TIGER

Journal Articles: 45 results
Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical  Kate J. Graham, Brian J. Johnson, T. Nicholas Jones, Edward J. McIntee, and Chris P. Schaller
Describes an open-ended laboratory practical that challenges students to evaluate when different purification techniques are appropriate.
Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P. J. Chem. Educ. 2008, 85, 1644.
IR Spectroscopy |
Microscale Lab |
Molecular Properties / Structure |
NMR Spectroscopy |
Physical Properties |
Separation Science
The Electrochemical Synthesis of Transition-Metal Acetylacetonates  S. R. Long, S. R. Browning, and J. J. Lagowski
The electrochemical synthesis of transition-metal acetylacetonates can assist in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but each student has a personal responsibility for the synthesis and characterization of a specific compound.
Long, S. R.; Browning, S. R.; Lagowski, J. J. J. Chem. Educ. 2008, 85, 1429.
Coordination Compounds |
Electrochemistry |
IR Spectroscopy |
Physical Properties |
Synthesis |
Transition Elements |
UV-Vis Spectroscopy
Identification of an Unknown Compound by Combined Use of IR, 1H NMR, 13C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination  Louis J. Liotta and Magdalena James-Pederson
In this introductory organic chemistry experiment, students are expected to operate NMR, IR, and GCMS instrumentation to obtain spectra which are interpreted to elucidate the chemical structure of the assigned compounds without the benefit of a list of possible unknowns.
Liotta, Louis J.; James-Pederson, Magdalena. J. Chem. Educ. 2008, 85, 832.
Gas Chromatography |
Instrumental Methods |
IR Spectroscopy |
Mass Spectrometry |
Molecular Properties / Structure |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy
Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis  Brian J. Kennedy
Describes the unique opportunities in chemistry available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry, take electives in organic chemistry with instrumental methods of analysis, and ultimately complete a senior chemical analysis research course.
Kennedy, Brian J. J. Chem. Educ. 2008, 85, 393.
Applications of Chemistry |
Fluorescence Spectroscopy |
Gas Chromatography |
Instrumental Methods |
IR Spectroscopy |
Quantitative Analysis |
Undergraduate Research |
UV-Vis Spectroscopy |
Student-Centered Learning
Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories  Caleb A. Arrington, Jameica B. Hill, Ramin Radfar, David M. Whisnant, and Charles G. Bass
This article describes a discovery experiment in which organic chemistry students act as mentors to general chemistry students. Members from both groups work together to isolate an unknown compound using distillation. The structure of the product is then determined collaboratively using IR and NMR spectroscopy.
Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G. J. Chem. Educ. 2008, 85, 288.
IR Spectroscopy |
NMR Spectroscopy
A Simple Experiment in the Separation of a Solid-Phase Mixture and Infrared Spectroscopy for Introductory Chemistry  Paul S. Szalay
In this guided-inquiry experiment, a two-component solid mixture of caffeine and ibuprofen is separated through a series of solution extractions and precipitations. The components are then analyzed using IR spectrophotometry to determine how effectively they were separated.
Szalay, Paul S. J. Chem. Educ. 2008, 85, 285.
Acids / Bases |
Drugs / Pharmaceuticals |
IR Spectroscopy |
Qualitative Analysis |
Separation Science |
Solutions / Solvents
Astrochemistry Examples in the Classroom  Reggie L. Hudson
In this article some recent developments in astrochemistry are suggested as examples for the teaching of acid-base chemistry, molecular structure, and chemical reactivity. Suggestions for additional reading are provided, with an emphasis on readily-accessible materials.
Hudson, Reggie L. J. Chem. Educ. 2006, 83, 1611.
Acids / Bases |
Astrochemistry |
IR Spectroscopy |
Molecular Properties / Structure |
Brønsted-Lowry Acids / Bases
A Polymer in Everyday Life: The Isolation of Poly(vinyl alcohol) from Aqueous PVA Glues. An Undergraduate Chemistry Experiment   Yueh-Huey Chen and Jing-Fun Yaung
The IR spectra of three common and related polymers are used to identify functional groups and rationalize molecular structures.
