TIGER

Journal Articles: 180 results
Helping Students Make Sense of Logarithms and Logarithmic Relationships  Ed DePierro, Fred Garafalo, and Rick Toomey
This paper summarizes difficulties that chemistry students at all levels exhibit when translating, manipulating, and interpreting mathematical expressions containing logarithms, and offers approaches useful in helping students to overcome those difficulties.
DePierro, Ed; Garafalo, Fred; Toomey, Rick T. J. Chem. Educ. 2008, 85, 1226.
Kinetics |
Mathematics / Symbolic Mathematics |
Constructivism
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Disorder and Chaos: Developing and Teaching an Interdisciplinary Course on Chemical Dynamics  Steven G. Desjardins
Describes an interdisciplinary course for nonscience majors that introduces ideas about mathematical modeling using examples based on pendulums, chemical kinetics, and population dynamics. Students learn about the nature of measurement and prediction through the use of spreadsheet software for the solution of equations and experimental data collection.
Desjardins, Steven G. J. Chem. Educ. 2008, 85, 1078.
Kinetics |
Mathematics / Symbolic Mathematics |
Nonmajor Courses
Phenolphthalein—Pink Tornado Demonstration  Bruce R. Prall
This demonstration uses the vortex generated by a spinning magnetic stir bar to demonstrate Le Châtelier's principle as it applies to the phenolphthalein equilibrium in water and provides an excellent opportunity to discuss limiting and excess reagents.
Prall, Bruce R. J. Chem. Educ. 2008, 85, 527.
Acids / Bases |
Equilibrium |
Kinetics |
pH
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
Reaction Order Ambiguity in Integrated Rate Plots  Joe Lee
This article provides a theoretical and statistical justification for the necessity of monitoring a reaction to a substantial fraction of completion if integrated rate plots plots are to yield unambiguous orders.
Lee, Joe. J. Chem. Educ. 2008, 85, 141.
Chemometrics |
Kinetics |
Rate Law
Similarity and Difference in the Behavior of Gases: An Interactive Demonstration  Guy Ashkenazi
A demonstration that concurrently exposes differences and similarities in the behavior of two different gases has been designed to bridge the gap between students' understanding at the algorithmicmacroscopic and conceptualmicroscopic levels.
Ashkenazi, Guy. J. Chem. Educ. 2008, 85, 72.
Gases |
Kinetics |
Learning Theories
The Glyoxal Clock Reaction  Julie B. Ealy, Alexandra Rodriguez Negron, Jessica Stephens, Rebecca Stauffer, and Stanley D. Furrow
The glyoxal clock reaction has been adapted to a general chemistry kinetics lab to determine the order of the reacting species using a Calculator Based Laboratory or LabPro equipment.
Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D. J. Chem. Educ. 2007, 84, 1965.
Aldehydes / Ketones |
Dyes / Pigments |
Kinetics |
Lewis Acids / Bases |
Mechanisms of Reactions |
Rate Law |
Reactions
The Chemistry of Paper Preservation  Henry A. Carter
This article examines the applications of chemistry to paper preservation. The acid-catalyzed hydrolysis of cellulose accounts for the deterioration of paper in library books and other written records. To combat this threat to our written heritage, new permanent papers have been developed that are relatively chemically stable and undergo a very slow rate of deterioration.
Carter, Henry A. J. Chem. Educ. 2007, 84, 1937.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Free Radicals |
Gas Chromatography |
HPLC |
pH |
Kinetics |
Rate Law
Visualizing the Transition State: A Hands-on Approach to the Arrhenius Equation  Thomas S. Kuntzleman, Matthew S. Swanson, and Deborah K. Sayers
Pennies and dice are used to simulate the kinetics of two irreversible "reactions" with a hands-on, Monte Carlo approach. Arrhenius plots of the data generated yield activation energies comparable to assigned values and pre-exponential factors close to what would be expected based on the probability of a "reactant" achieving the correct orientation for conversion into "product". A comparison of the values obtained for the pre-exponential factors for the different simulations allows students to semi-quantitatively discuss the orientational requirement that is contained within this factor.
