TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
3 Assessment Questions
3 Journal Articles
3 Other Resources
Assessment Questions: 3 results
IR (6 Variations)
A collection of 6 assessment questions about IR
IR Spectroscopy |
Oxidation / Reduction |
Aldehydes / Ketones |
Alcohols |
Alkenes |
Alkynes |
Ethers
NMR (19 Variations)
A collection of 19 assessment questions about NMR
NMR Spectroscopy |
Alkenes |
Alkynes |
Aldehydes / Ketones |
Aromatic Compounds |
Alkanes / Cycloalkanes |
Epoxides |
Ethers |
Alcohols |
Phenols |
IR Spectroscopy |
Esters
Bonding (34 Variations)
A collection of 34 assessment questions about Bonding
Molecular Properties / Structure |
Covalent Bonding |
IR Spectroscopy |
VSEPR Theory |
Aromatic Compounds |
Lewis Structures |
Resonance Theory |
Aldehydes / Ketones |
Carboxylic Acids |
Acids / Bases
Journal Articles: 3 results
Pedagogies:
Water in the Atmosphere  Joel M. Kauffman
None of eight college-level general chemistry texts gave a mean value for water in the atmosphere, despite its being the third most prevalent constituent at about 1.5% by mass as vapor and about 2% if clouds and ice crystals are included. The importance of water as a greenhouse gas was omitted or marginalized by five of the eight texts. An infrared spectrum of humid air was determined to demonstrate that water vapor, because of its higher concentration, was more absorptive than carbon dioxide. The cooling effect of clouds, or other influences on the Earth's albedo, were not mentioned in most of the texts. These pervasive errors should be corrected in new or future editions of textbooks.
Kauffman, Joel M. J. Chem. Educ. 2004, 81, 1229.
Atmospheric Chemistry |
Gases |
Green Chemistry |
IR Spectroscopy
An Investigation into the Absorption of Infrared Light by Small Molecules: A General Chemistry Experiment  William B. Heuer and Edward Koubek
An introductory, two-part classroom/laboratory activity demonstrating the mechanism of absorption of infrared light by small molecules is described. A model for molecular vibration is introduced during pre-lab discussion, and a mechanism by which such vibrations may be excited by infrared radiation light is postulated.
Heuer, William B.; Koubek, Edward. J. Chem. Educ. 1997, 74, 313.
IR Spectroscopy
Atmospheric smog analysis in a balloon using FTIR spectroscopy: A novel experiment for the introductory laboratory   Amey, Ralph L.
The author has developed a simple experiment that examines and identifies some of the components of Los Angeles air by FTIR spectroscopy using an inexpensive toy balloon as a sample gas cell.
Amey, Ralph L. J. Chem. Educ. 1992, 69, A148.
Fourier Transform Techniques |
IR Spectroscopy |
Gases
Other Resources: 3 results
The Spectra of Molecules: Infrared  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
IR Spectroscopy
3D NormalModes Shockwave; A Web Application for Interactive Visualization and Three Dimensional Perc  Nickolas D. Charistos, C. A. Tsipis, Michael P. Sigalas
3D Normal Modes is a Web application for interactive visualization and three-dimensional perception of the normal modes of molecular vibration, suitable for undergraduate students in chemistry. The application uses the Macromedia Shockwave plug-in and has been designed and developed especially for the Web. It has a simple graphical user interface and requires a download of only 120 KB, allowing it to be used even with low bandwidth Internet connections. Its performance is comparable to a desktop application.
IR Spectroscopy |
Raman Spectroscopy
The Effect of Anharmonicity on Diatomic Vibration; A Spreadsheet Simulation  William F. Coleman, Kieran F. Lim
Instructors and students can use this spreadsheet to quickly and easily observe how the shape of a one-dimensional vibrational potential energy curve and its associated vibrational quantum energy levels depend on the anharmonicity. This illustrates the connection between the harmonic (approximation) and anharmonic descriptions of molecular vibrations.
IR Spectroscopy |
Enrichment / Review Materials