TIGER

Journal Articles: 73 results
Similarity and Difference in the Behavior of Gases: An Interactive Demonstration  Guy Ashkenazi
A demonstration that concurrently exposes differences and similarities in the behavior of two different gases has been designed to bridge the gap between students' understanding at the algorithmicmacroscopic and conceptualmicroscopic levels.
Ashkenazi, Guy. J. Chem. Educ. 2008, 85, 72.
Gases |
Kinetics |
Learning Theories
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Determining the Pressure inside an Unopened Carbonated Beverage  Hans de Grys
Determining the pressure of carbon dioxide inside a sealed soft drink can represents a challenging student exercise. Several methods are discussed for solving the problem, including applying the ideal gas law, gas collection via water displacement, and Henry's law.
de Grys, Hans. J. Chem. Educ. 2007, 84, 1117.
Applications of Chemistry |
Aqueous Solution Chemistry |
Consumer Chemistry |
Food Science |
Gases |
Solutions / Solvents |
Student-Centered Learning
What Are Students Thinking When They Pick Their Answer?  Michael J. Sanger and Amy J. Phelps
330 students were asked to answer a multiple-choice question concerning gas properties at the microscopic level and explain their reasoning. Of those who selected the correct answer, 80% provided explanations consistent with the scientifically accepted answer, while 90% of the students who picked an incorrect choice provided explanations with at least one misconception.
Sanger, Michael J.; Phelps, Amy J. J. Chem. Educ. 2007, 84, 870.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Qualitative Analysis
An Inquiry-Based Chemistry Laboratory Promoting Student Discovery of Gas Laws  A. M. R. P. Bopegedera
This article describes a laboratory in which students discover the gas laws using Vernier sensors and Microsoft Excel.
Bopegedera, A. M. R. P. J. Chem. Educ. 2007, 84, 465.
Gases |
Instrumental Methods |
Physical Properties
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
General Education and General Chemistry—Redux  Leslie S. Forster
This paper discusses the desirability of including non-technical general education topics in chemistry courses intended for science and engineering students.
Forster, Leslie S. J. Chem. Educ. 2006, 83, 614.
Enrichment / Review Materials |
Gases |
Learning Theories
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Carbon Dioxide Flooding: A Classroom Case Study Derived from Surgical Practice  Robert C. Kerber
The surgical opening in open-heart surgery is often flooded with carbon dioxide gas to avoid air embolisms when the heart is closed and restarted. This practice can be used in chemistry courses to illustrate concepts of gas density, solubility, and acidbase equilibria, including buffering.
Kerber, Robert C. . J. Chem. Educ. 2003, 80, 1437.
Acids / Bases |
Aqueous Solution Chemistry |
Gases |
Medicinal Chemistry |
Nonmajor Courses |
Applications of Chemistry
Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology  Dorota A. Abramovitch, Latrice K. Cunningham, and Mitchell R. Litwer
Using a sensor to measure changes in the pressure of oxygen produced by the decomposition of hydrogen peroxide as a means of analyzing this reaction and factors that affect its rate.
Abramovitch, Dorota A.; Cunningham, Latrice K.; Litwer, Mitchell R. J. Chem. Educ. 2003, 80, 790.
Gases |
Laboratory Computing / Interfacing |
Kinetics
Just Breathe: The Oxygen Content of Air   JCE Editorial Staff
Students estimate the percent oxygen (volume) in air using steel wool in a test tube that is inverted in a beaker of water. Oxygen in the trapped air reacts with iron to form rust, and the water level rises inside the test tube; within 30-45 minutes, the majority of oxygen is consumed.
JCE Editorial Staff. J. Chem. Educ. 2001, 78, 512A.
Electrochemistry |
Gases |
Oxidation / Reduction
Sink or Swim: The Cartesian Diver  K. David Pinkerton
Cartesian divers are a quick and simple way to illustrate relationships among pressure, volume, temperature, and buoyancy. The Activity could be used in connection with the concepts of gases and liquids and discussions of Boyle's, Charles's, and the ideal gas laws.
Pinkerton, K. David. J. Chem. Educ. 2001, 78, 200A.