Chen, Yueh-Huey; Yaung, Jing-Fun. J. Chem. Educ. 2006, 83, 1534.
Applications of Chemistry |
Aqueous Solution Chemistry |
Esters |
IR Spectroscopy |
Molecular Properties / Structure
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
4-Dimethylaminopyridine or Acid-Catalyzed Syntheses of Esters: A Comparison  Annemieke W. C. van den Berg and Ulf Hanefeld
Students compare acid-catalyzed ester synthesis and the 4-dimethylaminopyridine-catalyzed reaction. Based on the outcome of the experiments, students discuss the different reaction mechanisms and reason why different products are formed.
van den Berg, Annemieke W. C.; Hanefeld, Ulf. J. Chem. Educ. 2006, 83, 292.
Acids / Bases |
Catalysis |
Chromatography |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis |
Mechanisms of Reactions
Derivatization of Fullerenes: An Organic Chemistry Laboratory  Charles T. Cox Jr. and Melanie M. Cooper
Presents two undergraduate organic chemistry laboratories detailing the synthesis of fullerene derivatives, using the Bingel (carbene insertion) and Prato (1,3-dipolar addition) protocols.
Cox, Charles T., Jr.; Cooper, Melanie M. J. Chem. Educ. 2006, 83, 99.
Acids / Bases |
Addition Reactions |
Chromatography |
Heterocycles |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy
Presumptive and Confirmatory Drug Tests  Craig Anderson
Tests for illegal drugs were performed on unknowns obtained from over-the-counter cold medicines. Substances that tested positive for the qualitative Marquis color test were found to be false positives for illegal substances, while scopolamine hydrochloride shows a false positive for cocaine hydrochloride with the cobalt thiocyanate reagent.
Anderson, Craig. J. Chem. Educ. 2005, 82, 1809.
Drugs / Pharmaceuticals |
Qualitative Analysis |
Acids / Bases |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
Thermal Degradation and Identification of Heat-Sensitive Polymers. Applications of Pyrolysis and Distillation and Instrumental Methods of Analysis  Stuart C. Clough and Emma W. Goldman
An experiment for undergraduate teaching laboratories is described that involves the identification of samples of polystyrene and poly(methyl methacrylate). This involves the thermal degradation of the polymers (a destructive distillation) into their respective monomers. The monomers are then identified using infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gas chromatographymass spectrometry.
Clough, Stuart C.; Goldman, Emma W. J. Chem. Educ. 2005, 82, 1378.
Nonmajor Courses |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Polymerization
Analog Spectrophotometers in the Digital Age: Data Acquisition on a Budget  Alexander Y. Nazarenko and Natalie A. Nazarenko
In this article we describe how to employ an inexpensive analog-to-digital converter and a user interface to Microsoft Excel to make a useful computerized spectrophotometer. Readily available types of data loggers, Vernier LabPro and digital multimeters with an RS-232 interface, were utilized. The proposed design does not compromise the quality of the measurements. The conversion of the data to the Microsoft Excel format makes it a convenient tool for a wide range of data processing applications.
Nazarenko, Alexander Y.; Nazarenko, Natalie A. J. Chem. Educ. 2005, 82, 294.
IR Spectroscopy |
UV-Vis Spectroscopy |
Spectroscopy |
Laboratory Computing / Interfacing
Water in the Atmosphere  Joel M. Kauffman
None of eight college-level general chemistry texts gave a mean value for water in the atmosphere, despite its being the third most prevalent constituent at about 1.5% by mass as vapor and about 2% if clouds and ice crystals are included. The importance of water as a greenhouse gas was omitted or marginalized by five of the eight texts. An infrared spectrum of humid air was determined to demonstrate that water vapor, because of its higher concentration, was more absorptive than carbon dioxide. The cooling effect of clouds, or other influences on the Earth's albedo, were not mentioned in most of the texts. These pervasive errors should be corrected in new or future editions of textbooks.
Kauffman, Joel M. J. Chem. Educ. 2004, 81, 1229.
