TIGER

Journal Articles: 13 results
Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells  Michelle M. Ivey and Eugene T. Smith
Using a battery and a graphite electrode, an electrolytic cell is constructed to generate a layer of tarnish on silverware. Students then determine that the tarnish can be removed by electrochemically converting it back to silver using aluminum foil and baking soda.
Ivey, Michelle M.; Smith, Eugene T. J. Chem. Educ. 2008, 85, 68.
Consumer Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Lemon Cells Revisited - The Lemon-Powered Calculator  Daniel J. Swartling and Charlotte Morgan
Using lemons to create a voltaic cell to run items that students would use in their everyday lives drives home that chemistry plays an integral role in their lives.
Swartling, Daniel J.; Morgan, Charlotte. J. Chem. Educ. 1998, 75, 181.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Students' Misconceptions in Electrochemistry Regarding Current Flow in Electrolyte Solutions and the Salt Bridge  Michael J. Sanger and Thomas J. Greenbowe
Several researchers have documented students' misconceptions in electrochemistry. One reason for the interest in studying electrochemistry is that surveys of students and teachers suggest that students find this topic difficult and research confirms that students' beliefs about problem complexity affect their performance and learning.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1997, 74, 819.
Learning Theories |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Using the Biological Cell in Teaching Electrochemistry  Merkel, Eva Gankiewicz
How electricity is produced in a simple cell is correlated with how commercial batteries work; this concept can then be related to how living cells send electrical impulses.
Merkel, Eva Gankiewicz J. Chem. Educ. 1994, 71, 240.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
The Voltaic pile: A stimulating general chemistry experiment   Scharlin, Pirketta; Battino, Rubin
An inexpensive, simple, and fun way to illustrate many of the principles in electrochemistry.
Scharlin, Pirketta; Battino, Rubin J. Chem. Educ. 1991, 68, 665.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Why the Daniell cell works!  Martins, George F.
The strength of bonds between atoms in metals, the relative ease of removing electrons from atoms, and the energy lowering of the attraction of water molecules for positive ions in solution all aid beginning student's understanding of why reactions occur.
Martins, George F. J. Chem. Educ. 1990, 67, 482.
Atomic Properties / Structure |
Metals |
Electrolytic / Galvanic Cells / Potentials
Using a projecting voltmeter to introduce voltaic cells  Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony
Using a transparent "projecting" voltmeter and assembling a zinc versus copper cell one component at a time allows students to develop a more concrete notion of the nature of a voltaic cell and the potential it produces.
Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony J. Chem. Educ. 1989, 66, 510.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemistry demonstrations with an overhead projector  Ward, Charles R.; Greenbowe, Thomas J.
A template designed to fit on the surface of an overhead projector and demonstrate electrochemical phenomena.
Ward, Charles R.; Greenbowe, Thomas J. J. Chem. Educ. 1987, 64, 1021.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry