TIGER

Journal Articles: 61 results
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
Concerning Lewis Acid–Base Theory for Proton Transfer  Lawrence J. Sacks
Counterpoint commentary in response to a suggestion that the Lewis acidbase approach be applied to reactions such as ammoniawater and HClwater.
Sacks, Lawrence J. J. Chem. Educ. 2007, 84, 1415.
Acids / Bases |
Lewis Acids / Bases |
Theoretical Chemistry |
Brønsted-Lowry Acids / Bases
More Elementary Riddles  Kevin Cunningham
Four chemical riddles are presented, each highlighting an element (hydrogen, arsenic, selenium, and beryllium) and some of its significant properties. Each riddle is accompanied by a full explanation of its clues and their relationship to characteristics of that element.
Cunningham, Kevin. J. Chem. Educ. 2005, 82, 539.
Main-Group Elements |
Metals |
Nonmetals |
Periodicity / Periodic Table |
Physical Properties
A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water  Per-Odd Eggen and Lise Kvittingen
This article describes how to construct two simple, inexpensive, and illustrative apparatuses using disposable polyethene pipets and floral wire for electrolysis of water. These apparatuses suit various grades and curricula.
Eggen, Per-Odd; Kvittingen, Lise. J. Chem. Educ. 2004, 81, 1337.
Laboratory Equipment / Apparatus |
Oxidation / Reduction |
Electrochemistry
The "Dissing" of Niels Bohr  Andrew R. Peterson
Contributions made by Bohr to the Periodic Law.
Peterson, Andrew R. J. Chem. Educ. 2004, 81, 33.
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
The Proper Place for Hydrogen in the Periodic Table  Marshall W. Cronyn
Case for hydrogen to be placed above carbon in the periodic table.
Cronyn, Marshall W. J. Chem. Educ. 2003, 80, 947.
Main-Group Elements |
Periodicity / Periodic Table
ORBITAL  Robert M. Hanson
Software that produces probability-based three-dimensional representations of the hydrogen atom and other single-electron systems.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 710.
Atomic Properties / Structure |
Atomic Spectroscopy |
Computational Chemistry |
Enrichment / Review Materials
Bubble Stripping To Determine Hydrogen Concentrations in Ground Water: A Practical Application of Henry's Law  Daniel M. McInnes and Don Kampbell
Applying Henry's law to determine the concentration of hydrogen in ground water as a means of identifying possible contamination by chlorinated organic compounds.
McInnes, Daniel M.; Kampbell, Don. J. Chem. Educ. 2003, 80, 516.
Water / Water Chemistry |
Gases |
Quantitative Analysis |
Applications of Chemistry
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
ORBITAL  Robert M. Hanson
Software for producing probability-based three-dimensional representations of atomic orbitals of the hydrogen atom and other single-electron systems; found on the Advanced Chemistry Collection CD-ROM, 3rd Edition.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 109.
Atomic Properties / Structure |
Atomic Spectroscopy |
Computational Chemistry
Humic Acids: Marvelous Products of Soil Chemistry  Geoffrey Davies, Elham A. Ghabbour, and Cornelius Steelink
Classification, physical and chemical characteristics, formation, structure and sources of humic substances.
Davies, Geoffrey; Ghabbour, Elham A.; Steelink, Cornelius. J. Chem. Educ. 2001, 78, 1609.
Agricultural Chemistry |
Metals |
Natural Products |
Plant Chemistry |
Water / Water Chemistry |
Applications of Chemistry
Determination of the Universal Gas Constant, R. A Discovery Laboratory  David B. Moss and Kathleen Cornely
Discovery laboratory in which groups of students collect oxygen, hydrogen, and nitrogen gas over water and determine the value of the universal gas constant, R, using the ideal gas law.
Moss, David B.; Cornely, Kathleen. J. Chem. Educ. 2001, 78, 1260.
Gases
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
Advertising in this Issue  
Caution when burning hydrogen / oxygen mixtures.
J. Chem. Educ. 1999, 76, 757.
Atmospheric Chemistry
Before There Was Chemistry: The Origin of the Elements as an Introduction to Chemistry  Neil Glickstein
The use of cosmology as an interdisciplinary introduction to a chemistry course is discussed. Students read a variety of nontext sources in order to piece together the events of the early universe that led to the creation of the elements. An introduction to gravity, mass, time, distance, temperature, and density are all possible with thematic cohesion.