Gases |
Physical Properties
Experiencing and Visualizing the First Law of Thermodynamics: An In-Class Workshop  Pamela Mills, William V. Sweeney, and Waldemar Cieniewicz
A handheld device that illustrates the concepts of heat, work, energy transfer, and thermodynamic path.
Mills, Pamela; Sweeney, William V.; Cieniewicz, Waldemar. J. Chem. Educ. 2001, 78, 1360.
Gases |
Thermodynamics |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing
Determination of the Universal Gas Constant, R. A Discovery Laboratory  David B. Moss and Kathleen Cornely
Discovery laboratory in which groups of students collect oxygen, hydrogen, and nitrogen gas over water and determine the value of the universal gas constant, R, using the ideal gas law.
Moss, David B.; Cornely, Kathleen. J. Chem. Educ. 2001, 78, 1260.
Gases
An Alcohol Rocket Car--A Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Burning methanol in a wheeled milk jug.
Campbell, Dean J. J. Chem. Educ. 2001, 78, 910.
Gases |
Thermodynamics
A Simple Laboratory Experiment for the Determination of Absolute Zero  Myung-Hoon Kim, Michelle Song Kim, and Suw-Young Ly
A novel method that employs a remarkably simple and inexpensive apparatus and is based on the extrapolation of the volume of a given amount of dry air to zero volume after a volume of air trapped inside a 10-mL graduated cylinder is measured at various temperatures.
Kim, Myung-Hoon; Kim, Michelle Song; Ly, Suw-Young. J. Chem. Educ. 2001, 78, 238.
Gases |
Physical Properties |
Chemometrics
Using a Computer Animation to Improve Students' Conceptual Understanding of a Can-Crushing Demonstration   Michael J. Sanger, Amy J. Phelps, and Jason Fienhold
This paper reports some of the misconceptions that were identified from these students' explanations. As a result of these misconceptions, a computer animation depicting the chemical processes occurring in the can-crushing demonstration was created.
Sanger, Michael J.; Phelps, Amy J.; Fienhold, Jason. J. Chem. Educ. 2000, 77, 1517.
Kinetic-Molecular Theory |
Gases
News from Online: The Power of the Voice  Carolyn Sweeney Judd
Useful online chemistry resources.
Judd, Carolyn Sweeney. J. Chem. Educ. 2000, 77, 299.
Periodicity / Periodic Table |
Gases
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Why Does Helium Have 92% of the Lifting Power of Hydrogen if It Has Twice the Density?  David W. Ball
The answer to the question "Why Does Helium Have 92% of the Lifting Power of Hydrogen if It Has Twice the Density?" is discussed.
Ball, David W. J. Chem. Educ. 1998, 75, 726.
Gases |
Physical Properties
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
A U-Tube Experiment To Discover the Curve in Boyle's Law  Thomas G. Richmond and Amy Parr
A discovery-style experiment is described to enable introductory chemistry students to determine the pressure versus volume behavior of a gas over a wide pressure range to "discover" Boyle's Law.
Richmond, Thomas G.; Parr, Amy. J. Chem. Educ. 1997, 74, 414.
Gases |
Laboratory Equipment / Apparatus
A Simple and Convenient Microscale Procedure for Investigation of Charles' Law  Snyder, Donald M.
Experimental procedure for establishing temperature/volume relationship for a gas and determining the value of absolute zero using very simple equipment; includes sample data and analysis.
Snyder, Donald M. J. Chem. Educ. 1995, 72, A98.
Gases |
Calorimetry / Thermochemistry |
Microscale Lab
A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory  Luis H. Blanco and Carmen M. Romero
A series of experiments that study all the gas laws in an integrated fashion.
Blanco, Luis H.; Romero, Carmen M. J. Chem. Educ. 1995, 72, 933.
Gases |
Kinetic-Molecular Theory
More Chemistry in a Soda Bottle: A Conservation of Mass Activity  Daniel Q. Duffy, Stephanie A. Shaw, William O. Bare, and Kenneth A. Goldsby
Conservation of mass activity using vinegar and baking soda in a 2-L soda bottle.
Duffy, Daniel Q.; Shaw, Stephanie A.; Bare, William D.; Goldsby, Kenneth A. J. Chem. Educ. 1995, 72, 734.
