the pages on the Journal.  Brasted, Robert C.
The trans-isomer of the boll weevil sex attractant is a million times more active than the cis-isomer.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Natural Products |
Diastereomers |
Molecular Properties / Structure |
Agricultural Chemistry |
Applications of Chemistry
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
Periodicity and the lanthanides and actinides  Moeller, Therald
Examines periodic trends among the elements and particularly within the lanthanide and actinide series.
Moeller, Therald J. Chem. Educ. 1970, 47, 417.
Periodicity / Periodic Table |
Oxidation State
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
An improvement of the vapor density experiment in the general chemistry course  Seiwald, Robert; Gruhn, Thomas; Gorman, Mel
Suggests adding Rhodamine B to the liquid phase to make it highly visible.
Seiwald, Robert; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1970, 47, 390.
Gases |
Molecular Properties / Structure
An electronegativity spectrum for the periodic table  Guenther, W. B.
This periodic table uses a spectrum of colors coded to electronegativity values and gives equal legitimacy to s, p, d, and f blocks of elements.
Guenther, W. B. J. Chem. Educ. 1970, 47, 317.
Atomic Properties / Structure |
Periodicity / Periodic Table
A demonstration experiment on partial molar volumes  Coch, Juan A.; Lopez, Valentin
The partial molar volume of trichloroacetic acid can be determined by measuring the increase in volume when TCA is dissolved in water at constant temperature and pressure.
Coch, Juan A.; Lopez, Valentin J. Chem. Educ. 1970, 47, 270.
Solutions / Solvents |
Molecular Properties / Structure |
Stoichiometry
Isomerism in transition metal complexes: An experiment for freshman chemistry laboratory  Foust, Richard D., Jr.; Ford, Peter C.
In this experiment students synthesize two isomers, cis- and trans-dichlorobis(ethylenediamine)-cobalt(III) chloride.
Foust, Richard D., Jr.; Ford, Peter C. J. Chem. Educ. 1970, 47, 165.
Molecular Properties / Structure |
Transition Elements |
Metals |
Coordination Compounds |
Diastereomers |
Synthesis
Infrared spectrometry of inorganic salts: A general chemistry experiment  Ackermann, Martin N.
An experiment in inorganic qualitative analysis for general chemistry.
Ackermann, Martin N. J. Chem. Educ. 1970, 47, 69.
IR Spectroscopy |
Qualitative Analysis |
Molecular Properties / Structure
Some reflections on the use and abuse of molecular models  Peterson, Quentin R.
Examines the history of the application of molecular models and model types, and proposes the construction of a new type of model.
Peterson, Quentin R. J. Chem. Educ. 1970, 47, 24.
Molecular Properties / Structure |
Molecular Modeling
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Avogadro's number from the volume of a monolayer  Moynihan, Cornelius T.; Goldwhite, Harold
This article comments on and makes suggestions regarding the conduct of and treatment of data in the popular experiment in which Avogadro's number is estimated from the volume of a monolayer on a water surface.
Moynihan, Cornelius T.; Goldwhite, Harold J. Chem. Educ. 1969, 46, 779.
Stoichiometry |
Molecular Properties / Structure
LTE. Normalization of MO's  Hecht, Charles E.
The author suggests that the cited computer program be modified to normalize molecular orbitals.
Hecht, Charles E. J. Chem. Educ. 1969, 46, 700.
MO Theory |
Molecular Properties / Structure
Construction and use of atomic and molecular models (Bassow, H.)  Martins, George

Martins, George J. Chem. Educ. 1969, 46, 623.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
The noble gases and the periodic table: Telling it like it was  Wolfenden, John H.
It is instructive to discover that many great scientists have reported erroneous observations as well as mistaken interpretations of experimental data.
Wolfenden, John H. J. Chem. Educ. 1969, 46, 569.
Gases |
Periodicity / Periodic Table
Friday experiments  Bissey, Jack E.
Provides data on an unknown gas and asks readers to determine if it is ideal, as well as its molecular weight and chemical formula.
Bissey, Jack E. J. Chem. Educ. 1969, 46, 497.
Gases |
Molecular Properties / Structure
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Prediction of molecular polarity by V.S.E.P.R. theory  Daugherty, N. A.
Suggestion for predicting molecular polarity using VSEPR theory.
Daugherty, N. A. J. Chem. Educ. 1969, 46, 283.
Molecular Properties / Structure |
VSEPR Theory
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P.
(1) Why different potential for copper/zinc cells when using nitrates vs. sulfates? Why is neither cell potential as large as predicted by Nerst equation? (2) Do elements in the zinc subgroup belong to the transition series? - answer by Quagliano. (3) How can the 2,4,5-trichloro derivative of phenoxyacetic acid be prepared? - answer by Danehy.
Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P. J. Chem. Educ. 1969, 46, 227.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Periodicity / Periodic Table |
Metals |
Synthesis |
Aromatic Compounds
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
Molecular symmetry models  Craig, Norman C.
Presents the use of physical models in helping the general chemistry student to begin to replace his intuitive concept of symmetry with a more rigorous one.
Craig, Norman C. J. Chem. Educ. 1969, 46, 23.
Molecular Modeling |
Molecular Properties / Structure |
Group Theory / Symmetry
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Computer simulation of experimental data  Shwendeman, R. H.
This note describes some of the techniques in programming used to generate a sufficient variety of experimental data to provide each student with his own set of numbers for analysis in conjunction with the demonstration laboratory.
Shwendeman, R. H. J. Chem. Educ. 1968, 45, 665.
Molecular Properties / Structure |
Physical Properties |
Gas Chromatography
Framework molecular models to illustrate Linnett's double quartet theory  Bumgardner, Carl L.; Wahl, George H., Jr.
Presents a convenient method for depicting electron arrangements using molecular models.
Bumgardner, Carl L.; Wahl, George H., Jr. J. Chem. Educ. 1968, 45, 347.
Molecular Modeling |
Molecular Properties / Structure
An easily constructed tetrahedron model  Yamana, Shukichi
A simple method for constructing a tetrahedron by folding paper.
Yamana, Shukichi J. Chem. Educ. 1968, 45, 245.
Molecular Modeling |
Molecular Properties / Structure
Simple construction to determine protein molecular weights by the osmotic pressure method  Candlish, John K.
This short note presents a simple device to determine protein molecular weights through osmotic pressure.
Candlish, John K. J. Chem. Educ. 1968, 45, 93.
Molecular Properties / Structure |
Proteins / Peptides |
Physical Properties
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
The construction of solid tetrahedral and octahedral models  Sheppard, William J.
Describes the construction of solid tetrahedral and octahedral models from wooden blocks.
Sheppard, William J. J. Chem. Educ. 1967, 44, 683.
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure
The use of tables of data in teaching: The students discover laws about ionization potentials  Haight, G. P., Jr.
Students are asked to see what they can discover in a table of ionization potentials of the elements like that presented in most general chemistry textbooks.
Haight, G. P., Jr. J. Chem. Educ. 1967, 44, 468.
Atomic Properties / Structure |
Periodicity / Periodic Table
Molecular weights from Dumas bulb experiments  Kaya, Julie J.; Campbell, J. Arthur
Describes an investigation in which students use a Dumas bulb to determine the molecular weight of several substances and presents the accompanying data.
Kaya, Julie J.; Campbell, J. Arthur J. Chem. Educ. 1967, 44, 394.
Molecular Properties / Structure
Electronegativities and group IVA chemistry  Payne, Dwight A., Jr.; Fink, Frank Hall
The teacher of inorganic chemistry should present the representative elements of group IVA and their properties as an intellectual and empirical form of investigation rather than as a mere collection of information.
Payne, Dwight A., Jr.; Fink, Frank Hall J. Chem. Educ. 1966, 43, 654.
Atomic Properties / Structure |
Periodicity / Periodic Table
Improvements in the Victor-Meyer  Bader, Morris
Two improvements in the Victor-Meyer have simplified the apparatus and greatly increased the accuracy of molecular weight determinations.
Bader, Morris J. Chem. Educ. 1966, 43, 500.
Laboratory Equipment / Apparatus |
Molecular Properties / Structure
Inexpensive space-filling display models  Kellett, J. C., Jr.; Martin, A. N.
Using rubber molds to reproduce existing models in plaster.
Kellett, J. C., Jr.; Martin, A. N. J. Chem. Educ. 1966, 43, 374.
Molecular Modeling |
Molecular Properties / Structure
Concepts of species and state in chemistry and molecular physics  Goodfriend, P. L.
This article examines the concepts of species and state in chemistry and molecular physics.
Goodfriend, P. L. J. Chem. Educ. 1966, 43, 95.
Quantum Chemistry |
Diastereomers |
Molecular Properties / Structure
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
The architecture of molecules (Pauling, Linus; Hayward, Roger)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1965, 42, 579.
Molecular Properties / Structure
Letters  Zuckerman, J. J.
Comments on the controversy concerning which element is top - carbon or hydrogen.
Zuckerman, J. J. J. Chem. Educ. 1965, 42, 457.
Periodicity / Periodic Table
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Stereo molecular models  Godfrey, John C.