Atmospheric Chemistry |
Gases |
Green Chemistry |
IR Spectroscopy
Classification of Vegetable Oils by Principal Component Analysis of FTIR Spectra  David A. Rusak, Leah M. Brown, and Scott D. Martin
Comparing unknown samples of vegetable oils to known samples using FTIR and principal component analysis (PCA) and nearest means classification (NMC).
Rusak, David A.; Brown, Leah M.; Martin, Scott D. J. Chem. Educ. 2003, 80, 541.
IR Spectroscopy |
Instrumental Methods |
Food Science |
Lipids |
Chemometrics |
Qualitative Analysis |
Fourier Transform Techniques |
Consumer Chemistry |
Applications of Chemistry
Synthesis and Characterization of a Gasoline Oxygenate, Ethyl tert-Butyl Ether  Craig J. Donahue, Teresa D'Amico, and Jennifer A. Exline
Procedure for the synthesis and characterization of ethyl tert-butyl ether.
Donahue, Craig J.; D'Amico, Teresa; Exline, Jennifer A. J. Chem. Educ. 2002, 79, 724.
Chromatography |
Synthesis |
Ethers |
Gas Chromatography |
IR Spectroscopy |
Qualitative Analysis
The Physics Teacher: The Overlap of Chemistry and Physics  Roy W. Clark
Chemistry relevant articles appearing in The Physics Teacher.
Clark, Roy W. J. Chem. Educ. 2002, 79, 154.
IR Spectroscopy |
Surface Science
Cigarette Smoke Analysis Using an Inexpensive Gas-Phase IR Cell  N. Garizi, A. Macias, T. Furch, R. Fan, P. Wagenknecht, and K. A. Singmaster
A PVC gas cell used to collect and analyze cigarette smoke and car exhaust through IR spectroscopy.
Garizi, N.; Macias, A.; Furch, T.; Fan, R.; Wagenknecht, P.; Singmaster, K. A. J. Chem. Educ. 2001, 78, 1665.
Atmospheric Chemistry |
IR Spectroscopy |
Fourier Transform Techniques |
Laboratory Equipment / Apparatus |
Qualitative Analysis
Infrared Spectroscopy in the General Chemistry Lab  Margaret A. Hill
Three laboratory exercises in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.
Hill, Margaret A. J. Chem. Educ. 2001, 78, 26.
Instrumental Methods |
IR Spectroscopy |
Molecular Properties / Structure
Studying Thermally Induced Chemical and Physical Transformations in Common Synthetic Polymers: A Laboratory Project  Steven C. Hodgson, John D. Orbell, Stephen W. Bigger, and John Scheirs
A simple project is described for introducing students to some experimental procedures commonly used to measure the effects of thermal treatment on synthetic polymers. The thermally induced changes that occur in the commodity polymers low-density polyethylene (LDPE), poly(ethylene terephthalate) (PET), and poly(vinyl chloride) (PVC) are examined as a function of the time of thermal treatment in an air-circulating oven.
Hodgson, Steven C.; Orbell, John D.; Bigger, Stephen W.; Scheirs, John. J. Chem. Educ. 2000, 77, 745.
IR Spectroscopy |
Calorimetry / Thermochemistry |
Thermal Analysis |
UV-Vis Spectroscopy
An Inexpensive Convenient Press for KBr and CsI Pellets in Infrared Studies  Chris Kalberg and Paul J. Ogren
Directions are provided for the fabrication of an inexpensive IR salt pellet press that may be used easily and quickly by beginning chemistry students.
Kalberg, Chris; Ogren, Paul J. J. Chem. Educ. 2000, 77, 391.
IR Spectroscopy |
Laboratory Equipment / Apparatus
Spectroscopy of Simple Molecules  C. Baer and K. Cornely
A spectroscopy experiment in which students utilize IR and NMR spectroscopy to identify the structures of three unknowns from a list of 15 carefully chosen simple organic molecules. In taking IR and NMR spectra, students learn to use state-of-the-art instrumentation that is used by practicing chemists.
Baer, Carl; Cornely, Kathleen. J. Chem. Educ. 1999, 76, 89.