Reactions |
Gases |
Acids / Bases
Charles' Law of Gases: A Simple Experimental Demonstration  Petty, John T.
Experimental procedure for demonstrating Charles' law.
Petty, John T. J. Chem. Educ. 1995, 72, 257.
Gases
A Charles' Law Experiment for Beginning Students  Rockley, Mark G.; Rockley, Natalie L.
Experimental procedure and simple apparatus for illustrating Charles' Law and determining absolute zero; sample data and analysis are included.
Rockley, Mark G.; Rockley, Natalie L. J. Chem. Educ. 1995, 72, 179.
Gases |
Laboratory Equipment / Apparatus
A New Quantitative Pressure-Volume Experiment Based on the "Cartesian Diver"  Thompson, Judith U. S.; Goldsby, Kenneth A.
Modified Cartesian Diver to illustrate qualitatively and quantitatively the inverse, nonlinear relationship between gas pressure and volume.
Thompson, Judith U. S.; Goldsby, Kenneth A. J. Chem. Educ. 1994, 71, 801.
Gases
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
Revealing the secret of the Arctic bomb   Pearson, Earl F.
Arctic bombs and hurricanes can appear to be contradictory to gas law concepts commonly taught to chemistry students. While these phenomena can be explained as applications of simple gas laws, the explanations can be more effective if an apparent contradiction is drawn between students' understanding and the observed pressure-temperature relationship in these two examples.
Pearson, Earl F. J. Chem. Educ. 1993, 70, 315.
Gases |
Enrichment / Review Materials
LIMSport (II): Use of the Interfaced Balance for Pressure Measurements, Streamlined Syntheses, and Titrations  Vitz, Ed
145. LIMSport facilitates direct acquisition of data from a variety of sensors into a spreadsheet.. This article explores the use of LIMSport in understanding gas laws.
Vitz, Ed J. Chem. Educ. 1993, 70, 63.
Gases |
Instrumental Methods
Does a one-molecule gas obey Boyle's law?  Rhodes, Gail
Because the kinetic molecular theory provides a plausible explanation for the lawful behavior of gases, it should be treated in enough depth to show students that the theory accounts for all of the important aspects of ideal gas behavior.
Rhodes, Gail J. Chem. Educ. 1992, 69, 16.
Gases |
Kinetic-Molecular Theory
Sunto di un curso di filosofia chimica (Cannizzaro, Stanislao)  Kauffman, George B.
A review of a book that includes original correspondence regarding Avogadro's hypothesis.
Kauffman, George B. J. Chem. Educ. 1991, 68, A266.
Gases
Advice from Allied Health faculty to chemistry faculty  Dever, David F.
Finding out what the different health professions would like to see from undergraduate chemistry programs.
Dever, David F. J. Chem. Educ. 1991, 68, 763.
Medicinal Chemistry |
Nuclear / Radiochemistry |
Nutrition |
Vitamins |
Gases
Space-filling P-V-T models  Hilton, Don B.
Space-filling models help beginning students visualize the numerical aspects of the empirical gas laws.
Hilton, Don B. J. Chem. Educ. 1991, 68, 496.
Gases |
Noncovalent Interactions |
Kinetic-Molecular Theory |
Chemometrics
Concept learning versus problem solving: Revisited  Sawrey, Barbara A.
A student's ability to solve a numerical problem does not guarantee conceptual understanding of the molecular basis of the problem.
Sawrey, Barbara A. J. Chem. Educ. 1990, 67, 253.
Learning Theories |
Stoichiometry |
Gases
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Computer-Assisted Blackboard (Soltzberg, L. J.)  Kruger, J. D.
8-disk set of programs (Apple II) designed to help a lecturer illustrate gas laws, the Rutherford atomic model, quantization in a Bohr atom, wave-functions and orbitals, heat and changes in state, kinetics and simple reaction mechanisms, equilibrium, acid-base reactions, and titrations.
Kruger, J. D. J. Chem. Educ. 1987, 64, A135.
Acids / Bases |
Gases |
Atomic Properties / Structure |
Phases / Phase Transitions / Diagrams |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Titration / Volumetric Analysis
Science Volume 4 - Physics / Chemistry Chemical Elements (Minnesota Educational Computing Corporation)  Hartman, Kenneth A.