Presents a system of stereo molecular models designed by the author and their various applications.
Godfrey, John C. J. Chem. Educ. 1965, 42, 404.
Molecular Modeling |
Molecular Properties / Structure
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Minimum molecular weight approach for determining empirical formulas  Harwood, H. James
Describes the determination of empirical formulas from "minimum molecular weight," the molecular weight divided by the number of atoms of an element present in a molecule.
Harwood, H. James J. Chem. Educ. 1965, 42, 222.
Molecular Properties / Structure |
Stoichiometry
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Optical rotation  Evans, J. O. M.; Tietze, H. R.
The angle of rotation of sucrose can be easily determined using this simple demonstration.
Evans, J. O. M.; Tietze, H. R. J. Chem. Educ. 1964, 41, A973.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Precise atomic and molecular models  Adler, Alan D.; Steele, William J.
Presents designs for skeletal or lattice and space-filling models
Adler, Alan D.; Steele, William J. J. Chem. Educ. 1964, 41, 656.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Modeling clay models  Campbell, Melvin D.
Modeling clay can be used to effectively represent a variety of molecular structures and changes.
Campbell, Melvin D. J. Chem. Educ. 1964, 41, 612.
Molecular Modeling |
Molecular Properties / Structure
Effect of liquid NH3 on wood: A demonstration of the alcohol structure of cellulose  Hirsch, Phillis R.
A lecture demonstration of the plasticization of wood with liquid ammonia can be a very effective tool for teaching the alcohol structure of cellulose to any class studying basic organic chemistry.
Hirsch, Phillis R. J. Chem. Educ. 1964, 41, 605.
Carbohydrates |
Alcohols |
Molecular Properties / Structure
Illustrating conformational effects in acyclic systems  Sunderwirth, S. G.
A brief note describing a simple model for illustrating conformational effects.
Sunderwirth, S. G. J. Chem. Educ. 1964, 41, 557.
Molecular Properties / Structure |
Molecular Modeling
A model of the ice structure  Lambert, Jack L.; Seitz, Larry M.
Instructions for constructing a physical model of ice.
Lambert, Jack L.; Seitz, Larry M. J. Chem. Educ. 1964, 41, 504.
Water / Water Chemistry |
Molecular Modeling |
Molecular Properties / Structure
Collecting the chemical elements  Hammond, C. R.
Describes how to go about making a collection of the chemical elements.
Hammond, C. R. J. Chem. Educ. 1964, 41, 401.
Periodicity / Periodic Table
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Framework molecular orbital models  Brumlik, George C.; Barrett, Edward J.; Baumgarten, Reuben L.
Presents "Framework Molecular Orbital Models," which outline the symmetry axes and the symmetry planes of atomic and molecular orbitals in three dimensions and show on relative scale how far these orbitals reach out into molecular space.
Brumlik, George C.; Barrett, Edward J.; Baumgarten, Reuben L. J. Chem. Educ. 1964, 41, 221.
Molecular Modeling |
Molecular Properties / Structure
Atomic and molecular models made from vinyl covered wire  Larson, G. Olof.
This paper presents a series of scalar models made from vinyl covered wire.
Larson, G. Olof. J. Chem. Educ. 1964, 41, 219.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure
A clockwise spiral system of the chemical elements  Griff, H. K.
Presents a spiral periodic table.
Griff, H. K. J. Chem. Educ. 1964, 41, 191.
Periodicity / Periodic Table
A periodic table  Ternstrom, Torolf
Presents a periodic organization that includes the neutron and neutrino.
Ternstrom, Torolf J. Chem. Educ. 1964, 41, 190.
Periodicity / Periodic Table
Illuminated periodic table  Cordes, A. W.
A picture of an illuminated periodic table in use at the University of Arkansas.
Cordes, A. W. J. Chem. Educ. 1964, 41, 189.
Periodicity / Periodic Table
A rational periodic table  Sanderson, R. T.
Presents one author's attempt to bring greater rationality to the organization of the elements.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 187.
Periodicity / Periodic Table
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Tetrahedral and octahedral models  Larson, G. Olof
This short note describes simple models constructed from heavy paper and styrofoam balls used to facilitate discussions in stereochemistry.
Larson, G. Olof J. Chem. Educ. 1964, 41, 69.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
A magnetic molecular model  Meszaros, Lajos
This short note describes a model of the ethane molecule that demonstrates qualitatively the low energy barrier in free rotation about the carbon-carbon bond.
Meszaros, Lajos J. Chem. Educ. 1964, 41, 50.
Molecular Modeling |
Molecular Properties / Structure
Vapor shadowgraphs  King, L. Carroll; Templer, A. D.
