TIGER

Journal Articles: 82 results
A Simple Laboratory Experiment To Determine the Kinetics of Mutarotation of D-Glucose Using a Blood Glucose Meter  Carlos E. Perles and Pedro L. O. Volpe
A simple commercial blood glucose meter is used to follow the kinetics of mutarotation of D-glucose in aqueous solution. The results may be compared with those obtained using an automatic polarimeter.
Perles, Carlos E.; Volpe, Pedro L. O. J. Chem. Educ. 2008, 85, 686.
Aqueous Solution Chemistry |
Bioanalytical Chemistry |
Carbohydrates |
Chirality / Optical Activity |
Enzymes |
Kinetics |
Solutions / Solvents |
Stereochemistry
Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs  Linda S. Brunauer and Kathryn K. Davis
Describes an experiment in which students use column chromatography to separate and characterize biomolecules, thus expanding their exposure to chromatographic procedures beyond those more commonly employed at the secondary level (e.g., paper or thin-layer chromatography).
Brunauer, Linda S.; Davis, Kathryn K. J. Chem. Educ. 2008, 85, 683.
Biotechnology |
Chromatography |
Enzymes |
Separation Science |
Spectroscopy
Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents  Beverly Cochran, Deborah Lunday, and Frank Miskevich
This laboratory emphasizes that enzymes mediate the conversion of a substrate into a product and that either the concentration of product or reactant may be used to follow the course of a reaction. It does so by using an inexpensive scanner and open-source image analysis software to quantify amylase activity through the breakdown of starch and the appearance of glucose.
Cochran, Beverly; Lunday, Deborah; Miskevich, Frank. J. Chem. Educ. 2008, 85, 401.
Biosynthesis |
Carbohydrates |
Catalysis |
Enzymes |
Food Science |
Nutrition |
Quantitative Analysis |
UV-Vis Spectroscopy
OMLeT—An Alternative Approach to Learning Metabolism: Glycolysis and the TCA Cycle as an Example  Charles M. Stevens, Dylan M. Silver, Brad Behm, Raymond J. Turner, and Michael G. Surette
Using PHP Hypertext Preprocessor scripting, the dynamic OMLeT (Online Metabolism Learning Tool) Web site is geared towards different learning styles and allows the student to process metabolic pathways (glycolysis and TCA cycle) via a user-defined approach.
Stevens, Charles M.; Silver, Dylan M.; Behm, Brad; Turner, Raymond J.; Surette, Michael G. J. Chem. Educ. 2007, 84, 2024.
Bioenergetics |
Enzymes |
Learning Theories |
Metabolism |
Proteins / Peptides
Biochemical View: A Web Site Providing Material for Teaching Biochemistry Using Multiple Approaches  Fernanda C. Dórea, Higor S. Rodrigues, Oscar M. M. Lapouble, Márcio R. Pereira, Mariana S. Castro, and Wagner Fontes
Biochemical View is a free, full access Web site whose main goals are to complement existing biochemistry instruction and materials, provide material to teachers preparing conventional and online courses, and popularize the use of these resources in undergraduate courses.
Dórea, Fernanda C.; Rodrigues, Higor S.; Lapouble, Oscar M. M.; Pereira, Márcio R.; Castro, Mariana S.; Fontes, Wagner. J. Chem. Educ. 2007, 84, 1866.
Amino Acids |
Bioenergetics |
Carbohydrates |
Enzymes |
Glycolysis |
Lipids |
Metabolism |
Fatty Acids
Applications of Reaction Rate  Kevin Cunningham
This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. The assignment is designed to develop and assess a number of valuable skills and understandings, including the ability to write effectively.
Cunningham, Kevin. J. Chem. Educ. 2007, 84, 430.
Catalysis |
Enzymes |
Kinetics |
Rate Law |
Reactions |
Applications of Chemistry
Nature's Way To Make the Lantibiotics  Heather A. Relyea and Wilfred A. van der Donk
This article focuses on one class of antimicrobial compounds, the lantibiotics, and discusses their biosynthetic pathways as well as their molecular mode of action. In the course of the review, the meaning of the terms regio-, chemo-, and stereoselectivity are discussed.