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Galactic Data Viewer, Version 2.08 (by Galactic Industries Corporation)  Jack G. Goldsmith
The Galactic DataViewer software is a freeware product designed to allow those who are not users of Galactic's GRAMS/386 or GRAMS/32 commercial software packages the capability to open spectral and chromatographic files stored in Galactic's SPC format.
Goldsmith, Jack G. J. Chem. Educ. 1998, 75, 1091.
Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy
A Guided Inquiry Approach to NMR Spectroscopy  Laura E. Parmentier, George C. Lisensky, and Brock Spencer
The authors present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in their one-semester introductory course. Purity is determined by titration and IR and NMR spectroscopy.
Laura E. Parmentier, George C. Lisensky, and Brock Spencer. J. Chem. Educ. 1998, 75, 470.
Learning Theories |
NMR Spectroscopy |
Instrumental Methods |
IR Spectroscopy |
Titration / Volumetric Analysis |
Quantitative Analysis
IR Spectroscopy or Hooke's Law at the Molecular Level - A Joint Freshman Physics-Chemistry Experience  Jeffrey T. Burke
The activity described is intended to unify for the student the topics of IR spectroscopy and Hooke's Law. This is accomplished by first working with springs and masses and then by acquiring and comparing the IR spectra of chloroform and chloroform-d.
Burke, Jeffrey T. J. Chem. Educ. 1997, 74, 1213.
Instrumental Methods |
IR Spectroscopy |
Molecular Modeling
News from On-Line  Carolyn Sweeney Judd
Helpful chemistry WWW sites.
Judd, Carolyn Sweeney. J. Chem. Educ. 1997, 74, 620.
IR Spectroscopy |
Mass Spectrometry
An Investigation into the Absorption of Infrared Light by Small Molecules: A General Chemistry Experiment  William B. Heuer and Edward Koubek
An introductory, two-part classroom/laboratory activity demonstrating the mechanism of absorption of infrared light by small molecules is described. A model for molecular vibration is introduced during pre-lab discussion, and a mechanism by which such vibrations may be excited by infrared radiation light is postulated.
Heuer, William B.; Koubek, Edward. J. Chem. Educ. 1997, 74, 313.
IR Spectroscopy
The Extraction of Caffeine from Tea: A Modification of the Procedure of Murray and Hansen  Andreas Hampp
This slight variation of Murray and Hansen's procedure is currently used in our first-year chemistry laboratory classes and clearly shows a higher student success rate in the isolation crude caffeine. The experiment described here is performed in a three-hour lab period, which is followed by sublimation and characterization through melting point and infrared spectroscopy on a second day.
Hampp, Andreas. J. Chem. Educ. 1996, 73, 1172.
Separation Science |
Physical Properties |
IR Spectroscopy
GC-MS and GC-FTIR Characterization of Products: From Classical Freshman and Sophomore Syntheses  D. S. Amenta, T. C. Devore, T. N. Gallaher, C. M. Zook, and J. A. Mosbo
The GC separation of ferrocene, acetylferrocene, and diacetylferrocene is accomplished in less than ten minutes. In addition to the operation of the instrument, the students are introduced to the interpretation of mass spectra and library aided spectral identification.
D. S. Amenta, T. C. Devore, T. N. Gallaher, C. M. Zook, and J. A. Mosbo. J. Chem. Educ. 1996, 73, 572.
Instrumental Methods |
Gas Chromatography |
IR Spectroscopy |
Qualitative Analysis
A Simple, Discovery-Based Laboratory Exercise: The Molecular Mass Determination of Polystyrene  Greg A. Slough
Identification of an unknown polymer using silica gel TLC sheets and IR spectroscopy.
Slough, Greg A. J. Chem. Educ. 1995, 72, 1031.
Stoichiometry |
IR Spectroscopy |
Molecular Properties / Structure |
Thin Layer Chromatography
Infrared Spectroscopy: A Versatile Tool in Practical Chemistry Courses   Volker Wiskam, Wolfgang Fichtner, Volker Kramb, Alexander Nintschew, and Jens Stefan Schneider
Procedure for preparing samples of basic inorganic compounds and analyzing them through IR spectroscopy in freshman chemistry.