Demonstrates the differential absorption of ultraviolet light by various vapors.
King, L. Carroll; Templer, A. D. J. Chem. Educ. 1963, 40, A987.
Molecular Properties / Structure
Variation in reactivityA demonstration  Bowen, D. M.
Provides suggestions for student research based on an earlier article published in the Journal.
Bowen, D. M. J. Chem. Educ. 1963, 40, A135.
Reactions |
Molecular Properties / Structure
Clathrates: Compounds in cages  Hagan, Mary Martinette, B. V. M.
Introduces clathrate compounds and examines some of their uses and applications.
Hagan, Mary Martinette, B. V. M. J. Chem. Educ. 1963, 40, 643.
Molecular Properties / Structure |
Applications of Chemistry |
Separation Science
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Demonstrating the Weissenberg effect with gelatin  Wiegand, James H.
Describes a simple apparatus to demonstrate the Weissenberg effect with gelatin.
Wiegand, James H. J. Chem. Educ. 1963, 40, 475.
Molecular Properties / Structure
Plastic Dreiding models  Fieser, Louis F.
This article describes superior molecular models of a new type available at cost low enough to allow purchase by students.
Fieser, Louis F. J. Chem. Educ. 1963, 40, 457.
Molecular Modeling |
Molecular Properties / Structure
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Would Mendeleev have predicted the existence of XeF4?  Ward, Roland
The author suggests that a contemporary Mendeleev might have used the concept of molecular orbitals to predict the existence of XeF4.
Ward, Roland J. Chem. Educ. 1963, 40, 277.
Nonmetals |
Molecular Properties / Structure
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
A simple model to illustrate conformational effects in acyclic molecules  Tye, A.; LaPidus, J. B.
Describes a simple model that is effective for demonstrating rotational forms about a carbon-carbon bond because of its excellent visibility in large classrooms.
Tye, A.; LaPidus, J. B. J. Chem. Educ. 1963, 40, 28.
Molecular Modeling |
Molecular Properties / Structure
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
A versatile molecular model of cyclobutane  Wilson, Armin
Describes a versatile molecular model of cyclobutane constructed from brass tubing and used to illustrate ring strain.
Wilson, Armin J. Chem. Educ. 1962, 39, 649.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Lecture demonstration models of cycloalkanes  Schultz, Harry P.
Describes large, sturdy, lecture demonstration models of cycloalkanes.
Schultz, Harry P. J. Chem. Educ. 1962, 39, 648.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Inexpensive molecular models  Head, William F., Jr.
Describes the use of seamless, methacrylate spheres in constructing sturdy molecular models.
Head, William F., Jr. J. Chem. Educ. 1962, 39, 568.
Molecular Modeling |
Molecular Properties / Structure
The electronic structures and stereochemistry of NO2+, NO2, and NO2-  Panckhurst, M. H.
A comparison of the electronic structures and stereochemistry of NO2+, NO2, and NO2-.
Panckhurst, M. H. J. Chem. Educ. 1962, 39, 270.
Stereochemistry |
Molecular Properties / Structure |
Resonance Theory
Electronegativity chart  Barrett, Richard L.
This brief note describes an electronegativity wall chart suitable for classroom use.
Barrett, Richard L. J. Chem. Educ. 1962, 39, 251.
Atomic Properties / Structure |
Periodicity / Periodic Table
Lecture-size molecular models with magnetic couplings  Kenney, Malcolm E.
Describes the design and use of large, lecture-size molecular models held together by magnetic couplings.
Kenney, Malcolm E. J. Chem. Educ. 1962, 39, 129.
Molecular Modeling |
Molecular Properties / Structure
Periodic classification of the elements  Redfern, J. P., Salmon, J. E.
Presents a periodic organization that takes into account the dual nature of the elements hydrogen, thorium, protactinium, and uranium.
Redfern, J. P., Salmon, J. E. J. Chem. Educ. 1962, 39, 41.
Periodicity / Periodic Table
To the editor  Baker, Wilbur L.
The author provides a simple method for laying out the sites for bonds on spherical atoms.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 533.
Molecular Modeling |
Molecular Properties / Structure
Geometry in the beginning chemistry course  Strong, Laurence E.; Clapp, L. B.; Edwards, J. O.
Presents a series of common general chemistry questions and their answers based on a structural analysis.
Strong, Laurence E.; Clapp, L. B.; Edwards, J. O. J. Chem. Educ. 1961, 38, 530.
Molecular Properties / Structure
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Inexpensive Stuart-type molecular models  Hoover, William C.; Shriver, Duward
Describes a method for constructing Stuart-type molecular models using latex.
