TIGER

Journal Articles: 30 results
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
Predicting the Atomic Weights of the Trans-Lawrencium Elements: A Novel Application of Dobereiner's Triads  Sami A. Ibrahim
Dobereiner's concept of triads remain useful for predicting the properties of the super-heavy elements (113118) and for providing reasonable estimates of the atomic weights of all 16 trans-lawrencium elements.
Ibrahim, Sami A. J. Chem. Educ. 2005, 82, 1658.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Main-Group Elements |
Transition Elements
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
More Elementary Riddles  Kevin Cunningham
Four chemical riddles are presented, each highlighting an element (hydrogen, arsenic, selenium, and beryllium) and some of its significant properties. Each riddle is accompanied by a full explanation of its clues and their relationship to characteristics of that element.
Cunningham, Kevin. J. Chem. Educ. 2005, 82, 539.
Main-Group Elements |
Metals |
Nonmetals |
Periodicity / Periodic Table |
Physical Properties
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMOLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
Boron Clusters Come of Age  Russell N. Grimes
This article attempts to summarize the current state of the art, illustrated by examples selected to convey some of the excitement and possibilities for future exploitation of these remarkable compounds.
Grimes, Russell N. J. Chem. Educ. 2004, 81, 657.
Main-Group Elements |
Materials Science |
Organometallics
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
The Proper Place for Hydrogen in the Periodic Table  Marshall W. Cronyn
Case for hydrogen to be placed above carbon in the periodic table.
Cronyn, Marshall W. J. Chem. Educ. 2003, 80, 947.
Main-Group Elements |
Periodicity / Periodic Table
Colorful Iodine  Richard W. Ramette
Design for an iodine thermometer, demonstrating sublimation of iodine.
Ramette, Richard W. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Uncle Tungsten  Martin E. Fuller
Design for an iodine thermometer, demonstrating sublimation of iodine.
Fuller, Martin E. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Combustion of White Phosphorus  Richard L. Keiter and Chaminda P. Gamage
The combustion of white phosphorus.
Keiter, Richard L.; Gamage, Chaminda P. J. Chem. Educ. 2001, 78, 908.
Descriptive Chemistry |
Photochemistry |
Main-Group Elements |
Oxidation / Reduction
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
A Living Periodic Table  James L. Marshall
A complete "living" periodic table of samples of all the elements through uranium is described. In many instances a sample of an element is accompanied by a direct commercial application. This periodic table is very helpful in enabling the student to gain a hands-on understanding of the true nature of the elements--as opposed to the more usual compilation of mere abstract data.
Marshall, James L. J. Chem. Educ. 2000, 77, 979.
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements |
Descriptive Chemistry |
Applications of Chemistry
The Inorganic Illustrator: A 3-D Graphical Supplement for Inorganic and Bioinorganic Chemistry Courses Distributed on CD-ROM  Scott L. Childs and Karl S. Hagen
As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing.
Childs, Scott L.; Hagen, Karl S. J. Chem. Educ. 1996, 73, 917.
Molecular Modeling |
Enrichment / Review Materials |
Bioinorganic Chemistry |
Coordination Compounds |
Organometallics |
Main-Group Elements |
Solid State Chemistry
Iodine Demonstration of Sublimation  Robert H. Goldsmith
Simple sublimation demonstration using iodine and an overhead projector.
Goldsmith, Robert H. J. Chem. Educ. 1995, 72, 1132.
Main-Group Elements |
Phases / Phase Transitions / Diagrams
Elemental Anagrams Revisited  Daniell L. Mattern
Twelve elemental anagrams.
Mattern, Daniell L. J. Chem. Educ. 1995, 72, 1092.
Main-Group Elements |
Transition Elements |
Inner Transition Elements |
Enrichment / Review Materials
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Paper Models for Fullerenes C60-C84   John M. Beaton
Photocopyable patterns to construct C60-C84.
J. Chem. Educ. 1995, 72, 863.
Main-Group Elements |
Molecular Modeling |
Molecular Properties / Structure |
Alkenes
First-Year Chemistry in the Context of the Periodic Table   Sheila D. Woodgate
Integration of descriptive chemistry into chemistry curricula, particularly inorganic chemistry.
Woodgate, Sheila D. J. Chem. Educ. 1995, 72, 618.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Descriptive Chemistry |
Oxidation State |
Acids / Bases
The Periodic Table CD  Banks, Alton J; Holmes, Jon L.
Description of the Periodic Table CD, containing a database of still images and motion sequences of reactions and uses/applications of each chemical element.
Banks, Alton J; Holmes, Jon L. J. Chem. Educ. 1995, 72, 409.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Reactions
Presenting the Periodic System with Pictures  Bolmgren, Ingmari
Simulating Mendeleev's development of the periodic table by organizing colored cardboard circles.
Bolmgren, Ingmari J. Chem. Educ. 1995, 72, 337.
Periodicity / Periodic Table |
Main-Group Elements
Elements of and in the Chemical Literature: An Undergraduate Course  Novick, Sabrina Godfrey
Synopsis of a descriptive chemistry course designed to familiarize students with the chemistry of the elements, as well as the wide variety of resources containing information on the properties of the elements and their associated compounds; includes examples of homework and other assessments used in the course.
Novick, Sabrina Godfrey J. Chem. Educ. 1995, 72, 297.
Main-Group Elements |
Transition Elements |
Descriptive Chemistry
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
Word search puzzle  Claus, Alison S.
This puzzle contains the names of all elements from hydrogen to hahnium (element 105).
Claus, Alison S. J. Chem. Educ. 1979, 56, 44.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements
The chemistry of the noble gases  Hyman, Herbert H.
Summarizes the chemistry of the noble gases and their bond-forming abilities.
Hyman, Herbert H. J. Chem. Educ. 1964, 41, 174.
Gases |
Main-Group Elements |
Covalent Bonding