Wiscamp, Volker; Fichtner, Wolfgang; Kramb, Volker; Nintschew, Alexander; Schneider, Jens Stefan. J. Chem. Educ. 1995, 72, 952.
IR Spectroscopy |
Synthesis |
Coordination Compounds
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
Models and molecules: A laboratory-based course in spectroscopy for the nonscience major   Werner, T. C.; Hull, L. A.
Recent general education curriculum requirements at the authors' institution led to the development of several laboratory-based courses for nonscience majors. One such course is presented in this paper.
Werner, T. C.; Hull, L. A. J. Chem. Educ. 1993, 70, 936.
Nonmajor Courses |
Spectroscopy |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy
Atmospheric smog analysis in a balloon using FTIR spectroscopy: A novel experiment for the introductory laboratory   Amey, Ralph L.
The author has developed a simple experiment that examines and identifies some of the components of Los Angeles air by FTIR spectroscopy using an inexpensive toy balloon as a sample gas cell.
Amey, Ralph L. J. Chem. Educ. 1992, 69, A148.
Fourier Transform Techniques |
IR Spectroscopy |
Gases
Synthesis, oxidation and UV/IR spectroscopy illustrated: An integrated freshman lab session   Zoller, Uri; Lubezky, Aviva; Danot, Miriam
This paper describes a specially designed, and successfully implemented lab-session for the first-year college general chemistry course.
Zoller, Uri; Lubezky, Aviva; Danot, Miriam J. Chem. Educ. 1991, 68, A274.
IR Spectroscopy |
UV-Vis Spectroscopy |
Coordination Compounds |
Metals
Zero-cost polystyrene film for IR spectroscopy  Fain, D.
The transparency section of many envelopes used for correspondence consists of a polystyrene film suitable for IR spectroscopy.
Fain, D. J. Chem. Educ. 1989, 66, 171.
IR Spectroscopy |
Laboratory Equipment / Apparatus
Infrared spectrum of methanol: A first-year student experiment  Boehm, Garth; Dwyer, Mark
This paper describes an experiment in infrared spectroscopy designed to complement an alternative course, and the audiovisual system which supports this experiment.
Boehm, Garth; Dwyer, Mark J. Chem. Educ. 1981, 58, 809.
MO Theory |
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure
Co(acac)3 Synthesis, reactions, and spectra: An experiment for general chemistry  Shalhoub, George M.
Students demonstrate that nitration of Co(acac)3 has occurred through proton NMR and IR spectroscopy.
Shalhoub, George M. J. Chem. Educ. 1980, 57, 525.
Synthesis |
Spectroscopy |
Titration / Volumetric Analysis |
NMR Spectroscopy |
IR Spectroscopy
Illustrating infrared spectroscopy using commercially available plastic films  Webb, John; Rasmussen, Malcolm; Selinger, Ben
Collecting and comparing the IR spectra of commercially available plastic films.
Webb, John; Rasmussen, Malcolm; Selinger, Ben J. Chem. Educ. 1977, 54, 303.
Spectroscopy |
IR Spectroscopy |
Molecular Properties / Structure
Infrared spectrometry of inorganic salts: A general chemistry experiment  Ackermann, Martin N.
An experiment in inorganic qualitative analysis for general chemistry.
Ackermann, Martin N. J. Chem. Educ. 1970, 47, 69.
IR Spectroscopy |
Qualitative Analysis |
Molecular Properties / Structure
Infrared spectrometry to study second order reaction kinetics  Gastambide, B.; Blanc, J.; Allamagny, Y.
The change studied is a synthesis reaction between menthol and phenyl isocyanate.
Gastambide, B.; Blanc, J.; Allamagny, Y. J. Chem. Educ. 1964, 41, 613.
Spectroscopy |
IR Spectroscopy |
Reactions |
Kinetics |
Synthesis
Infrared spectroscopy: A chemist's tool  Pimentel, George C.
This paper serves as an introduction to infrared spectroscopy and seeks to explain why it has assumed such an important role in chemistry.
Pimentel, George C. J. Chem. Educ. 1960, 37, 651.
Spectroscopy |
IR Spectroscopy