TIGER

Journal Articles: 17 results
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
The Ubiquitous Metaphors of Chemistry Teaching  Herbert Beall
The understanding and the confusion resulting from any scientific metaphor thus have to be considered when it is used. For example, a common chemical metaphor for the electron distribution about an atom is a cloud. Some of the entailments of this metaphor are apt, such as the diffuse nature of a cloud. Others, such as the ability of a cloud to evaporate, are not appropriate.
Beall, Herbert. J. Chem. Educ. 1999, 76, 366.
Atomic Properties / Structure
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Electronegativity and atomic charge  Reed, James L.
Because electronegativity is such a fundamental concept, it should be continually developed in sophistication throughout the curriculum; considers the energy function, atomic charges, and chemical reactivities.
Reed, James L. J. Chem. Educ. 1992, 69, 785.
Atomic Properties / Structure
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Electron dormitory: Analogue  Morreale, Charles
Analogous reasoning and relating filling a dormitory with people and an atom with electrons.
Morreale, Charles J. Chem. Educ. 1990, 67, 862.
Atomic Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Why teach the electron configuration of the elements are we do?  Millikan, Roger C.
Out of 106 elements in the table of electron configurations, there are 29 special cases - rules that only work 73% of the time seem hardly worth teaching.
Millikan, Roger C. J. Chem. Educ. 1982, 59, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table
A low-cost classroom demonstration of the Aufbau Principle  Hanley, James R. III; Hanley, James R., Jr.
Uses golf balls placed in egg cartons to represent the placement of electrons in orbitals.
Hanley, James R. III; Hanley, James R., Jr. J. Chem. Educ. 1979, 56, 747.
Atomic Properties / Structure |
Periodicity / Periodic Table
A new way of presenting atomic orbitals  Linnett, J. W.; Bordass, W. T.
Uses three-dimensional contour diagrams to plot and illustrate electron distributions and atomic orbitals.
Linnett, J. W.; Bordass, W. T. J. Chem. Educ. 1970, 47, 672.
Atomic Properties / Structure
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Simplified d orbital models assist in teaching coordination concepts  Nicholson, Douglas G.
Presents a three-dimensional model, containing representatives of all lobes of the five d orbitals, prepared for each of the tetrahedral, square planar, and octahedral coordination configurations.
Nicholson, Douglas G. J. Chem. Educ. 1965, 42, 148.
Atomic Properties / Structure |
Coordination Compounds
Domain representations of orbitals  Adamson, Arthur W.
Presents orbital domains and physical models to represent them as a more accurate way of visualizing atoms.
Adamson, Arthur W. J. Chem. Educ. 1965, 42, 140.
Atomic Properties / Structure
Valence: A laboratory exercise for general chemistry  Sanderson, R. T.
In this exercise, each student carefully examines each of a set of thirteen different atomic models with different valence configurations, writing down certain pertinent observations and independently-reasoned conclusions about them.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 261.
Atomic Properties / Structure
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
An introduction to the electron theory of metals  Lefever, Robert A.
This discussion is intended to provide a general background for the understanding of metal physics as well as a basis for more advanced study.
Lefever, Robert A. J. Chem. Educ. 1953, 30, 486.
Metals |
Atomic Properties / Structure