Six programs, three relating to solubility products, two on gas laws, and a Milliken Oil Drop Experiment.
Hartman, Kenneth A. J. Chem. Educ. 1987, 64, A26.
Precipitation / Solubility |
Gases
Control of variables and the conservation of matter  Giachino, Gary G.
Demonstrates the conservation of matter, but its main value lies in its illustration of the need to control variables and the difficulty this may entail - particularly if a variable is "hidden"; uses a burning candle in a glass flask.
Giachino, Gary G. J. Chem. Educ. 1987, 64, 353.
Gases
Carbon dioxide: Its principal properties displayed and discussed  Bent, Henry A.
The principal properties of carbon dioxide demonstrated and discussed.
Bent, Henry A. J. Chem. Educ. 1987, 64, 167.
Physical Properties |
Phases / Phase Transitions / Diagrams |
Gases |
Kinetic-Molecular Theory
Gas cans and gas cubes: Visualizing Avogadro's Law   Bouma, J.
The author shares a strategy for making gas laws "visible" for students.
Bouma, J. J. Chem. Educ. 1986, 63, 586.
Gases |
Stoichiometry
Why teach the gas laws?  Davenport, Derek A.
Justification for teaching the gas laws.
Davenport, Derek A. J. Chem. Educ. 1985, 62, 505.
Gases |
Stoichiometry
Why do we teach gas laws?  Roe, Robert, Jr.
Justification for teaching the gas laws.
Roe, Robert, Jr. J. Chem. Educ. 1985, 62, 505.
Gases |
Kinetic-Molecular Theory
A simplified Dumas flask  Hadley, Fred J.
Using glass tubing as a simple Dumas flask.
Hadley, Fred J. J. Chem. Educ. 1985, 62, 268.
Laboratory Equipment / Apparatus |
Gases
Invisible water: A gas density demonstration  Maciel, Richard P.
Demonstrating the density of 1,1,2-trichloro-1,2,2-trifluoroethane (TTE), whose density is about six times that of air.
Maciel, Richard P. J. Chem. Educ. 1985, 62, 153.
Gases |
Physical Properties
Cooking with chemistry  Grosser, Arthur E.
Two demonstrations involving cooking eggs and suggestions for many more examples of cooking that illustrate important principles of chemistry. From the "State-of-the-Art Symposium for Chemical Educators: Chemistry of the Food Cycle".
Grosser, Arthur E. J. Chem. Educ. 1984, 61, 362.
Food Science |
Gases |
Acids / Bases |
Equilibrium |
Kinetics
The density and apparent molecular weight of air  Harris, Arlo D.
Simple procedure for determining the density and apparent molecular weight of air.
Harris, Arlo D. J. Chem. Educ. 1984, 61, 74.
Atmospheric Chemistry |
Gases |
Molecular Properties / Structure |
Physical Properties
Gas laws and gas behavior  Schmuckler, Joseph S.
A collection of activities from past issues of the Journal and The Science Teacher.
Schmuckler, Joseph S. J. Chem. Educ. 1984, 61, 73.
Gases
An effective demonstration of some properties of real vapors  Metsger, D. Scott
The apparatus described in this article has been found by the authors to be the most effective in vividly illustrating the behavior of a nearly ideal gas to first year chemistry students.
Metsger, D. Scott J. Chem. Educ. 1983, 60, 67.
Laboratory Equipment / Apparatus |
Gases |
Physical Properties |
Solids
Boyle's law and the monster marshmallow  Broniec, Rick
Evacuating the air surrounding a marshmallow with a vacuum pump.
Broniec, Rick J. Chem. Educ. 1982, 59, 974.
Gases
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
A Charles' law demonstration rehatched  Markow, Peter G.
Modifications to simplify the "Egg in a Bottle" demonstration.
Markow, Peter G. J. Chem. Educ. 1980, 57, 307.
Gases
A chemistry lesson at Three Mile Island  Mammano, Nicholas J.
Teaching principles of general chemistry through references made to the nuclear incident at Three Mile Island.
Mammano, Nicholas J. J. Chem. Educ. 1980, 57, 286.
