TIGER

Journal Articles: 58 results
Applications of Reaction Rate  Kevin Cunningham
This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. The assignment is designed to develop and assess a number of valuable skills and understandings, including the ability to write effectively.
Cunningham, Kevin. J. Chem. Educ. 2007, 84, 430.
Catalysis |
Enzymes |
Kinetics |
Rate Law |
Reactions |
Applications of Chemistry
An Enzyme Kinetics Experiment Using Laccase for General Chemistry   Yaqi Lin and Patrick M. Lloyd
This article describes the use of laccase, an oxidoreductase enzyme, to study the effects of enzyme catalysts on reaction rates.
Lin, Yaqi; Lloyd, Patrick M. J. Chem. Educ. 2006, 83, 638.
Aldehydes / Ketones |
Bioanalytical Chemistry |
Catalysis |
Enzymes |
Kinetics |
UV-Vis Spectroscopy
4-Dimethylaminopyridine or Acid-Catalyzed Syntheses of Esters: A Comparison  Annemieke W. C. van den Berg and Ulf Hanefeld
Students compare acid-catalyzed ester synthesis and the 4-dimethylaminopyridine-catalyzed reaction. Based on the outcome of the experiments, students discuss the different reaction mechanisms and reason why different products are formed.
van den Berg, Annemieke W. C.; Hanefeld, Ulf. J. Chem. Educ. 2006, 83, 292.
Acids / Bases |
Catalysis |
Chromatography |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis |
Mechanisms of Reactions
A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide  Carlos Alexander Trujillo
A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the Elephants Toothpaste is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.
Trujillo, Carlos Alexander. J. Chem. Educ. 2005, 82, 855.
Catalysis |
Kinetics |
Oxidation / Reduction
A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration  Colin White
A striking demonstration emphasizing that substances which promote reactions are not catalysts if they are consumed in the process. The demonstration is based on the iron(II) induced oxidation of iodide by chromium(VI).
White, Colin. J. Chem. Educ. 2004, 81, 364.
Catalysis |
Oxidation / Reduction |
Reactions
Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide  Tiffany A. Vetter and D. Philip Colombo Jr.
Determining the order and rate constant of the catalyzed decomposition of hydrogen peroxide using AOSEPT contact lens cleaning and a platinum-coated AOSEPT disc.
Vetter, Tiffany A.; Colombo, D. Philip, Jr. J. Chem. Educ. 2003, 80, 788.
Catalysis |
Consumer Chemistry |
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
Synthesis of a Racemic Ester and Its Lipase–Catalyzed Kinetic Resolution  Delia Stetca, Isabel W. C. E. Arends, and Ulf Hanefeld
Reaction sequence to familiarize first-year students with the use of enzymes in organic chemistry.
Stetca, Delia; Arends, Isabel W. C. E.; Hanefeld, Ulf. J. Chem. Educ. 2002, 79, 1351.
Bioinorganic Chemistry |
Enzymes |
Catalysis |
Synthesis |
Enantiomers |
Bioorganic Chemistry
Depletion: A Game with Natural Rules for Teaching Reaction Rate Theory  Donald J. Olbris and Judith Herzfeld
Game that reinforces central concepts of rate theory through simulation.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 2002, 79, 1232.
Kinetics |
Nonmajor Courses |
Rate Law |
Enrichment / Review Materials |
Catalysis
Catalytic Oxidation of Ammonia: A Sparkling Experiment  Vladimir A. Volkovich and Trevor R. Griffiths
A lecture demonstration experiment on the catalytic oxidation of ammonia using chromium(III) oxide as a catalyst is described.
Volkovich, Vladimir A.; Griffiths, Trevor R. J. Chem. Educ. 2000, 77, 177.
Catalysis |
Oxidation / Reduction |
Reactions
An Experiment to Demonstrate How a Catalyst Affects the Rate of a Reaction  Christine L. Copper and Edward Koubek
This experiment, which is a modified version of the traditional iodine clock reaction, allows students to calculate rates of reaction, orders of reactants, and activation energies. It also lets students discover that to increase a reaction's rate, a catalyst need only provide any additional pathway for the reaction, not necessarily a pathway having a lower activation energy.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1999, 76, 1714.
Catalysis |
Physical Properties |
Rate Law
The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment  Charles J. Marzzacco
The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq).
Marzzacco, Charles J. J. Chem. Educ. 1999, 76, 1517.
Calorimetry / Thermochemistry |
Catalysis
Experiments with Zeolites at the Secondary-School Level: Experience from The Netherlands  Eric N. Coker, Pamela J. Davis, Aonne Kerkstra, and Herman van Bekkum
This article describes a number of experiments that involve zeolites and are suitable for secondary-school chemistry laboratories. Students test the hardness of tap water before and after treatment with some zeolite and perform tests with a range of commercial laundry detergents containing zeolites.