Glickstein, Neil. J. Chem. Educ. 1999, 76, 353.
Astrochemistry |
Nonmajor Courses |
Geochemistry
A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  Natalie Hershlag, Ian Hurley, and Jonathan Woodward
In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter.
Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan. J. Chem. Educ. 1998, 75, 1270.
Enzymes |
Kinetics |
UV-Vis Spectroscopy |
Carbohydrates |
Applications of Chemistry
Why Does Helium Have 92% of the Lifting Power of Hydrogen if It Has Twice the Density?  David W. Ball
The answer to the question "Why Does Helium Have 92% of the Lifting Power of Hydrogen if It Has Twice the Density?" is discussed.
Ball, David W. J. Chem. Educ. 1998, 75, 726.
Gases |
Physical Properties
A Modified Hydrogen/Oxygen Balloon Demonstration  Ian J. McNaught
Using a ratio of 1:2 volumes of hydrogen and oxygen for balloons as instead of a 2:1 ratio for safety.
McNaught, Ian J. J. Chem. Educ. 1998, 75, 52.
Gases |
Reactions
How to Offer the Optimal Demonstration of the Electrolysis of Water  Rei E. Zhou
This article proposes the optimal conditions for lecture demonstration to ensure that the generated H2 and O2 in the electrolysis of water are in the ratio of 2:1, satisfying the reaction scheme.
Zhou, Rei E. J. Chem. Educ. 1996, 73, 786.
Water / Water Chemistry
Entertaining Chemistry  John F. Elsworth
"A Volcanic Serpent" (ammonium dichromate), "A Homemade Hydrogen Rocket", and "Johnny's Saga in Chemistry" (sulfuric acid + calcium carbonate) demonstrations.
Elsworth, John F. J. Chem. Educ. 1995, 72, 1128.
Reactions |
Acids / Bases |
Gases
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
An Alternative Methodology for General Chemistry Laboratories: Chemical Equivalent of a Metal  Carlos M. Bonatti, José L. Zurita, and Horácio N. Sólimo
Procedure in which students are asked to identify an unknown metal that can react with mineral acids to evolve hydrogen where the students are required to obtain bibliographic information and decide on some aspects of the experimental work.
Bonatti, Carlos M.; Zurita, Jose L.; Sclimo, Horacio N. J. Chem. Educ. 1995, 72, 834.
Metals |
Qualitative Analysis
Modified Hydrogen Balloon Explosion  Lawrence, Stephen S.
Detonating a water filled, hydrogen/oxygen balloon.
Lawrence, Stephen S. J. Chem. Educ. 1995, 72, 177.
Reactions
An Electrochemistry Experiment: Hydrogen Evolution Reaction on Different Electrodes   Marin, D.; Medicuti, F.; Teijeiro, C.
This paper presents a simple laboratory experiment designed to acquaint the student with overvoltage in the hydrogen evolution reaction.
Marin, D.; Medicuti, F.; Teijeiro, C. J. Chem. Educ. 1994, 71, A277.
Electrochemistry |
Ion Selective Electrodes
The Hydride Ion and Its Loosely Bound Outer Electron  Li, Wai-Kee
The author is giving credit for a conclusion on the electron configuration of the hydrogen atom that was incorrectly referenced to him.
Li, Wai-Kee J. Chem. Educ. 1994, 71, 1098.
Atomic Properties / Structure
Hydrogen Peroxide Demo Curing the Brown Bottle-with-Black Cap Syndrome  Sae, Andy
Comparing the reactivity of 3%, 12%, and 27% H2O2 solution.
Sae, Andy J. Chem. Educ. 1994, 71, 433.
Solutions / Solvents |
Aqueous Solution Chemistry
Delayed explosions  Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro
A container is filled with a fuel and lit through a small hole. Variations of this demo are included.
Battino, Rubin; Battino, Benjamin S.; Li, Yixin; Llaguno, Claro J. Chem. Educ. 1993, 70, 1030.
