TIGER

Journal Articles: 13 results
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. D┬ŁAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
D┬ŁAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
A Direct Methanol Fuel Cell  Orfeo Zerbinati
Materials and methods for construction of a direct methanol fuel cell.
Zerbinati, Orfeo. J. Chem. Educ. 2002, 79, 829.
Electrochemistry |
Laboratory Equipment / Apparatus |
Electrolytic / Galvanic Cells / Potentials
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
Structure and Content of Some Primary Batteries  Michael J. Smith and Colin A. Vincent
An experiment that complements electrochemical characterization and allows students to explore the structure of commercial cells and calculate the anode and cathode capacities from the stoichiometry of the cell reaction.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2001, 78, 519.
Consumer Chemistry |
Electrochemistry |
Undergraduate Research |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Alleviating the common confusion caused by polarity in electrochemistry  Moran, P. J.; Gileadi, E.
The issue of polarity encountered in electrochemistry and relevant to a variety of electrochemical concepts often confuses students and is an unnecessary deterrent to the study of electrochemistry.
Moran, P. J.; Gileadi, E. J. Chem. Educ. 1989, 66, 912.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemistry of the zinc-silver oxide system. Part 2. Practical measurements of energy conversion using commercial miniature cells  Smith, Michael J.; Vincent, Colin A.
Experiments in which "button cells" are discharged and charged under controlled conditions so that practical energy conversions and a number of other parameters may be studied.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 1989, 66, 683.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen-oxygen fuel cell  Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen
Presentation of a simple apparatus that allows an instructor to perform the electrolysis of water and the back conversion of the products to water while overcoming some typical drawbacks encountered in this process.
Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 725.
Water / Water Chemistry |
Electrochemistry
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrical energy from cells - A corridor demonstration  Gilbert, George L.
A display that demonstrates the charge and discharge of a solar cell, fuel cell, and storage cell.
Gilbert, George L. J. Chem. Educ. 1980, 57, 216.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Electrochemistry in organisms. Electron flow and power output  Chirpich, Thomas P.
Electrochemical calculations at an elementary level can be readily applied to living organisms and generate further student interest in electrochemistry.
Chirpich, Thomas P. J. Chem. Educ. 1975, 52, 99.
Electrochemistry |
Bioenergetics