Coker, Eric N.; Davis, Pamela J.; Kerkstra, Aonne; van Bekkum, Herman. J. Chem. Educ. 1999, 76, 1417.
Ion Exchange |
Catalysis |
Quantitative Analysis |
Water / Water Chemistry |
Consumer Chemistry |
Applications of Chemistry
UV Catalysis, Cyanotype Photography, and Sunscreens  Glen D. Lawrence and Stuart Fishelson
This laboratory experiment is intended for a chemistry course for non-science majors. The experiment utilizes one of the earliest photographic processes, the cyanotype process, to demonstrate UV catalysis of chemical reactions.
Lawrence, Glen D.; Fishelson, Stuart. J. Chem. Educ. 1999, 76, 1199.
Nonmajor Courses |
Photochemistry |
Catalysis
Photocatalytic Degradation of a Gaseous Organic Pollutant  Jimmy C. Yu and Linda Y. L. Chan
A simple and effective method to demonstrate the phenomenon of photocatalytic degradation of a gaseous organic pollutant was developed. Titanium dioxide (anatase) was used as the photocatalyst, and sunlight was found to be an effective light source for the activation of TiO2. The organic pollutant degrade in this demonstration was a common indoor air pollutant, dichloromethane.
Yu, Jimmy C.; Chan, Linda Y. L. J. Chem. Educ. 1998, 75, 750.
Catalysis |
Photochemistry |
Atmospheric Chemistry |
Applications of Chemistry
Small-Scale Kinetic Study of the Catalyzed Decomposition of Hydrogen Peroxide  Ronald O. Ragsdale, Jan C. Vanderhooft , and Arden P. Zipp
The decomposition of hydrogen peroxide can be studied directly and quickly by determining the rate of formation of oxygen bubbles produced. This experiment, like the iodine clock reaction, provides quantitative measurements for a general chemistry course.
Ragsdale, Ronald O.; Vanderhooft , Jan C.; Zipp, Arden P. J. Chem. Educ. 1998, 75, 215.
Catalysis |
Kinetics |
Microscale Lab
A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students  Christine L. Copper and Edward Koubek
By modifying the iodine clock reaction, students can use the initial rate method to observe the role of a catalyst in a chemical reaction via activation energy calculations and evaluate a proposed mechanism. They can also determine the order with respect to each reactant and the rate constants of the noncatalyzed and catalyzed reactions.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1998, 75, 87.
Catalysis |
Kinetics |
Mechanisms of Reactions
A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach  Doris R. Kimbrough, Mary Ann Magoun, Meg Langfur
The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration. Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors.
Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg . J. Chem. Educ. 1997, 74, 210.
Catalysis |
Rate Law
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
The repeating "exploding" flask: A demonstration of heterogeneous catalysis   Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A.
This demonstration can be used to illustrate heterogeneous catalysis and thermochemistry.
Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A. J. Chem. Educ. 1993, 70, 1029.
Calorimetry / Thermochemistry |
Catalysis
The platinum-catalyzed decomposition of methanol: A deceptive demonstration   Coffing, Danielle L.; Wile, Jay L.
Demonstration procedures and related questions for students.
Coffing, Danielle L.; Wile, Jay L. J. Chem. Educ. 1993, 70, 585.
Catalysis
Applications of Maxwell-Boltzmann distribution diagrams.  Peckham, Gavin D.; McNaught, Ian J.
Although Maxwell-Boltzmann distribution diagrams are intuitively appealing, care must be taken to avoid several common errors and misconceptions.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1992, 69, 554.
Thermodynamics |
Rate Law |
Catalysis
An equilibrium machine.  Sawyer, Douglas J.; Martens, Thomas E.
An equilibrium machine powered by air pressure that demonstrates the concepts of equilibrium, activation energy, and catalysis.
Sawyer, Douglas J.; Martens, Thomas E. J. Chem. Educ. 1992, 69, 551.
Equilibrium |
Catalysis |
Laboratory Equipment / Apparatus
An experiment on heterogeneous catalysis  Bussi, Juan; Correa, Carlos; Coch Frugoni, Juan A.
A laboratory that looks at homogeneous catalysis of the decomposition of hydrogen peroxide in the presence of dichromate.
Bussi, Juan; Correa, Carlos; Coch Frugoni, Juan A. J. Chem. Educ. 1991, 68, 170.
Catalysis
Reduction of permanganate: A kinetics demonstration for general chemistry  Steffel, Margaret J.
Using the reduction of MnO4- to Mn2+ in aqueous solution to demonstrate the four factors that control reaction rates in solution: the natures of the reactants, concentrations of the reactants, temperature, and the presence of a catalyst.