Kuntzleman, Thomas S.; Swanson, Matthew S.; Sayers, Deborah K. J. Chem. Educ. 2007, 84, 1776.
Kinetics |
Rate Law
A Student Laboratory Experiment Based on the Vitamin C Clock Reaction  Ed Vitz
Describes an adaptation of the vitamin C clock reaction to a student laboratory experiment in which the orders with respect to peroxide and iodide, the rate constant, and the activation energy are determined by the method of initial rates.
Vitz, Ed. J. Chem. Educ. 2007, 84, 1156.
Consumer Chemistry |
Kinetics |
Mechanisms of Reactions |
Rate Law
An Inexpensive Kinetic Study: The Reaction of FD&C Red #3 (Erythrosin B) with Hypochlorite  Maher M. Henary and Arlene A. Russell
Students use a desktop visible spectrophotometer to quantitatively follow the rate of disappearance of FD&C Red #3 with hypochlorite. The first-order reaction in both dye and bleach yields simple data that students can easily process and graph using spreadsheet software to obtain the rate constant and the rate law.
Henary, Maher M.; Russell, Arlene A. J. Chem. Educ. 2007, 84, 480.
Dyes / Pigments |
Kinetics |
Rate Law |
UV-Vis Spectroscopy
Applications of Reaction Rate  Kevin Cunningham
This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. The assignment is designed to develop and assess a number of valuable skills and understandings, including the ability to write effectively.
Cunningham, Kevin. J. Chem. Educ. 2007, 84, 430.
Catalysis |
Enzymes |
Kinetics |
Rate Law |
Reactions |
Applications of Chemistry
A Kinetics Demonstration Involving a Green–Red–Green Color Change Resulting from a Large-Amplitude pH Oscillation  Brian W. Pfennig and Richard T. Roberts
Describes an oxidationreduction, clock reaction involving iodate, sulfite, and thiosulfate that produces large swings in pH, causing a combination of acidbase indicators to effect greenredgreen color changes.
Pfennig, Brian W.; Roberts, Richard T. J. Chem. Educ. 2006, 83, 1804.
Acids / Bases |
Dyes / Pigments |
Kinetics |
Oxidation / Reduction
New Highlights on Analyzing First-Order Kinetic Data of the Peroxodisulfate–Iodide System at Different Temperatures  J. Yperman and W. J. Guedens
A pseudo-first order kinetic experiment examining the peroxodisulfateiodide system is executed at different temperatures, making it possible to calculate the activation energy of this reaction.
Yperman, J.; Guedens, W. J. J. Chem. Educ. 2006, 83, 641.
Kinetics |
Laboratory Computing / Interfacing |
Oxidation / Reduction |
Rate Law |
Thermodynamics
An Enzyme Kinetics Experiment Using Laccase for General Chemistry   Yaqi Lin and Patrick M. Lloyd
This article describes the use of laccase, an oxidoreductase enzyme, to study the effects of enzyme catalysts on reaction rates.
Lin, Yaqi; Lloyd, Patrick M. J. Chem. Educ. 2006, 83, 638.
Aldehydes / Ketones |
Bioanalytical Chemistry |
Catalysis |
Enzymes |
Kinetics |
UV-Vis Spectroscopy
The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions  John E. Baur and Melinda B. Baur
An ultrasonic bath is used to accelerate the rate at which carbonated beverages equilibrate with the atmosphere. The resulting fountain, which can reach heights in excess of 3 meters, is a dramatic demonstration of the solubility of gases in liquids.
Baur, John E.; Baur, Melinda B. J. Chem. Educ. 2006, 83, 577.
