TIGER

Journal Articles: 11 results
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
DNA Profiling of the D1S80 Locus: A Forensic Analysis for the Undergraduate Biochemistry Laboratory  D. Dewaine Jackson, Chad S. Abbey, and Dylan Nugent
Describes a laboratory exercise in DNA profiling that can be used to demonstrate four fundamental procedures: isolation of genomic DNA from human cells, use of the polymerase chain reaction to amplify DNA, separation of amplified DNAs on agarose and polyacrylamide gels, and quantitative analysis of data (while comparing two different gel separation techniques).
Jackson, D. Dewaine; Abbey, Chad S.; Nugent, Dylan. J. Chem. Educ. 2006, 83, 774.
Biological Cells |
Biotechnology |
Electrophoresis |
Forensic Chemistry |
Molecular Biology |
Quantitative Analysis |
Nucleic Acids / DNA / RNA
A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air  Dan Xiao, Lianzhi Lin, Hongyan Yuan, Martin M. F. Choi, and Winghong Chan
This article describes the use of a passive sampler for detecting and collecting nitrogen dioxide, NO2, in ambient air. This device is based on microporous PTFE membranes that allow air samples to diffuse through and subsequently react with an absorbing reagent solution. The absorbance value of this reagent is proportional to the NO2 concentration in ambient air. It has been successfully applied to determine the NO2 concentrations in various sampling sites.
Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong. J. Chem. Educ. 2005, 82, 1231.
Calibration |
Membranes |
UV-Vis Spectroscopy |
Amines / Ammonium Compounds |
Coordination Compounds |
Gases |
Laboratory Equipment / Apparatus |
Nonmajor Courses |
Quantitative Analysis
Osmotic Pressure and Electrochemical Potential--A Parallel   Rainer Bausch
Comparison of osmotic pressure and electrochemical potential.
Bausch, Rainer. J. Chem. Educ. 1995, 72, 713.
Electrochemistry |
Solutions / Solvents |
Membranes |
Transport Properties
The chemical composition of the cell  Holum, John R.
A broad outline of the chemical substances that occur in most cells.
Holum, John R. J. Chem. Educ. 1984, 61, 877.
Biological Cells |
Lipids |
Carbohydrates |
Proteins / Peptides
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
Molecular membrane model  Huebner, J. S.
Making a model of a lipid bilayer using polystyrene balls and pipe cleaners.
Huebner, J. S. J. Chem. Educ. 1977, 54, 171.
Membranes |
Lipids |
Molecular Modeling |
Proteins / Peptides |
Dyes / Pigments
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes