TIGER

Journal Articles: 25 results
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Demonstrating Void Space in Solids: A Simple Demonstration To Challenge a Powerful Misconception  Mary Whitfield
The concept of bridging analogies is used in a simple demonstration to illustrate the substantial quantity of empty space that remains when solid spheres are packed together. The same demonstration also shows that the percentage of empty space is independent of particle size.
Whitfield, Mary. J. Chem. Educ. 2006, 83, 749.
Atomic Properties / Structure |
Materials Science |
Solids
Self-Assembled Colloidal Crystals: Visualizing Atomic Crystal Chemistry Using Microscopic Analogues of Inorganic Solids  Neal M. Abrams and Raymond E. Schaak
Monodisperse spherical colloids spontaneously crystallize into close-packed crystals, in analogy to the simple crystal structures of many of the elements. Since colloids are orders of magnitude larger than atoms, students can directly observe crystal structure and behavior in a microscope using colloidal crystals. This laboratory exercise provides a modular series of materials science experiments appropriate for undergraduate chemistry and engineering majors. The individual modules include aspects of chemical synthesis (monodisperse SiO2 and polymer spheres), self-assembly (colloidal crystallization), and structural characterization through microscopy (optical and scanning electron microscopies) and optical spectroscopy (optical diffraction and UV┬Łvisible spectroscopy).
Abrams, Neal M.; Schaak, Raymond E. J. Chem. Educ. 2005, 82, 450.
Colloids |
Materials Science |
Solid State Chemistry |
Solids
Paper-and-Glue Unit Cell Models  James P. Birk and Ellen J. Yezierski
Templates for a variety of unit cells that can be copied, cut out, and assembled.
Birk, James P.; Yezierski, Ellen J. J. Chem. Educ. 2003, 80, 157.
Solid State Chemistry |
Solids |
Crystals / Crystallography |
Molecular Modeling
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid-State  Robinson, William R.
"Part I: Structures of Metals" introduces the four basic structural types found in metals. "Part II: Unit Cells of Metals" discusses how to use a unit cell to describe a two-dimensional structure.
Robinson, William R. J. Chem. Educ. 1994, 71, 300.
Solid State Chemistry |
Solids |
Metals
A demonstration of hexagonal close-packed and cubic close-packed crystal structures   Foote, John D.; Blanck, Harvey F.
The advantage of the models in this demonstration is that they are not static, they show dynamically that spheres prefer HCP and CCP arrangements.
Foote, John D.; Blanck, Harvey F. J. Chem. Educ. 1991, 68, 777.
Crystals / Crystallography |
Solids
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
Crystal model kits for use in the general chemistry laboratory  Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M.
This paper describes dynamic crystal models which were developed independently at the Worcester Polytech institute and Purdue University.
Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M. J. Chem. Educ. 1986, 63, 62.
Crystals / Crystallography |
Solids |
Solid State Chemistry
Some structural principles for introductory chemistry  Wells, A. F.
Unit cells in repeating patterns and descriptions of simple structures.
Wells, A. F. J. Chem. Educ. 1977, 54, 273.
Solids |
Crystals / Crystallography
Solid state labs: The bubble raft  McCormick, P. D.
Method for producing bubble rafts and experiments for using them to demonstrate the properties of crystals.
McCormick, P. D. J. Chem. Educ. 1975, 52, 521.
Solids |
Solid State Chemistry |
Crystals / Crystallography
Construction of a tetrahedron packing model: A puzzle in structural chemistry  Schweikert, William W.
Proposes the assembly of a tetrahedrally shaped packing model as a game or puzzle for students.
Schweikert, William W. J. Chem. Educ. 1975, 52, 501.
Crystals / Crystallography |
Molecular Modeling |
Solids
Models for simple, close-packed crystal structures  Mann, A. W.
This paper describes some simple crystallographic models made from styrofoam balls.
Mann, A. W. J. Chem. Educ. 1973, 50, 652.
Molecular Modeling |
Crystals / Crystallography |
Solids
Demonstration of close-packing phenomena  Birnbaum, Edward R.
Relies in layers of styrofoam balls and an overhead projector for illustrating close-packed structure.
Birnbaum, Edward R. J. Chem. Educ. 1972, 49, 674.
Crystals / Crystallography |
Solids
The structure of solid aluminum chloride  Bigelow, M. Jerome
Many general chemistry textbooks have been vague or mistaken with regards to the structure of solid aluminum chloride.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 495.
Solids
The teaching of crystal geometry in the introductory course  Livingston, R. L.
It is the purpose of this paper to outline an approach to the teaching of crystal structure at the elementary level that will prepare the student for more advanced work in this field or that could be used as the beginning in a more advanced course.
Livingston, R. L. J. Chem. Educ. 1967, 44, 376.
Crystals / Crystallography |
Solids
Some models of close packing  Sime, Rodney J.
Presents models constructed from styrofoam balls and connected with toothpicks.
Sime, Rodney J. J. Chem. Educ. 1963, 40, 61.
Crystals / Crystallography |
Solids |
Molecular Modeling
Standard ionic crystal structures  Gehman, William G.
Examines the topics of cubic and hexagonal closest packed atom lattices; interstice lattices; standard crystal structures of type MaXb; standard CCP and HCP crystal structures; and deviations from ideal closest packing.
Gehman, William G. J. Chem. Educ. 1963, 40, 54.
Crystals / Crystallography |
Solids |
Molecular Modeling |
Solid State Chemistry
Hollow lantern slides illustrating crystal structure  Kenney, Malcolm E.; Skinner, Selby M.
The structure of simple crystals can be illustrated by enclosing a layer of bearing balls in a hollow lantern slide and projecting the shadow pattern.
Kenney, Malcolm E.; Skinner, Selby M. J. Chem. Educ. 1959, 36, 495.
Crystals / Crystallography |
Solids
Chemical geometry┬ŁApplication to salts  Gibb, Thomas R. P., Jr.; Winnerman, Anne
It is the purpose of this article to illustrate how one may delve rather deeply into some aspects of crystal structure that are of special interest chemically without becoming involved in the symbology and semantic complexities of conventional crystallography.
Gibb, Thomas R. P., Jr.; Winnerman, Anne J. Chem. Educ. 1958, 35, 578.
Crystals / Crystallography |
Solids
Permanent packing type crystal models  Kenney, Malcolm E.
Crystal models made of styrofoam balls are more durable if packed in clear plastic boxes.
Kenney, Malcolm E. J. Chem. Educ. 1958, 35, 513.
Crystals / Crystallography |
Solids |
Molecular Modeling
Face-centered cube and cubical close-packing  Barnett, E. De Barry
Instructions for the construction of simple models designed to illustrate the face-centered cube and cubical close-packing.
Barnett, E. De Barry J. Chem. Educ. 1958, 35, 186.
Crystals / Crystallography |
Solids
Some simple solid models  Campbell, J. A.
Describes the use of hard spheres to illustrate a variety of concepts with respect solids, including closest packing and the effects of temperature and alloying.
Campbell, J. A. J. Chem. Educ. 1957, 34, 210.
Solids |
Crystals / Crystallography |
Molecular Modeling
Construction of crystal models from styrofoam spheres  Gibb, Thomas R. P., Jr.; Bassow, Herbert
Presents a method for constructing crystal models from styrofoam spheres using a specialized aluminum jig.
Gibb, Thomas R. P., Jr.; Bassow, Herbert J. Chem. Educ. 1957, 34, 99.
Crystals / Crystallography |
Molecular Modeling |
Solids