Calorimetry / Thermochemistry
A visual illustration of oxidation numbers and moles: Using balloons to demonstrate moles of electrons  Bergquist, Wilbur
Illustrating the connection between moles of electrons and oxidation number.
Bergquist, Wilbur J. Chem. Educ. 1993, 70, 586.
Oxidation State |
Oxidation / Reduction |
Metals
Hydrogen balloon explosions  Battino, Rubin; Battino, Benjamin S.; Scharlin, Pirketta
Author tests loudness of hydrogen balloon explosions, and relates them to OSHA standards.
Battino, Rubin; Battino, Benjamin S.; Scharlin, Pirketta J. Chem. Educ. 1992, 69, 921.
Orbital Transitions  Liebl, Michael
"Orbital Transitions" displays two-dimensional plots of the changing electron probability density function in the hydrogen atom as an electron moves from one orbital to another.
Liebl, Michael J. Chem. Educ. 1992, 69, 400.
Atomic Properties / Structure
An "egg-splosive" demonstration.  Becker, Robert.
The following demonstration uses an egg to demonstrate the explosive power of a combustible gaseous mixture.
Becker, Robert. J. Chem. Educ. 1992, 69, 229.
Gases
Micro-Kipp gas generators   Wilson, Byron J.
An attention-getting microexperiment to illustrate chemical stoichiometry involving several rockets made from plastic Beral pipets.
Wilson, Byron J. J. Chem. Educ. 1991, 68, A297.
Microscale Lab |
Stoichiometry |
Laboratory Equipment / Apparatus
Adding colors and sparkles to hydrogen balloon explosions   Fortman, John J.
This short paper provides instructions and a table with needed quantities. The author also notes advice and insights into the quality of colors and sparkles produced.
Fortman, John J. J. Chem. Educ. 1991, 68, 937.
Atomic Properties / Structure
The H2 + Cl2 explosion as a chemical analogue of the photoelectric effect: A true quantum mechanical demonstration  Knox, Kerro
The photochemical hydrogen-chlorine reaction affords a good example of the quantum aspect of light and its interaction with matter.
Knox, Kerro J. Chem. Educ. 1990, 67, 897.
Reactions |
Quantum Chemistry |
Photochemistry
The use of a simple spectrometer/microcomputer arrangement for teaching atomic theory in general chemistry courses  Casanova, J.; Arellano, M.; Lazo, L.; Gomez, H.
Experiment involving the analysis of a discharge tube to introduce students to the hydrogen atom model.
Casanova, J.; Arellano, M.; Lazo, L.; Gomez, H. J. Chem. Educ. 1989, 66, A201.
Atomic Spectroscopy |
Atomic Properties / Structure |
Laboratory Computing / Interfacing
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
Orbital plots of the hydrogen atom  Liebl, Michael
89. Bits and pieces, 36. The software described in this article enable a 48K Apple II with a single disk drive to plot the orbitals of the hydrogen atom in one, two, or three dimensions. This visualization of orbitals allows students to understand their importance in understanding chemistry.
Liebl, Michael J. Chem. Educ. 1988, 65, 23.
Atomic Properties / Structure |
Quantum Chemistry
Hydrogen atom spectrum using an AA spectrophotometer  Douglas, John; von Nagy Felsobuki, Ellak I.
Using an AA spectrophotometer to measure the Balmer series of the hydrogen atom spectrum.
Douglas, John; von Nagy Felsobuki, Ellak I. J. Chem. Educ. 1987, 64, 552.
Atomic Properties / Structure |
Atomic Spectroscopy
A spectacular demonstration: 2H2 + O2 -> 2H2O  Skinner, James F.
Detonating hydrogen in a copper combustion chamber.
Skinner, James F. J. Chem. Educ. 1987, 64, 545.
Reactions |
Free Radicals
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
Reduction potentials and hydrogen overvoltage: An overhead projector demonstration  Ramette, Richard W.
Relates the scale of standard reduction potentials to the observed behavior of metals in their reactions with hydrogen ion to produce hydrogen gas.
Ramette, Richard W. J. Chem. Educ. 1982, 59, 866.
Electrochemistry |
Metals |
Oxidation / Reduction
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Theory and practical use of an hydrogen electrode in aqueous-organic media  Letellier, P.; Millot, F.; Baffier, N.; Combes, R.