Equilibrium |
Gases |
Stoichiometry |
Nonmajor Courses |
Nuclear / Radiochemistry |
Applications of Chemistry
The solution: "Derivation of the ideal gas law"  Bosch, Warren L.; Crawford, Crayton M.; Gensler, Walter J.; Haim, Albert; Levine, Ira N.; Linde, Peter F.; Salzsieder, John C.; Silberszye, Waldemar; Viehland, Larry A.; Waser, Jurg
A response to the misinterpretations that appeared in the referenced article regarding the gas laws.
Bosch, Warren L.; Crawford, Crayton M.; Gensler, Walter J.; Haim, Albert; Levine, Ira N.; Linde, Peter F.; Salzsieder, John C.; Silberszye, Waldemar; Viehland, Larry A.; Waser, Jurg J. Chem. Educ. 1980, 57, 201.
Gases
The problem: "Derivation of the ideal gas law"  Vaitkunas, John J.
Outline for a lesson on gases, and suggestions for approaches to the ideal gas law.
Vaitkunas, John J. J. Chem. Educ. 1979, 56, 530.
Gases
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Ideal and non-ideal gases. An experiment with surprise value  Chirpich, Thomas P.
Compares the behavior of an ideal gas (air) with a non-ideal gas (water vapor) as they are cooled from 100C to room temperature.
Chirpich, Thomas P. J. Chem. Educ. 1977, 54, 378.
Gases
Ideal gas laws. Experiments for general chemistry  Deal, Walter J.
Several gas-law experiments designed to verify the relationship PV = constant at constant temperature and to calculate the gas constant R.
Deal, Walter J. J. Chem. Educ. 1975, 52, 405.
Gases
Effective insect fogging - The origin of sea breezes - Hot air balloons  Plumb, Robert C.
Three applications of the changes in pressure or volume of a gas when its temperature is changed.
Plumb, Robert C. J. Chem. Educ. 1975, 52, 104.
Gases |
Applications of Chemistry
Scuba diving and the gas laws  Cooke, E. D.; Baranowski, Conrad
Three illustrations of physical-chemical principles drawn from scuba diving.
Cooke, E. D.; Baranowski, Conrad J. Chem. Educ. 1973, 50, 425.
Gases |
Applications of Chemistry |
Thermodynamics
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
Concept of empirical temperature for introductory chemistry  Ander, Paul
This presentation is used in a freshman course prior to the discussion of the empirical gas laws for dilute gases, i.e., Boyle's Charles', Dalton's etc.,
Ander, Paul J. Chem. Educ. 1971, 48, 325.
Gases
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Teaching kinetic molecular theory by the factor change method  Koons, Lawrence F.
Develops the "factor change method" for teaching kinetic molecular theory and presents examples of its application.
Koons, Lawrence F. J. Chem. Educ. 1967, 44, 288.
Kinetic-Molecular Theory |
Gases
VII - Combustion and flame  Anderson, Robbin C.
Presents and describes an extensive bibliography on the study of combustion and flames.
Anderson, Robbin C. J. Chem. Educ. 1967, 44, 248.
Oxidation / Reduction |
Reactions |
Gases
Kinetic energies of gas molecules  Aherne, John C.
The graph representing the distribution of kinetic energy among the molecules of a gas found in many textbooks is incorrect.
Aherne, John C. J. Chem. Educ. 1965, 42, 655.
Kinetic-Molecular Theory |
Gases
Determination of Avogadro's number by Perrin's law  Slabaugh, W. H.
The experimental procedure for determining Avogadro's number by the Perrin method includes preparing a monodisperse colloid, ascertaining the mass of the particles, and making an accurate count of the number of particles at two points in the equilibrated colloid.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 471.
Stoichiometry |
Kinetic-Molecular Theory |
Gases |
Colloids
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Determination of the density of oxygen gas  Fiekers, B. A.
The "Oxybomb," a small cartridge of compressed oxygen, is used for determining the density of oxygen gas in laboratory or lecture.
Fiekers, B. A. J. Chem. Educ. 1954, 31, 139.
Gases |
Physical Properties
Letters  de Milt, Clara
The author calls for a mnemonic device to assist students in learning the gas laws and points out the omission of Graham's law from a recent textbook.
de Milt, Clara J. Chem. Educ. 1951, 28, 115.
Gases