Hoover, William C.; Shriver, Duward J. Chem. Educ. 1961, 38, 295.
Molecular Modeling |
Molecular Properties / Structure
Antecedents to modern concepts of configurational symmetry in chemistry  Gorman, Mel
The application of geometric shapes to various scientific concepts is one of the oldest practices in the intellectual heritage of man.
Gorman, Mel J. Chem. Educ. 1961, 38, 99.
Molecular Properties / Structure
Letters to the editor  Lambert, Frank L.
The author calls attention to polymer models.
Lambert, Frank L. J. Chem. Educ. 1960, 37, 490.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
A complete table of electronegativities  Little, Elbert J., Jr.; Jones, Mark M.
Provides a complete periodic table of electronegativity values.
Little, Elbert J., Jr.; Jones, Mark M. J. Chem. Educ. 1960, 37, 231.
Periodicity / Periodic Table |
Atomic Properties / Structure
Models for linear polymers  Morgan, Paul W.
Suggests models for addition and condensation polymers.
Morgan, Paul W. J. Chem. Educ. 1960, 37, 206.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
The atomic form periodic table  Strong, Frederick C.
Presents an "atomic form" of the periodic table, which offers some advantages to the standard organization.
Strong, Frederick C. J. Chem. Educ. 1959, 36, 344.
Periodicity / Periodic Table
A demonstration model illustrating the aufbau principle  Everett, D. H.
Describes the construction of a physical device capable of illustrating the relationship between the relative energies of electron orbitals in many-electron atoms, the electronic structure of atoms, and the periodic table.
Everett, D. H. J. Chem. Educ. 1959, 36, 298.
Atomic Properties / Structure |
Periodicity / Periodic Table
Letters to the editor  Kenney, Malcolm E.
Provides a photograph of a periodic table that displays periodic trends in electronegativity.
Kenney, Malcolm E. J. Chem. Educ. 1959, 36, 204.
Periodicity / Periodic Table |
Atomic Properties / Structure
The geometry of giant molecules  Price, Charles C.
The author examines a variety of specific examples of natural and synthetic polymer molecules and describes how their geometric molecular arrangements influence their properties.
Price, Charles C. J. Chem. Educ. 1959, 36, 160.
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
Accurate molecular models  Godfrey, John C.
Describes the construction of molecular models that rely on plastics to represents as accurately as possible all of the physical characteristics of real molecules.
Godfrey, John C. J. Chem. Educ. 1959, 36, 140.
Molecular Modeling |
Molecular Properties / Structure
Construction of molecular models  Anker, Rudolph M.
Describes the construction of simple, durable, and inexpensive molecular models consisting primarily of sponge rubber balls of varying sizes.
Anker, Rudolph M. J. Chem. Educ. 1959, 36, 138.
Molecular Modeling |
Molecular Properties / Structure
More mnemonics  Clark, Louis W.
Provides mnemonic devices for memorizing the transition elements in periods four, five, and six.
Clark, Louis W. J. Chem. Educ. 1959, 36, 57.
Transition Elements |
Periodicity / Periodic Table
An electron locator  Weis, Norman D.; Meek, John S.
Presents a circular device whose rotation indicates the configuration of electrons within the elements of the periodic table.
Weis, Norman D.; Meek, John S. J. Chem. Educ. 1958, 35, 570.
Atomic Properties / Structure |
Periodicity / Periodic Table
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
Molecular weight determination by boiling-point elevation: A freshman research project  Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene
Describes an investigation into factors influencing the results of molecular weight determination by boiling-point elevation and the procedure refined through these efforts.
Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene J. Chem. Educ. 1958, 35, 412.
Physical Properties |
Molecular Properties / Structure |
Undergraduate Research |
Phases / Phase Transitions / Diagrams
The pyranose structure of glucose  Miller, S. Porter
The author argues that a good rectangle is a better representation of the pyranose structure than a poor hexagon.
Miller, S. Porter J. Chem. Educ. 1958, 35, 302.
Molecular Properties / Structure |
Carbohydrates
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Inexpensive molecular models for use in the laboratory  Tanaka, John
It has been found that satisfactory low-cost models can be made from wax.
Tanaka, John J. Chem. Educ. 1957, 34, 603.
Molecular Modeling |
Molecular Properties / Structure
Teaching electron configurations  Eichinger, Jack W., Jr.
Time can be saved and confusion avoided by developing a systematic chart of the elements based on the energy levels of atomic orbitals very early in the general college chemistry course.
Eichinger, Jack W., Jr. J. Chem. Educ. 1957, 34, 504.