Relyea, Heather A.; van der Donk, Wilfred A. J. Chem. Educ. 2006, 83, 1769.
Applications of Chemistry |
Bioorganic Chemistry |
Biotechnology |
Biosynthesis |
Catalysis |
Drugs / Pharmaceuticals |
Proteins / Peptides
An Enzyme Kinetics Experiment Using Laccase for General Chemistry   Yaqi Lin and Patrick M. Lloyd
This article describes the use of laccase, an oxidoreductase enzyme, to study the effects of enzyme catalysts on reaction rates.
Lin, Yaqi; Lloyd, Patrick M. J. Chem. Educ. 2006, 83, 638.
Aldehydes / Ketones |
Bioanalytical Chemistry |
Catalysis |
Enzymes |
Kinetics |
UV-Vis Spectroscopy
Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates  Michael W. Pelter and Jennifer McQuade
This experiment is an investigation of the chemistry and processes involved in "mashing". Crushed malted barley is mixed with hot water and the progress of the enzymatic hydrolysis of starch is monitored using a simple iodine test.
Pelter, Michael W.; McQuade, Jennifer. J. Chem. Educ. 2005, 82, 1811.
Carbohydrates |
Enzymes |
Food Science |
Consumer Chemistry |
Nonmajor Courses
Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy  Kestutis Bendinskas, Christopher DiJiacomo, Allison Krill, and Ed Vitz
A two-week biochemistry experiment was introduced in the second-semester general chemistry laboratory to study the oxidation of ethanol in vitro in the presence of the enzyme alcohol dehydrogenase (ADH). This reaction should pique student interest because the same reaction also occurs in human bodies when alcoholic drinks are consumed. Procedures were developed to follow the biochemical reaction by visible spectroscopy and to avoid specialized equipment. The effect of substrate concentration on the rate of this enzymatic reaction was investigated during the first week. The effects of temperature, pH, the specificity of the enzyme to several substrates, and the enzyme's inhibition by heavy metals were explored during the second week.
Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed. J. Chem. Educ. 2005, 82, 1068.
Enzymes |
Kinetics |
Oxidation / Reduction |
Reactions |
UV-Vis Spectroscopy |
Alcohols |
Biophysical Chemistry |
Food Science
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide  Carlos Alexander Trujillo
A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the Elephants Toothpaste is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.
Trujillo, Carlos Alexander. J. Chem. Educ. 2005, 82, 855.
Catalysis |
Kinetics |
Oxidation / Reduction
Concerning "A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration"  Colin White
Although I respect the right of Espenson to object to my suggestion of a useful teaching aid, I fundamentally disagree with the argument put forward. A good teacher uses a variety of teaching styles and aids to stimulate and educate students, including, if appropriate, trickery or showmanship.
White, Colin. J. Chem. Educ. 2005, 82, 527.
Catalysis
Concerning "A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration"  James Espenson
I find it distressing to encounter a lecture demonstration that seeks to make a valid scientific point through deception. I refer to the Tested Demonstration, A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration.
Espenson, James. J. Chem. Educ. 2005, 82, 527.
Catalysis
A Reaction That Takes Place in Beakers but Not in Conical Flasks: A Catalysis-Related Demonstration  Colin White
A striking demonstration emphasizing that substances which promote reactions are not catalysts if they are consumed in the process. The demonstration is based on the iron(II) induced oxidation of iodide by chromium(VI).
White, Colin. J. Chem. Educ. 2004, 81, 364.
Catalysis |
Oxidation / Reduction |
Reactions
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
Synthesis of a Racemic Ester and Its Lipase–Catalyzed Kinetic Resolution  Delia Stetca, Isabel W. C. E. Arends, and Ulf Hanefeld
Reaction sequence to familiarize first-year students with the use of enzymes in organic chemistry.
Stetca, Delia; Arends, Isabel W. C. E.; Hanefeld, Ulf. J. Chem. Educ. 2002, 79, 1351.