Aqueous Solution Chemistry |
Kinetics |
Physical Properties |
Solutions / Solvents |
Precipitation / Solubility
Textbook Deficiencies: Ambiguities in Chemical Kinetics Rates and Rate Constants  Keith T. Quisenberry and Joel Tellinghuisen
Recommends that textbook authors make it clear that (i) the reaction rate and rate constant cannot be defined unambiguously without explicitly stating the reaction for which they apply and therefore (ii) the relation between the half-life, which is a physical property of the reaction system, and the rate constant depends upon how the reaction is written.
Quisenberry, Keith T.; Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 510.
Kinetics |
Rate Law
Steel Wool and Oxygen: How Constant Should a Rate Constant Be?  Michiel Vogelezang
In the article Steel Wool and Oxygen: A Look at Kinetics, James Gordon and Katherine Chancey describe an experiment about the kinetics between iron and oxygen. Like all good experiments this one is easy to carry out and produces good results. However, the experiment can even have a greater impact with only a small addition.
Vogelezang, Michiel. J. Chem. Educ. 2006, 83, 214.
Rate Law |
Kinetics |
Oxidation / Reduction
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy  Kestutis Bendinskas, Christopher DiJiacomo, Allison Krill, and Ed Vitz
A two-week biochemistry experiment was introduced in the second-semester general chemistry laboratory to study the oxidation of ethanol in vitro in the presence of the enzyme alcohol dehydrogenase (ADH). This reaction should pique student interest because the same reaction also occurs in human bodies when alcoholic drinks are consumed. Procedures were developed to follow the biochemical reaction by visible spectroscopy and to avoid specialized equipment. The effect of substrate concentration on the rate of this enzymatic reaction was investigated during the first week. The effects of temperature, pH, the specificity of the enzyme to several substrates, and the enzyme's inhibition by heavy metals were explored during the second week.
Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed. J. Chem. Educ. 2005, 82, 1068.
Enzymes |
Kinetics |
Oxidation / Reduction |
Reactions |
UV-Vis Spectroscopy |
Alcohols |
Biophysical Chemistry |
Food Science
Steel Wool and Oxygen: A Look at Kinetics  James Gordon and Katherine Chancey
An experimental method is described to study the kinetics of the reaction of the iron in steel wool with molecular oxygen. A calculator-based data collection system is used with an oxygen gas sensor to determine the order of the reaction with respect to oxygen. Using the graphical method, students determine that the reaction follows first-order kinetics with respect to oxygen.
Gordon, James; Chancey, Katherine. J. Chem. Educ. 2005, 82, 1065.
Atmospheric Chemistry |
Gases |
Kinetics |
Oxidation / Reduction
An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps  Laura D. Jennings and Steven W. Keller
An interactive classroom activity is described that allows visualization of microscopic reaction mechanisms via the macroscopic process of unwrapping and eating chocolate candies.
Jennings, Laura D.; Keller, Steven W. J. Chem. Educ. 2005, 82, 549.
Reactions |
Rate Law |
Kinetics
A Simple, Inexpensive Water-Jacketed Cuvette for the Spectronic 20  Jonathan E. Thompson and Jason Ting
A simple, inexpensive, water-jacketed cuvette for the Spectronic 20 is described. The cuvette and associated flow system can easily be constructed from materials commonly found in an undergraduate chemistry laboratory. As a demonstration of the cuvette's utility, we used the cuvette for the determination of the activation energy for the reaction between crystal violet and hydroxide ion. However, the cuvette may prove useful in a variety of applications in which a sample must be thermostated within a spectrophotometer.
Thompson, Jonathan E.; Ting, Jason. J. Chem. Educ. 2004, 81, 1341.
Laboratory Equipment / Apparatus |
Kinetics |
Spectroscopy
Using a Datalogger To Determine First-Order Kinetics and Calcium Carbonate in Eggshells  Martin M. F. Choi and Pui Shan Wong
The purpose of this article is to demonstrate the use of a datalogger in conjunction with a pressure sensor to monitor the generation of carbon dioxide when calcium carbonate is in contact with hydrochloric acid.
Choi, Martin M. F.; Wong, Pui Shan. J. Chem. Educ. 2004, 81, 859.
Kinetics |
Food Science |
Microscale Lab |
Quantitative Analysis |
Laboratory Computing / Interfacing
Kinetics of the Osmotic Hydration of Chickpeas  Gabriel Pinto and Ali Esin
An experiment examining the swelling of chickpeas as they are soaked in water is presented to introduce students to topics such as osmotic flow, mass transfer, diffusion, kinetics of hydration, modeling, and estimation of activation energy.
Pinto, Gabriel; Esin, Ali. J. Chem. Educ. 2004, 81, 532.
Kinetics |
Water / Water Chemistry |
Food Science |
Transport Properties
Using a Graphing Calculator To Determine a First-Order Rate Constant: Author Reply  José E. Cortés-Figueroa
When technology is used to help with mathematical calculations, the emphasis must be on the concepts being learned rather than simply the procedures. In our approach we are attempting to help students learn more about the concept and also to attain data analysis skills they will need in the future.
Cortés-Figueroa, José E. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
Using a Graphing Calculator To Determine a First-Order Rate Constant  Todd P. Silverstein
The authors use the graphing calculator to estimate the infinity reading from linearized kinetics data, and then they use linearized semi-log data to determine the first-order rate constant.
Silverstein, Todd P. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
A Modular Laser Apparatus for Polarimetry, Nephelometry, and Fluorimetry in General Chemistry  Scott A. Darveau, Jessica Mueller, April Vaverka, Cheri Barta, Anthony Fitch, Jessica Jurzenski, and Yvonne Gindt
We present an apparatus suitable for multiple uses in the general chemistry laboratory including polarimetry, fluorescence, and nephelometry. The open design of the instrument also decreases the chance that students will contract the "black-box syndrome" that seems to develop when using instruments that only provide the final data in an experiment without showing how the measurements are obtained.
Darveau, Scott A.; Mueller, Jessica; Vaverka, April; Barta, Cheri; Fitch, Anthony; Jurzenski, Jessica; Gindt, Yvonne. J. Chem. Educ. 2004, 81, 401.
Fluorescence Spectroscopy |
Kinetics |
Laboratory Equipment / Apparatus |
Lasers |
Spectroscopy |
Proteins / Peptides |
Water / Water Chemistry
Promoting Graphical Thinking: Using Temperature and a Graphing Calculator To Teach Kinetics Concepts  José E. Cortés-Figueroa and Deborah A. Moore-Russo
A Calculator-Based Laboratory (CBL) System, a graphing calculator, and a cooling piece of metal are used in a classroom demonstration to teach key concepts of a first-order chemical reaction. This activity promotes graphical thinking and permits student-centered instruction where the students explore concepts and discover how simple mathematical equations model observable facts (data).
Cortés-Figueroa, José E.; Moore-Russo, Deborah A. J. Chem. Educ. 2004, 81, 69.
Kinetics |
Rate Law
Don't Be Tricked by Your Integrated Rate Plot  Edward Urbansky
Reply to comments on original article.
Urbansky, Edward. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Reaction order Ambiguity  Sue Le Vent
Integrated rate equations (for constant reaction volume) may be given in terms of relative reactant concentration, C (= concentration/initial concentration) and relative time, T (= time/half-life); in these forms, the equations are independent of rate constants and initial concentrations.
Le Vent, Sue. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Flipping Pennies and Burning Candles: Adventures in Kinetics  Michael J. Sanger
Activity in which students collect data to determine whether two processes, flipping pennies and burning candles, follow zeroth- or first-order rate laws.
Sanger, Michael J. J. Chem. Educ. 2003, 80, 304A.
Kinetics |
Rate Law
Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology  Dorota A. Abramovitch, Latrice K. Cunningham, and Mitchell R. Litwer
Using a sensor to measure changes in the pressure of oxygen produced by the decomposition of hydrogen peroxide as a means of analyzing this reaction and factors that affect its rate.
Abramovitch, Dorota A.; Cunningham, Latrice K.; Litwer, Mitchell R. J. Chem. Educ. 2003, 80, 790.
Gases |
Laboratory Computing / Interfacing |
Kinetics
Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide  Tiffany A. Vetter and D. Philip Colombo Jr.
Determining the order and rate constant of the catalyzed decomposition of hydrogen peroxide using AOSEPT contact lens cleaning and a platinum-coated AOSEPT disc.
Vetter, Tiffany A.; Colombo, D. Philip, Jr. J. Chem. Educ. 2003, 80, 788.
Catalysis |
Consumer Chemistry |
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
Incomplete Combustion with Candle Flames: A Guided-Inquiry Experiment in the First-Year Chemistry Lab  Joseph MacNeil and Lisa Volaric
Investigating a burning candle as an introduction to incomplete combustion, thermodynamics, kinetics, and gas chromatography.
MacNeil, Joseph; Volaric, Lisa. J. Chem. Educ. 2003, 80, 302.
Chromatography |
Gases |
Reactions |
Oxidation / Reduction |
Thermodynamics |
Kinetics |
Gas Chromatography
A Photolithography Laboratory Experiment for General Chemistry Students   Adora M. Christenson, Gregory W. Corder, Thomas C. DeVore, and Brian H. Augustine
A photolithography laboratory experiment for general chemistry that introduces materials science and the production of microfabricated devices.
Christenson, Adora M.; Corder, Gregory W.; DeVore, Thomas C.; Augustine, Brian H. J. Chem. Educ. 2003, 80, 183.
Kinetics |
Materials Science |
Photochemistry |
Spectroscopy
Depletion: A Game with Natural Rules for Teaching Reaction Rate Theory  Donald J. Olbris and Judith Herzfeld
Game that reinforces central concepts of rate theory through simulation.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 2002, 79, 1232.
Kinetics |
Nonmajor Courses |
Rate Law |
Enrichment / Review Materials |
Catalysis
Rate Law Determination of Everyday Processes  Michael J. Sanger, Russell A. Wiley Jr., Erwin W. Richter, and Amy J. Phelps
Laboratory to determine whether burning a candle and flipping pennies follow zero-, first-, or second-order rate laws.
Sanger, Michael J.; Wiley, Russell A., Jr.; Richter, Erwin W.; Phelps, Amy J. J. Chem. Educ. 2002, 79, 989.
Kinetics |
Rate Law
Factors Affecting Reaction Kinetics of Glucose Oxidase  Kristin A. Johnson
Demonstration based on a biochemical kinetics experiment in which the rate of reaction varies with the enzyme concentration, substrate concentration, substrate used in the reaction, and temperature.
Johnson, Kristin A. J. Chem. Educ. 2002, 79, 74.
Enzymes |
Kinetics |
Proteins / Peptides |
Carbohydrates |
Catalysis |
Rate Law
Putting UV-Sensitive Beads to the Test  Terre Trupp
Explores the temperature behavior of UV-sensitive beads and investigates the effectiveness of sunscreens.
Trupp, Terre. J. Chem. Educ. 2001, 78, 648A.
Atomic Properties / Structure |
Kinetics |
Applications of Chemistry |
Consumer Chemistry |
Photochemistry
A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater  Barbara A. Balko and Paul G. Tratnyek
Procedure in which students investigate the chemistry of iron-permeable reactive barriers and their application to the remediation of contaminated groundwater.
Balko, Barbara A.; Tratnyek, Paul G. J. Chem. Educ. 2001, 78, 1661.
Kinetics |
Oxidation / Reduction |
Water / Water Chemistry |
Metals |
Applications of Chemistry |
Aqueous Solution Chemistry
Visualizing the Photochemical Steady State with UV-Sensitive Beads (re J. Chem. Educ. 2001, 77, 648A-648B)  Jerry A. Bell
Analysis of the temperature dependence of the color intensity of UV-sensitive beads.