These authors make a case for a greater use of hydrogen electrodes for acidity measurements in student laboratory courses.
Letellier, P.; Millot, F.; Baffier, N.; Combes, R. J. Chem. Educ. 1981, 58, 576.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
The stability of the hydrogen atom  Rioux, Frank
The Kimball-Neumark-Kleiss model of the atom is conceptually correct, requires only simple mathematics, and clearly explains the stability of the hydrogen atom.
Rioux, Frank J. Chem. Educ. 1973, 50, 550.
Atomic Properties / Structure
Commercial gas replaces hydrogen in general chemistry laboratory  Ehlert, Thomas C.
Methane can be used in place of hydrogen to reduce metal oxides.
Ehlert, Thomas C. J. Chem. Educ. 1973, 50, 162.
Oxidation / Reduction |
Laboratory Management |
Gases |
Metals
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Stereo plots of hydrogen-like electron densities  Cromer, Don T.
Presents a series of stereo plots of computer-generated, hydrogen-like electron densities.
Cromer, Don T. J. Chem. Educ. 1968, 45, 626.
Atomic Properties / Structure
Ionization, electricity. B. Production of electricity. C. Consumption of electricity.  Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie
Demonstrations include the hydrogen electrode, H-electrode generating its own H2, consumption of electricity, Zn-Cu coupling, overvoltage, the Faraday effect, lead storage battery, and the electrolysis of NaCl.
Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie J. Chem. Educ. 1966, 43, A658.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The spectrum of atomic hydrogen: A mass scale freshman laboratory experiment  Companion, A. L.; Schug, K.
Student-built spectroscopes are used to measure the Balmer series for hydrogen.
Companion, A. L.; Schug, K. J. Chem. Educ. 1966, 43, 591.
Atomic Spectroscopy |
Atomic Properties / Structure
The spectrum of atomic hydrogen: A freshman laboratory experiment  Hollenberg, J. Leland
This experiment allows more precise measurements of the wavelengths of the emission spectrum of atomic hydrogen with a spectrophotometer than those previously published.
Hollenberg, J. Leland J. Chem. Educ. 1966, 43, 216.
Atomic Spectroscopy |
Atomic Properties / Structure
Letters  Zuckerman, J. J.
Comments on the controversy concerning which element is top - carbon or hydrogen.
Zuckerman, J. J. J. Chem. Educ. 1965, 42, 457.
Periodicity / Periodic Table
The thermal stability of H2Se  Hayes, Kenneth E.; Haase, Nadine R. M.
Contrary to some textbook statements, hydrogen selenide is found to be quite stable thermally.
Hayes, Kenneth E.; Haase, Nadine R. M. J. Chem. Educ. 1963, 40, 149.
Periodic classification of the elements  Redfern, J. P., Salmon, J. E.
Presents a periodic organization that takes into account the dual nature of the elements hydrogen, thorium, protactinium, and uranium.
Redfern, J. P., Salmon, J. E. J. Chem. Educ. 1962, 39, 41.
Periodicity / Periodic Table
A reagent bottle for dispensing insoluble gases  Bixby, Louis W.
This apparatus can be used to generate hydrogen and oxygen collected through water displacement.
Bixby, Louis W. J. Chem. Educ. 1960, 37, 430.
Laboratory Equipment / Apparatus |
Gases
The hydrogen organ  Eddy, Robert D.
The hydrogen organ can be used to demonstrate a variety of physical and chemical properties.
Eddy, Robert D. J. Chem. Educ. 1959, 36, 256.
Gases
Reduction of oxides by hydrogen: A quantitative experiment for general chemistry laboratory  Masterton, William L.; Demo, Joseph J., Jr.
Six oxides (CuO, NiO, CoO, SnO2, Co3O4, and Cu2O) have been found to give satisfactory results for reduction by hydrogen and determination of equivalent weights.
Masterton, William L.; Demo, Joseph J., Jr. J. Chem. Educ. 1958, 35, 242.
Oxidation / Reduction |
Quantitative Analysis
Letters to the editor  Noyes, Richard M.
Inhaling hydrogen to blow bubbles is inadvisable.
Noyes, Richard M. J. Chem. Educ. 1955, 32, 289.