Atomic Properties / Structure |
Periodicity / Periodic Table
Schematic models of biochemical polymers  Blackwell, R. Quentin
Demonstrates the use of plastic necklace beads to represent polysaccharides, peptides and proteins, and nucleotides.
Blackwell, R. Quentin J. Chem. Educ. 1957, 34, 500.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
A periodic table and new periodic functions  Szabo, Z. G.; Lakatos, B.
A theoretically correct yet simple periodic system may be obtained by rearranging the long periodic table in such a way that the inert gases are situated in the middle.
Szabo, Z. G.; Lakatos, B. J. Chem. Educ. 1957, 34, 429.
Periodicity / Periodic Table
Textbook errors: XIII. The nature of ionic and molecular species in sulfuric acid  Brubaker, Carl H., Jr.
Addresses misconceptions regarding the strength of sulfuric acid and the nature of ionic and molecular species present in solution.
Brubaker, Carl H., Jr. J. Chem. Educ. 1957, 34, 325.
Molecular Properties / Structure |
Solutions / Solvents |
Aqueous Solution Chemistry
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
New molecular models showing charge distribution and bond polarity  Sanderson, R. T.
Describes a new type of two- and three-dimensional molecular models that show charge distribution and bond polarity through the use of colors.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 195.
Molecular Modeling |
Molecular Properties / Structure
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
Model of the alpha helix configuration in polypeptides  Whalen, Thomas A.
The alpha helix configuration in polypeptides is modeled using sheets of ordinary paper.
Whalen, Thomas A. J. Chem. Educ. 1957, 34, 136.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides
The electron chart  Eichinger, Jack W., Jr.
Presents a periodic wall chart organized according to the increasing energy of valence electrons.
Eichinger, Jack W., Jr. J. Chem. Educ. 1957, 34, 70.
Periodicity / Periodic Table |
Atomic Properties / Structure
The fable of the atomic theater  Kerker, Milton
Organizes the elements in a periodic sequence resembling seats in a theater.
Kerker, Milton J. Chem. Educ. 1957, 34, 32.
Atomic Properties / Structure |
Periodicity / Periodic Table
A periodic table: The "Aufbauprinzip" as a basis for classification of the elements  Longuet-Higgins, H. C.
This note recommends a presentation of the periodic table designed to show as directly as possible how the place of an element in the table is related to the electronic structure of the atom.
Longuet-Higgins, H. C. J. Chem. Educ. 1957, 34, 30.
Periodicity / Periodic Table |
Atomic Properties / Structure
An adjustable periodic chart for lecture purposes  Estok, George K.
This periodic table can be converted from the short to the long and extra-long forms.
Estok, George K. J. Chem. Educ. 1956, 33, 618.
Periodicity / Periodic Table |
Atomic Properties / Structure
A helical periodic table  Rice, William E.
A three-dimensional representation of the periodic table can provide an additional coordinate to represent the difference between subgroups without disrupting the vertical sequence of elements in a whole group.
Rice, William E. J. Chem. Educ. 1956, 33, 492.
Periodicity / Periodic Table |
Atomic Properties / Structure
A new periodic chart with electronegativities  Sanderson, R. T.
This paper describes a new chart that has been designed to portray clearly and vividly patterns in relative atomic radius, electronic configuration, and electronegativity.
Sanderson, R. T. J. Chem. Educ. 1956, 33, 443.
Periodicity / Periodic Table |
Atomic Properties / Structure
A new periodic table based on the energy sequence of atomic orbitals  Walker, W. R.; Curthoys, G. C.
Since the theory of atomic and molecular orbitals has proven to be of such value in interpreting the data of inorganic chemistry, it is hoped that a new periodic table based on the energy sequence of atomic orbitals will be an aid to the further systematizing of chemical knowledge.
Walker, W. R.; Curthoys, G. C. J. Chem. Educ. 1956, 33, 69.
Periodicity / Periodic Table |
Atomic Properties / Structure
A variable periodic system  Scheer, Roderich
This variable periodic system uses small cards to represent each elements and can be arranged to illustrate the short or long forms of the periodic table.
Scheer, Roderich J. Chem. Educ. 1955, 32, 590.
Periodicity / Periodic Table
Amphoteric molecules, ions and salts  Davidson, David
It is the aim of this paper to call attention to the splendid opportunity amphoteric substances afford for the teaching of acid-base principles.
Davidson, David J. Chem. Educ. 1955, 32, 550.
Molecular Properties / Structure |
Acids / Bases |
pH |
Aqueous Solution Chemistry
A three-dimensional periodic chart  Sell, Octavia S.