Bell, Jerry A. J. Chem. Educ. 2001, 78, 1594.
Atomic Properties / Structure |
Kinetics |
Photochemistry |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot!  Edward T. Urbansky
Using integrated rate plots to determine reaction order.
Urbansky, Edward T. J. Chem. Educ. 2001, 78, 921.
Kinetics |
Mechanisms of Reactions |
Learning Theories |
Chemometrics |
Rate Law
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
Every Year Begins a Millennium  Jerry A. Bell
This article outlines a series of demonstrations and their contexts, leading to recommendations about what we teach and how we teach.
Bell, Jerry A. J. Chem. Educ. 2000, 77, 1098.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Kinetics |
Learning Theories
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
Modeling Chemical Processes in Seawater Aquaria to Illustrate Concepts in Undergraduate Chemistry  Gordan Grguric
This paper describes three exercises which can be used in a variety of undergraduate chemistry curricula: (i) determining the salts and their amounts needed to prepare a given volume of artificial seawater, (ii) modeling aqueous carbonate equilibria, to calculate pH and alkalinity shifts through additions of chemicals, and (iii) modeling chemical kinetics involved in aqueous ozone-bromine reactions, to predict the type and extent of disinfection by-products.
Grguric, Gordan. J. Chem. Educ. 2000, 77, 495.
Aqueous Solution Chemistry |
Equilibrium |
Kinetics |
Applications of Chemistry
Experiments with Aspirin  Londa L. Borer and Edward Barry
Experiments include (i) synthesis, purification, and characterization of aspirin by mp and TLC, (ii) percentage composition of a commercial aspirin tablet by titration, (iii) kinetics of the hydrolysis of aspirin to salicylic acid under various conditions, (iv) synthesis and characterization of copper(II) aspirinate and copper(II) salicylate, and (v) reaction of copper(II) aspirinate in aqueous solution.
Borer, Londa L.; Barry, Edward. J. Chem. Educ. 2000, 77, 354.
Synthesis |
Kinetics |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Aromatic Compounds
The Blue Bottle Reaction as a General Chemistry Experiment on Reaction Mechanisms  Steven C. Engerer and A. Gilbert Cook
Using the scientific method (observe, question, hypothesize, experiment, repeat) students propose and test possible reaction mechanisms for the methylene blue-catalyzed oxidation of dextrose with its dramatic color change. Students are led to discover the three-step mechanism through a series of questions.
Engerer, Steven C.; Cook, A. Gilbert. J. Chem. Educ. 1999, 76, 1519.
Aqueous Solution Chemistry |
Kinetics |
Mechanisms of Reactions
Lightstick Kinetics  Charles E. Roser and Catherine L. McCluskey
This experiment determines the energy of activation of the luminescent reaction in a lightstick by measuring the light intensity relative to temperature using Vernier light and temperature sensors, a Texas Instruments CBL interface, and a TI-82/83 graphing calculator.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 1514.
Kinetics |
Photochemistry
Old Rule of Thumb and the Arrhenius Equation  I. A. Leenson
The empirical rule (doubling of the reaction rate upon every 10 increase in temperature) is discussed on the basis of the Arrhenius equation and experimental data. A graph is plotted that shows the applicability limits of the empirical rule in terms of activation energies and temperatures.
Leenson, Ilya A. J. Chem. Educ. 1999, 76, 1459.
Kinetics
The o-Phenylenediamine-Horseradish Peroxidase System: Enzyme Kinetics in the General Chemistry Laboratory  T. M. Hamilton, A. A. Dobie-Galuska, and S. M. Wietstock
The purpose of the experiment is to measure the kinetic parameters in the oxidative coupling reaction of o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), a reaction catalyzed by the enzyme horseradish peroxidase (HRP).