Bioinorganic Chemistry |
Enzymes |
Catalysis |
Synthesis |
Enantiomers |
Bioorganic Chemistry
Introducing Freshmen Students to the Practice of Solid-Phase Synthesis  Alpay Taralp, Can Hulusi Türkseven, Atilla Özgür Çakmak, and Ömer Çengel
Procedure to introduce freshmen to the principles and practice of solid-phase (peptide) synthesis.
Taralp, Alpay; Türkseven, Can Hulusi; Çakmak, Atilla Özgür; Çengel, Ömer. J. Chem. Educ. 2002, 79, 87.
Biotechnology |
Enzymes |
Synthesis |
Proteins / Peptides |
Undergraduate Research
Factors Affecting Reaction Kinetics of Glucose Oxidase  Kristin A. Johnson
Demonstration based on a biochemical kinetics experiment in which the rate of reaction varies with the enzyme concentration, substrate concentration, substrate used in the reaction, and temperature.
Johnson, Kristin A. J. Chem. Educ. 2002, 79, 74.
Enzymes |
Kinetics |
Proteins / Peptides |
Carbohydrates |
Catalysis |
Rate Law
A Modification of a Lactase Experiment by Use of Commercial Test Strips  Tammy J. Melton
Using urinalysis test strips to detect the presence of glucose.
Melton, Tammy J. J. Chem. Educ. 2001, 78, 1243.
Carbohydrates |
Catalysis |
Drugs / Pharmaceuticals |
Enzymes |
Nonmajor Courses |
Qualitative Analysis |
Laboratory Equipment / Apparatus
A Simple Method for Demonstrating Enzyme Kinetics Using Catalase from Beef Liver Extract  Kristin A. Johnson
A simple visual method of demonstrating enzyme kinetics using beef liver catalase. Filter paper is saturated with beef liver extract and placed into a solution of hydrogen peroxide. The catalase in the extract decomposes the hydrogen peroxide to water and oxygen. Oxygen forms on the filter paper, and the filter paper rises to the top of the beaker. Catalase activity is measured by timing the rise of the enzyme-soaked filter paper to the top of beakers containing different concentrations of hydrogen peroxide.
Johnson, A. Kristin. J. Chem. Educ. 2000, 77, 1451.
Enzymes |
Kinetics |
Proteins / Peptides |
Reactions
Chemistry and Flatulence: An Introductory Enzyme Experiment  John R. Hardee, Tina M. Montgomery, and Wray H. Jones
An enzyme experiment using raffinose family sugars extracted from green split peas as a substrate and the enzymes alpha-galactosidase and sucrase found in Beano. The reaction studied was the hydrolysis of raffinose family sugars to galactose, glucose, and fructose, and the reaction rate was determined using a retail glucometer to measure the concentration of glucose.
Hardee, John R.; Montgomery, Tina M.; Jones, Wray H. J. Chem. Educ. 2000, 77, 498.
Nonmajor Courses |
Enzymes |
Food Science |
Rate Law |
Catalysis |
Applications of Chemistry
Catalytic Oxidation of Ammonia: A Sparkling Experiment  Vladimir A. Volkovich and Trevor R. Griffiths
A lecture demonstration experiment on the catalytic oxidation of ammonia using chromium(III) oxide as a catalyst is described.
Volkovich, Vladimir A.; Griffiths, Trevor R. J. Chem. Educ. 2000, 77, 177.
Catalysis |
Oxidation / Reduction |
Reactions
Soup or Salad? Investigating the Action of Enzymes in Fruit on Gelatin  Erica Jacobsen
Some fruits contain proteases, a group of enzymes that catalyze the cleavage of peptide linkages in proteins. This can have an undesired effect in a gelatin salad containing fruit, because proteases in the fruit can cleave the proteins that make up the structure of gelatin so that it will not set.
Jacobsen, Erica. J. Chem. Educ. 1999, 76, 624A.
Enzymes |
Proteins / Peptides
Experiments with Zeolites at the Secondary-School Level: Experience from The Netherlands  Eric N. Coker, Pamela J. Davis, Aonne Kerkstra, and Herman van Bekkum
This article describes a number of experiments that involve zeolites and are suitable for secondary-school chemistry laboratories. Students test the hardness of tap water before and after treatment with some zeolite and perform tests with a range of commercial laundry detergents containing zeolites.