Steffel, Margaret J. J. Chem. Educ. 1990, 67, 598.
Kinetics |
Rate Law |
Catalysis |
Oxidation / Reduction
Catalysis: New reaction pathways not just a lowering of the activation energy  Haim, Albert
The explanation that the increased rate associated with a catalyzed reaction is the result of a lowering of the activation energy cannot always be correct.
Haim, Albert J. Chem. Educ. 1989, 66, 935.
Catalysis |
Rate Law
On a Reaction Involving Oxygen and Metal Sulfides  Hill, William D., Jr.
The role of iron(III) oxide as a catalyst in the production of oxygen by the thermal decomposition of potassium chlorate promoted the idea to use this oxide to repeat the reactions involving oxygen and the metal sulfides described in an earlier article.
Hill, William D., Jr. J. Chem. Educ. 1989, 66, 448.
Catalysis |
Reactions
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Kinetics and mechanism-a games approach  Harsch, Gunther
Using statistical games to simulate and illustrate a variety of chemical kinetics.
Harsch, Gunther J. Chem. Educ. 1984, 61, 1039.
Kinetics |
Mechanisms of Reactions |
Catalysis |
Rate Law
Influence of temperature and catalyst on the decomposition of potassium chlorate in a simple DTA apparatus  Wiederholt, Erwin
The authors describe the use of a simple DTA-apparatus in demonstrating the catalytic effects of MnO2 and Al2O3 on the decomposition temperature of KClO3.
Wiederholt, Erwin J. Chem. Educ. 1983, 60, 431.
Kinetics |
Instrumental Methods |
Catalysis |
Reactions |
Rate Law
A catalyst for the synthesis of soap  Hill, John W.; Soldberg, Sherrie J.; Hill, Cynthia S.
Use of a catalyst allows soap to be synthesized overnight at room temperature.
Hill, John W.; Soldberg, Sherrie J.; Hill, Cynthia S. J. Chem. Educ. 1982, 59, 788.
Catalysis |
Synthesis |
Consumer Chemistry
Chemical equilibrium  Mickey, Charles D.
The law of mass action, the equilibrium constant, and the effect of temperature, concentration, and pressure on equilibrium.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 801.
Equilibrium |
Catalysis
The preparation and properties of polybutadiene (jumping rubber)  Shakhashiri, Bassam Z.; Dirreen, Glen E.; Williams, Lloyd C.
A catalyst is added to a pop bottle containing 1,3-butadiene in pentane; after being shaken, the mixture sets to gel and the contents erupt from the bottle within two minutes.
Shakhashiri, Bassam Z.; Dirreen, Glen E.; Williams, Lloyd C. J. Chem. Educ. 1980, 57, 738.
Catalysis
Synthesis and decomposition of ZnI2  Walker, Noojin
Illustrates direct combination, decomposition, the effect of a catalyst, recrystallization of sublimed I2, and electrolysis.
Walker, Noojin J. Chem. Educ. 1980, 57, 738.
Synthesis |
Reactions |
Catalysis |
Electrochemistry
Drugs in the chemistry laboratory: The conversion of acetaminophen into phenacetin  Volker, Eugene J.; Pride, Ernest; Hough, Charles
The phenolic alcohol group of acetaminophen is alkylated with ethyl iodide using the basic catalyst K2CO3.
Volker, Eugene J.; Pride, Ernest; Hough, Charles J. Chem. Educ. 1979, 56, 831.
Nonmajor Courses |
Applications of Chemistry |
Medicinal Chemistry |
Drugs / Pharmaceuticals |
Synthesis |
Catalysis |
Phenols |
Alcohols
Catalysis  Kolb, Doris
Definitions for and history of catalysts, speeding up chemical reactions, enzymes, and industrial catalysis.
Kolb, Doris J. Chem. Educ. 1979, 56, 743.
Catalysis |
Rate Law |
Enzymes |
Industrial Chemistry
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Polymerization
Reaction rates for a homogeneously catalyzed reaction  Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome
The reaction of KMnO4 with hydrogen in an acidic medium is an example of a homogeneously catalyzed reaction that can be performed by college freshmen.
Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome J. Chem. Educ. 1977, 54, 775.
Rate Law |
Kinetics |
Catalysis
The burning sugar cube  Smith, Douglas D.
A wide range of powdered solids can be used to produce a burning sugar cube.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 552.
Carbohydrates |
Oxidation / Reduction |
Reactions |
Catalysis
The bombardier beetle  Plumb, Robert C.; Erickson, Karen L.
The chemistry behind the bombardier beetle's chemical defenses illustrates the principles of reaction rates, catalysis, and laboratory safety.
Plumb, Robert C.; Erickson, Karen L. J. Chem. Educ. 1972, 49, 705.