Demonstrates the construction of a three-dimensional periodic table from a conventional Hubbard chart.
Sell, Octavia S. J. Chem. Educ. 1955, 32, 524.
Periodicity / Periodic Table
Orbital models  Fowles, Gerald W. A.
Constructing models of atomic and molecular orbitals from papier-mache.
Fowles, Gerald W. A. J. Chem. Educ. 1955, 32, 260.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Models of plane molecules  Harrell, Bryant; Corwin, Alsoph H.
Describes the construction of planar molecular models, particularly for ring systems.
Harrell, Bryant; Corwin, Alsoph H. J. Chem. Educ. 1955, 32, 186.
Molecular Modeling |
Molecular Properties / Structure
The Grignard reagent reaches the freshman  King, W. Bernard; Beel, John A.
A laboratory procedure that allows students to distinguish between the structure of ethanol and dimethyl ether.
King, W. Bernard; Beel, John A. J. Chem. Educ. 1955, 32, 146.
Grignard Reagents |
Molecular Properties / Structure
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
A mailing-tube polarimeter  Shaw, William H. R.
This simple but effective polarimeter is constructed from a cardboard tube and a small square of polarizing film.
Shaw, William H. R. J. Chem. Educ. 1955, 32, 10.
Chirality / Optical Activity |
Molecular Properties / Structure
A rapid method for the assembly of semi-diagrammatic molecular models  Zinsser, Hans H.
Mass-produced, airbrushed atoms on acetate film are used to produce three-dimensional images of molecular and crystalline structures.
Zinsser, Hans H. J. Chem. Educ. 1954, 31, 662.
Molecular Modeling |
Molecular Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State
A cut-out chart of the periodic system  Clauson, Jennie E.
Colored discs in a cylinder of transparent plastic represent the arrangement of elements in the periodic table. Also provides a chart that can be cut out and turned into a similar cylinder.
Clauson, Jennie E. J. Chem. Educ. 1954, 31, 550.
Periodicity / Periodic Table |
Atomic Properties / Structure
One more periodic table  Sanderson, R. T.
This periodic table is constructed to highlight electronic differences.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 481.
Periodicity / Periodic Table |
Atomic Properties / Structure
A new space model of the periodic system of elements  Horie, S.
Describes a three-dimensional model of the periodic system of elements.
Horie, S. J. Chem. Educ. 1954, 31, 382.
Periodicity / Periodic Table
Molecular weight apparatus for use in general chemistry  Randall, David L.
Some of the difficulties that arise when general chemistry students determine the molecular weight of a volatile liquid are avoided by the use of a specialized glass bulb.
Randall, David L. J. Chem. Educ. 1954, 31, 297.
Laboratory Equipment / Apparatus |
Molecular Properties / Structure
Kekule's theory of aromaticity  Gero, Alexander
Examines what Kekule really wrote in his famous paper on the structure of benzene.
Gero, Alexander J. Chem. Educ. 1954, 31, 201.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Potentialities of protein isomerism  Asimov, Isaac
The permutations generated by structural isomerism in proteins could be demonstrated more convincingly and realistically if the amino acid compositions of actual proteins were taken into consideration.
Asimov, Isaac J. Chem. Educ. 1954, 31, 125.
Proteins / Peptides |
Molecular Properties / Structure |
Amino Acids |
Constitutional Isomers
The periodic table of elements  Chaverri, Gil R.
Suggestion for improving the organization of the periodic table for pedagogical purposes.
Chaverri, Gil R. J. Chem. Educ. 1953, 30, 632.
Periodicity / Periodic Table
Letters  Bowden, S. T.
The author calls for the standardization of the periodic table.
Bowden, S. T. J. Chem. Educ. 1953, 30, 426.
Periodicity / Periodic Table |
Atomic Properties / Structure
Differentiating between primary, secondary, and tertiary alcohols  Ritter, Frank O.
A primary or secondary aliphatic alcohol dissolved in pure glacial acetic acid decolorizes a water solution of KMnO4, while a tertiary alcohol fails to do so; a secondary alcohol will continue to react with KMnO4 solution if a little concentrated sulfuric acid is added, while a primary alcohol does not.
Ritter, Frank O. J. Chem. Educ. 1953, 30, 395.
Molecular Properties / Structure |
Alcohols |
Quantitative Analysis
Demonstration of the intermediate position of cobalt between iron and nickel  Goldstein, Ernst M.
The different oxidizability of ferrous, cobaltous, and nickelous hydroxides, together with increasing color deepness of the oxidation products, can be used to demonstrate that cobalt is intermediate in its properties between iron and nickel.
Goldstein, Ernst M. J. Chem. Educ. 1953, 30, 387.
Periodicity / Periodic Table |
Metals |
Oxidation / Reduction |
Atomic Properties / Structure |
Qualitative Analysis
Letters  Hakala, Reino W.
The author points out a reference to a relationship between atomic weight and atomic number.
Hakala, Reino W. J. Chem. Educ. 1953, 30, 44.
Atomic Properties / Structure |
Periodicity / Periodic Table
A periodic table for the lecture room  Fornoff, Frank J.; Post, Glenn I.; Rhoda, Richard N.; Collier, Herman E., Jr.
Presents the design and construction of a periodic table for the lecture room that illustrates a number of periodic relationships.
Fornoff, Frank J.; Post, Glenn I.; Rhoda, Richard N.; Collier, Herman E., Jr. J. Chem. Educ. 1952, 29, 626.
Periodicity / Periodic Table
Letters  Ferreira, Ricardo Carvalho
The author points out earlier work associated with a recent Journal article dealing with the periodic table and the transition elements.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1952, 29, 372.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Transition Elements
The long form of the periodic table  Glockler, George; Popov, A. I.
The authors comment on the independent publication of a periodic table similar to one they produced earlier.
Glockler, George; Popov, A. I. J. Chem. Educ. 1952, 29, 358.
Periodicity / Periodic Table |
Atomic Properties / Structure
Miscellaneous experiments  Damerel, Charlotte I.
Offers three demonstrations, the first involving molecular models illustrating the generation of optical isomers in a laboratory synthesis; the second demonstrating that liquid sodium chloride conducts and electric current; and the third examining the flow of electric current in an electrochemical galvanic cell.
Damerel, Charlotte I. J. Chem. Educ. 1952, 29, 296.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
A space model of the periodic system of elements  Clauson, Jennie E.
Illustrates a three-dimensional model of the periodic system of elements.
Clauson, Jennie E. J. Chem. Educ. 1952, 29, 250.
Periodicity / Periodic Table |
Atomic Properties / Structure
Cork-ball experiments on crystalline and molecular structure  Davidson, Norman
Cork balls and pins are used to construct models of crystalline and molecular structures.
Davidson, Norman J. Chem. Educ. 1952, 29, 249.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling
Effects of molecular shapes  Foster, Laurence S.
A brief discussion of basic molecular shapes and how they help to determine the physical and chemical properties of substances.
Foster, Laurence S. J. Chem. Educ. 1952, 29, 156.
Molecular Properties / Structure
A periodic table showing the relative sizes of elements and their ions  Klingenberg, Joseph; Springman, Leroy
Describes a periodic chart representing the relative sizes of atoms and ions that was constructed by a senior undergraduate.
Klingenberg, Joseph; Springman, Leroy J. Chem. Educ. 1952, 29, 81.
Atomic Properties / Structure |
Periodicity / Periodic Table
The periodic table: The 6d-5f mixed transition group  Coryell, Charles D.
With relatively few modifications, the Bohr-type periodic table presented by Glocker and Popov can be made to reflect more instructively the rather complex relationships obtained in the neighborhood of the 4f or gadolinium transition group and, more importantly, in the 6d-5f sequence extending from actinium through the region of uranium and the synthetic earths to element 103.
Coryell, Charles D. J. Chem. Educ. 1952, 29, 62.
Periodicity / Periodic Table |
Transition Elements |
Atomic Properties / Structure
The lanthanide contraction as a teaching aid  Keller, R N.
This paper presents a modified form of the atomic volume curve that illustrates graphically the lanthanide contraction; a number of chemical consequences of this effect are also discussed.
Keller, R N. J. Chem. Educ. 1951, 28, 312.
Transition Elements |
Periodicity / Periodic Table
Valency and the periodic table  Glockler, George; Popov, Alexander I.
Presents a modification of the Bohr-Thomsen-Akhumov periodic table stressing patterns to found among the rare earth elements.
Glockler, George; Popov, Alexander I. J. Chem. Educ. 1951, 28, 212.
Periodicity / Periodic Table |
Oxidation State |
Transition Elements |
Atomic Properties / Structure
A lecture room periodic table  Dutton, Frederic B.
Describes a large periodic table capable of illuminating individual elements and displaying their electronic configurations.
Dutton, Frederic B. J. Chem. Educ. 1951, 28, 110.
Periodicity / Periodic Table
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure
Molecular models of silicates for lecture demonstrations  Noyce, William K.
Describes the construction and use of molecular models of silicates for lecture demonstrations.
Noyce, William K. J. Chem. Educ. 1951, 28, 29.
Molecular Properties / Structure |
Molecular Modeling