Coker, Eric N.; Davis, Pamela J.; Kerkstra, Aonne; van Bekkum, Herman. J. Chem. Educ. 1999, 76, 1417.
Ion Exchange |
Catalysis |
Quantitative Analysis |
Water / Water Chemistry |
Consumer Chemistry |
Applications of Chemistry
UV Catalysis, Cyanotype Photography, and Sunscreens  Glen D. Lawrence and Stuart Fishelson
This laboratory experiment is intended for a chemistry course for non-science majors. The experiment utilizes one of the earliest photographic processes, the cyanotype process, to demonstrate UV catalysis of chemical reactions.
Lawrence, Glen D.; Fishelson, Stuart. J. Chem. Educ. 1999, 76, 1199.
Nonmajor Courses |
Photochemistry |
Catalysis
The o-Phenylenediamine-Horseradish Peroxidase System: Enzyme Kinetics in the General Chemistry Laboratory  T. M. Hamilton, A. A. Dobie-Galuska, and S. M. Wietstock
The purpose of the experiment is to measure the kinetic parameters in the oxidative coupling reaction of o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), a reaction catalyzed by the enzyme horseradish peroxidase (HRP).
Hamilton, Todd M.; Dobie-Galuska, A. A.; Wietstock, S. M. J. Chem. Educ. 1999, 76, 642.
Enzymes |
Kinetics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy
Immobilized Lactase in the Biochemistry Laboratory  Matthew J. Allison and C. Larry Bering
Lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit.
Allison, Matthew J.; Bering, C. Larry. J. Chem. Educ. 1998, 75, 1278.
Enzymes |
Biotechnology
Enzyme-Linked Antibodies: A Laboratory Introduction to the ELISA  Gretchen L. Anderson and Leo A. McNellis
A fast and economical laboratory exercise is presented that qualitatively demonstrates the power of enzyme-linked antibodies to detect a specific antigen. Although ELISAs are commonly used in disease diagnosis in clinical settings, this application uses biotin, covalently attached to albumin, to take advantage of readily available reagents and avoids problems associated with potentially pathogenic antigens.
Anderson, Gretchen L.; McNellis, Leo A. J. Chem. Educ. 1998, 75, 1275.
Enzymes |
Nonmajor Courses |
Medicinal Chemistry
A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  Natalie Hershlag, Ian Hurley, and Jonathan Woodward
In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter.
Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan. J. Chem. Educ. 1998, 75, 1270.
Enzymes |
Kinetics |
UV-Vis Spectroscopy |
Carbohydrates |
Applications of Chemistry
Detection of Catalysis by Taste  Robert M. Richman
The addition of Lactaid to milk will cause the milk to taste sweet due to the hydrolysis of lactose; this can be detected by students drinking milk that has been treated with this catalyst.
Richman, Robert M. J. Chem. Educ. 1998, 75, 315.
Catalysis |
Enzymes |
Food Science |
Applications of Chemistry |
Consumer Chemistry
Small-Scale Kinetic Study of the Catalyzed Decomposition of Hydrogen Peroxide  Ronald O. Ragsdale, Jan C. Vanderhooft , and Arden P. Zipp
The decomposition of hydrogen peroxide can be studied directly and quickly by determining the rate of formation of oxygen bubbles produced. This experiment, like the iodine clock reaction, provides quantitative measurements for a general chemistry course.
Ragsdale, Ronald O.; Vanderhooft , Jan C.; Zipp, Arden P. J. Chem. Educ. 1998, 75, 215.
Catalysis |
Kinetics |
Microscale Lab
A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students  Christine L. Copper and Edward Koubek
By modifying the iodine clock reaction, students can use the initial rate method to observe the role of a catalyst in a chemical reaction via activation energy calculations and evaluate a proposed mechanism. They can also determine the order with respect to each reactant and the rate constants of the noncatalyzed and catalyzed reactions.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1998, 75, 87.
Catalysis |
Kinetics |
Mechanisms of Reactions
Two Simulations for Windows: Abstract of Volume 5D, Number 1  
Enzyme Lab: A Virtual Lab for Enzyme kinetics, and Lake Study for Windows.
J. Chem. Educ. 1997, 74, 871.
Enzymes
A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach  Doris R. Kimbrough, Mary Ann Magoun, Meg Langfur
The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration. Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors.
Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg . J. Chem. Educ. 1997, 74, 210.
Catalysis |
Rate Law
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
The repeating "exploding" flask: A demonstration of heterogeneous catalysis   Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A.
This demonstration can be used to illustrate heterogeneous catalysis and thermochemistry.
Battino, Rubin; Letcher, Trevor M.; Rivett, Douglas E. A. J. Chem. Educ. 1993, 70, 1029.
Calorimetry / Thermochemistry |
Catalysis
Applications of Maxwell-Boltzmann distribution diagrams.  Peckham, Gavin D.; McNaught, Ian J.
Although Maxwell-Boltzmann distribution diagrams are intuitively appealing, care must be taken to avoid several common errors and misconceptions.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1992, 69, 554.
Thermodynamics |
Rate Law |
Catalysis
An equilibrium machine.  Sawyer, Douglas J.; Martens, Thomas E.
An equilibrium machine powered by air pressure that demonstrates the concepts of equilibrium, activation energy, and catalysis.
Sawyer, Douglas J.; Martens, Thomas E. J. Chem. Educ. 1992, 69, 551.
Equilibrium |
Catalysis |
Laboratory Equipment / Apparatus
Enzyme activity: The ping-pong ball torture analogy  Helser, Terry L.
The author uses this analogy to help students visualize and understand the effect of reaction conditions on the initial rate of an enzyme-catalyzed reaction.
Helser, Terry L. J. Chem. Educ. 1992, 69, 137.
Enzymes |
Reactions
Enzyme activity: A simple analogy   Abel, Kenton B.; Halenz, Donald R.
Presented here is a simple analogy that has helped students in our classes grasp the concept of enzyme activity
Abel, Kenton B.; Halenz, Donald R. J. Chem. Educ. 1992, 69, 9.
Enzymes
An experiment on heterogeneous catalysis  Bussi, Juan; Correa, Carlos; Coch Frugoni, Juan A.
A laboratory that looks at homogeneous catalysis of the decomposition of hydrogen peroxide in the presence of dichromate.
Bussi, Juan; Correa, Carlos; Coch Frugoni, Juan A. J. Chem. Educ. 1991, 68, 170.
Catalysis
Catalysis: New reaction pathways not just a lowering of the activation energy  Haim, Albert
The explanation that the increased rate associated with a catalyzed reaction is the result of a lowering of the activation energy cannot always be correct.
Haim, Albert J. Chem. Educ. 1989, 66, 935.
Catalysis |
Rate Law
Obtaining the Corning catalytic combustor: A low-cost method to demonstrate catalysis  Brodemus, John S.
Corning Glassworks is making the Corning Catalytic Combuster Demo Kit available to teachers.
Brodemus, John S. J. Chem. Educ. 1989, 66, 768.
Laboratory Equipment / Apparatus |
Catalysis
Substitution of volumetric for gravimetric methods and other improvements in a new molar volume-molar mass experiment  Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S.
Improvements on an earlier procedure for the quantitative decomposition of 3% hydrogen peroxide to oxygen and water.
Bedenbaugh, John H.; Bedenbaugh, Angela O.; Heard, Thomas S. J. Chem. Educ. 1989, 66, 679.
Gravimetric Analysis |
Enzymes |
Stoichiometry |
Titration / Volumetric Analysis
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
Demonstration of chemical inhibition  Cooke, David O.
This demonstration convincingly shows shows the effect of an inhibitor on a chemical system.
Cooke, David O. J. Chem. Educ. 1988, 65, 68.
Catalysis |
Reactions
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
Enzyme technology: A practical topic in basic chemical education   Grunwald, Peter
This article elucidates how a new important field of development and research like biotechnology can be integrated into a normal chemistry course.
Grunwald, Peter J. Chem. Educ. 1986, 63, 775.
Enzymes |
Catalysis |
Enrichment / Review Materials |
Biotechnology
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Biochemistry off the shelf  Wilson, Jerry L.
Rather than using animal sources for biochemistry experiments, non-animal sources are inexpensive, readily available, and require no special storage.
Wilson, Jerry L. J. Chem. Educ. 1985, 62, 796.
Enzymes |
Carbohydrates |
Lipids |
Metabolism
A useful model for the "lock and key" analogy  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
A model that nicely illustrates this principle is the "SOMA" puzzle cube.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1984, 61, 967.
Molecular Modeling |
Molecular Properties / Structure |
Molecular Recognition |
Enzymes
Influence of temperature and catalyst on the decomposition of potassium chlorate in a simple DTA apparatus  Wiederholt, Erwin
The authors describe the use of a simple DTA-apparatus in demonstrating the catalytic effects of MnO2 and Al2O3 on the decomposition temperature of KClO3.
Wiederholt, Erwin J. Chem. Educ. 1983, 60, 431.
Kinetics |
Instrumental Methods |
Catalysis |
Reactions |
Rate Law
The preparation and properties of polybutadiene (jumping rubber)  Shakhashiri, Bassam Z.; Dirreen, Glen E.; Williams, Lloyd C.
A catalyst is added to a pop bottle containing 1,3-butadiene in pentane; after being shaken, the mixture sets to gel and the contents erupt from the bottle within two minutes.
Shakhashiri, Bassam Z.; Dirreen, Glen E.; Williams, Lloyd C. J. Chem. Educ. 1980, 57, 738.
Catalysis
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
Catalysis  Kolb, Doris
Definitions for and history of catalysts, speeding up chemical reactions, enzymes, and industrial catalysis.
Kolb, Doris J. Chem. Educ. 1979, 56, 743.
Catalysis |
Rate Law |
Enzymes |
Industrial Chemistry
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
The burning sugar cube  Smith, Douglas D.
A wide range of powdered solids can be used to produce a burning sugar cube.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 552.
Carbohydrates |
Oxidation / Reduction |
Reactions |
Catalysis
Tyrosinase. An introductory experiment with enzymes  Friedman, Michael E.; Daron, Harlow H.
Uses potatoes, apples, bananas, and mushrooms of sources of tyrosinase, which turns brown melanin when exposed to oxygen.
Friedman, Michael E.; Daron, Harlow H. J. Chem. Educ. 1977, 54, 256.
Enzymes |
Catalysis
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Questions [and] Answers  Campbell, J. A.
284-289. Six questions and their answers on practical applications of chemistry.
Campbell, J. A. J. Chem. Educ. 1977, 54, 161.
Medicinal Chemistry |
Enzymes |
Nuclear / Radiochemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry |
Enrichment / Review Materials
Questions [and] Answers  Campbell, J. A.
216-219. Four questions applying chemistry and their solutions.
Campbell, J. A. J. Chem. Educ. 1975, 52, 807.
Enrichment / Review Materials |
Enzymes |
Lipids |
Metabolism |
Fatty Acids
A new chemistry program for nursing and allied health students  Stanitski, Conrad L.; Sears, Curtis T., Jr.
Outlines and discusses the topics considered in a chemistry program for nursing and allied health students.
Stanitski, Conrad L.; Sears, Curtis T., Jr. J. Chem. Educ. 1975, 52, 226.
Nonmajor Courses |
Applications of Chemistry |
Medicinal Chemistry |
Oxidation / Reduction |
Catalysis |
Acids / Bases |
pH |
Metabolism |
Drugs / Pharmaceuticals
Questions [and] Answers  Campbell, J. A.
175-179. Five ecological chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 171.
Enrichment / Review Materials |
Photochemistry |
Catalysis |
Enzymes
The bombardier beetle  Plumb, Robert C.; Erickson, Karen L.
The chemistry behind the bombardier beetle's chemical defenses illustrates the principles of reaction rates, catalysis, and laboratory safety.
Plumb, Robert C.; Erickson, Karen L. J. Chem. Educ. 1972, 49, 705.
Applications of Chemistry |
Natural Products |
Rate Law |
Catalysis |
Oxidation / Reduction |
Aromatic Compounds
The hydrolysis of 4-nitrophenol phosphate. A freshman class investigation  Hopkins, Harry P., Jr.; Mather, Jane H.
A study of the hydrolysis of 4-nitrophenol phosphate is made the basis of a biochemistry-oriented quarter in freshman chemistry; after completing the simple hydrolysis studies, the student proceeds to investigate the enzymatic hydrolysis of 4-nitrophenol phosphate.
Hopkins, Harry P., Jr.; Mather, Jane H. J. Chem. Educ. 1972, 49, 126.
Reactions |
pH |
Esters |
Enzymes |
Catalysis
A demonstration of enzyme activity for the "Sceptical Chymist"  Fried, Rainer; Howse, Margaret
A simple laboratory or demonstration that illustrates the nature and fundamental properties of enzymes through a color change.
Fried, Rainer; Howse, Margaret J. Chem. Educ. 1971, 48, 847.
Enzymes |
Rate Law
Miscellaneous  Alyea, Hubert N.
These twelve overhead projection demonstrations include rates of reactions, clock reactions, the effect of temperature and the presence of a catalyst on the decomposition of hydrogen peroxide, the relationship between viscosity and temperature, equilibria, solubility product, and the common ion effect.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A437.
Oxidation / Reduction |
Kinetics |
Rate Law |
Reactions |
Acids / Bases |
Catalysis |
Equilibrium |
Precipitation / Solubility
Catalysis demonstrations with Cr2O3  Briggs, Thomas S.
Cr2O3 is used as a catalyst in the oxidation of nonflammable substances such as glycerine and glacial acetic acid.
Briggs, Thomas S. J. Chem. Educ. 1970, 47, A206.
Oxidation / Reduction |
Reactions |
Catalysis
Simple method for demonstrating an enzymatic reaction  Tang, Chung-Shih
Uses taste sensations of papaya seeds under varying conditions to demonstrate an enzymatic reaction.
Tang, Chung-Shih J. Chem. Educ. 1970, 47, 692.
Enzymes |
Proteins / Peptides |
Food Science |
Reactions |
Consumer Chemistry |
Applications of Chemistry
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Catalysis and cleanliness  Johnston, Joseph E.
A catalytic reaction demonstrates that it is practically impossible to thoroughly clean a piece of glassware.
Johnston, Joseph E. J. Chem. Educ. 1969, 46, A547.
Catalysis
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Negative catalyst (the author replies)  Young, Jay A.
The author addressed criticism of his earlier description of a negative catalyst.
Young, Jay A. J. Chem. Educ. 1969, 46, 186.
Catalysis
Negative catalyst  Singh, Hakam; Mittal, K. L.
The author examines the description of a negative catalyst offered in an earlier issue of the Journal.
Singh, Hakam; Mittal, K. L. J. Chem. Educ. 1969, 46, 185.
Catalysis
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
VI - Biochemistry in the introductory college chemistry course  Sturtevant, Julian M.
To whatever extent one wishes in the introductory chemistry course to stimulate students' interest in the subject, it seems important to include illustrations of the role chemical progress plays in biology.
Sturtevant, Julian M. J. Chem. Educ. 1967, 44, 184.
Enzymes |
Proteins / Peptides |
Bioenergetics
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
The burning sugar cube: Still unexplained?  Doty, Gene
This brief note discusses possible explanations for the melting of a sugar cube where another rubbed with cigarette ashes burns.
Doty, Gene J. Chem. Educ. 1964, 41, 244.
Catalysis |
Oxidation / Reduction |
Phases / Phase Transitions / Diagrams
Homogeneous catalysis: A reexamination of definitions  Leisten, J. A.
Considers common questions regarding the action of catalysts by examining various typical examples.
Leisten, J. A. J. Chem. Educ. 1964, 41, 23.
Catalysis |
Reactions |
Acids / Bases
Enzymes and metaphor  Asimov, Isaac
Asimov provides a series of metaphors useful in helping students to understand the action of enzymes and catalysts in general.
Asimov, Isaac J. Chem. Educ. 1959, 36, 535.
Enzymes |
Catalysis