Applications of Chemistry |
Natural Products |
Rate Law |
Catalysis |
Oxidation / Reduction |
Aromatic Compounds
Miscellaneous  Alyea, Hubert N.
These twelve overhead projection demonstrations include rates of reactions, clock reactions, the effect of temperature and the presence of a catalyst on the decomposition of hydrogen peroxide, the relationship between viscosity and temperature, equilibria, solubility product, and the common ion effect.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A437.
Oxidation / Reduction |
Kinetics |
Rate Law |
Reactions |
Acids / Bases |
Catalysis |
Equilibrium |
Precipitation / Solubility
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Smith, Robert B.; Powell, Richard E.
(1) On balancing a chemical equation in multiple ways. - answer by Smith. (2) On the catalysis of H2 and O2 to produce H2O by platinum. - answer by Powell.
Young, J. A.; Malik, J. G.; Smith, Robert B.; Powell, Richard E. J. Chem. Educ. 1970, 47, 281.
Catalysis
Negative catalyst (the author replies)  Young, Jay A.
The author addressed criticism of his earlier description of a negative catalyst.
Young, Jay A. J. Chem. Educ. 1969, 46, 186.
Catalysis
Negative catalyst  Singh, Hakam; Mittal, K. L.
The author examines the description of a negative catalyst offered in an earlier issue of the Journal.
Singh, Hakam; Mittal, K. L. J. Chem. Educ. 1969, 46, 185.
Catalysis
Catalytic oxidation of natural gas by platinum  Cooper, William C.
A hot platinum wire continues to glow in a stream of natural gas and air.
Cooper, William C. J. Chem. Educ. 1968, 45, A519.
Oxidation / Reduction |
Catalysis
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Continuous process for catalytic oxidation of ammonia  Olmsted, Michael P.
A heated platinum coil catalyzes the oxidation of ammonia.
Olmsted, Michael P. J. Chem. Educ. 1964, 41, A973.
Catalysis |
Oxidation / Reduction |
Reactions
The burning sugar cube: Still unexplained?  Doty, Gene
This brief note discusses possible explanations for the melting of a sugar cube where another rubbed with cigarette ashes burns.
Doty, Gene J. Chem. Educ. 1964, 41, 244.
Catalysis |
Oxidation / Reduction |
Phases / Phase Transitions / Diagrams
Homogeneous catalysis: A reexamination of definitions  Leisten, J. A.
Considers common questions regarding the action of catalysts by examining various typical examples.
Leisten, J. A. J. Chem. Educ. 1964, 41, 23.
Catalysis |
Reactions |
Acids / Bases
A simple kinetics experiment for general chemistry laboratory  Cone, W. H.; Hermens, R. A.
This simple kinetics experiment examines the oxidation of benzoic acid by potassium peroxodisulfate in the presence of catalytic amounts of silver ion.
Cone, W. H.; Hermens, R. A. J. Chem. Educ. 1963, 40, 421.
Kinetics |
Rate Law |
Oxidation / Reduction |
Catalysis
Letters to the editor  Jurale, Bernard
Compares the catalytic capability of reagent vs. technical grade manganese oxide in the decomposition of potassium chlorate.
Jurale, Bernard J. Chem. Educ. 1963, 40, 94.
Reactions |
Catalysis
The thermal decomposition of KClO3  Bostrup, O.; Demandt, K.; Hansen, K. O.
It is not true that heated potassium chlorate will decompose to produce only KCl and oxygen.
Bostrup, O.; Demandt, K.; Hansen, K. O. J. Chem. Educ. 1962, 39, 573.
Reactions |
Catalysis
Chemical equilibrium: The hydrogenation of benzene  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
This procedure examines the reversible reaction between benzene and hydrogen, forming cyclohexane, in the presence of a metal catalyst.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 91.
Reactions |
Aromatic Compounds |
Equilibrium |
Catalysis
Enzymes and metaphor  Asimov, Isaac
Asimov provides a series of metaphors useful in helping students to understand the action of enzymes and catalysts in general.
Asimov, Isaac J. Chem. Educ. 1959, 36, 535.
Enzymes |
Catalysis
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Chemistry in the manufacture of modern gasoline  Kimberlin, C. N., Jr.
This paper presents a brief review of the chemistry involved in the manufacture of gasoline, particularly catalytic cracking reactions.
Kimberlin, C. N., Jr. J. Chem. Educ. 1957, 34, 569.
Industrial Chemistry |
Applications of Chemistry |
Catalysis |
Mechanisms of Reactions
Letters  Wolf, Milton G.
A high school chemistry teacher is surprised by the transformation of olive oil into a crystalline solid, apparently through the action of selenium.
Wolf, Milton G. J. Chem. Educ. 1951, 28, 499.
Catalysis