Hamilton, Todd M.; Dobie-Galuska, A. A.; Wietstock, S. M. J. Chem. Educ. 1999, 76, 642.
Enzymes |
Kinetics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy
Using CBL Technology and a Graphing Calculator To Teach the Kinetics of Consecutive First-Order Reactions  José E. Cortés-Figueroa and Deborah A. Moore
This work proposes a demonstration to introduce first-order reactions using the CBL system. It then presents the analysis of two consecutive first-order reactions. The values of the rate constants that govern each reaction's rate are determined using the graphing and statistical capabilities of a TI-83 calculator.
Cortés-Figueroa, José E.; Moore, Deborah A. J. Chem. Educ. 1999, 76, 635.
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
A New Twist on the Iodine Clock Reaction: Determining the Order of a Reaction  Xavier Creary and Karen M. Morris
The iodine clock reaction can be used to illustrate the kinetic order of a reaction, and an overhead projector demonstration was developed three years ago for general chemistry classes at the University of Notre Dame showing this concept.
Creary, Xavier; Morris, Karen M. J. Chem. Educ. 1999, 76, 530.
Aqueous Solution Chemistry |
Kinetics
Equilibrium Principles: A Game for Students  Lionel J. Edmonson Jr. and Don L. Lewis
The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.
Edmonson, Lionel J., Jr.; Lewis, Don L. J. Chem. Educ. 1999, 76, 502.
Equilibrium |
Kinetics
Alka Seltzer Poppers: An Interactive Exploration  A. M. Sarquis and L. M. Woodward
This experiment illustrates concepts concerning the pressure-volume relationship of gases, solubility relationships of both gases and solids in liquids relative to temperature, the kinetics of the reaction of Alka Seltzer in water, and acid-base chemistry.
Sarquis, Arlyne M.; Woodward, L. M. J. Chem. Educ. 1999, 76, 385.
Acids / Bases |
Gases |
Kinetics |
Aqueous Solution Chemistry
The Fizz Keeper, a Case Study in Chemical Education, Equilibrium, and Kinetics  Reed Howald
The chemistry of the loss of carbonation from carbonated beverages on storage is considered. Increasing the pressure of CO2(g) will restore carbonation, but an increase in pressure adding air should not affect the equilibria. It can and does, however, affect the kinetics-the rate at which a new equilibrium is established. Thus the Fizz Keeper is effective for storage of resealed pop containers for hours, but not for periods of weeks or months.
Howald, Reed. J. Chem. Educ. 1999, 76, 208.
Transport Properties |
Equilibrium |
Gases |
Kinetics |
Aqueous Solution Chemistry |
Consumer Chemistry |
Applications of Chemistry
On the Surface: Mini-Activities Exploring Surface Phenomena  
Activities listed can be used to introduce surface tension and surface area when discussing liquids and gases.
J. Chem. Educ. 1998, 75, 176A.
Surface Science |
Liquids |
Gases |
Kinetics
A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  Natalie Hershlag, Ian Hurley, and Jonathan Woodward
In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter.
Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan. J. Chem. Educ. 1998, 75, 1270.
Enzymes |
Kinetics |
UV-Vis Spectroscopy |
Carbohydrates |
Applications of Chemistry
Why the Arrhenius Equation Is Always in the "Exponentially Increasing" Region in Chemical Kinetic Studies  Harvey F. Carroll
The Arrhenius equation in chemical kinetics, k = Ae-Ea/RT, has, as T gets larger, an inflection point where it changes from an "exponentially increasing" curve to one approaching an asymptote of A. The inflection point occurs at T = Ea/2R. For any activation energy, the inflection point occurs at such a high temperature that chemical kinetic studies would not be possible. Thus, the Arrhenius equation always appears to be exponentially increasing in any chemical kinetic studies of interest.
Carroll, Harvey F. J. Chem. Educ. 1998, 75, 1186.
Kinetics
The Reaction of a Food Colorant with Sodium Hypochlorite: A Student-Designed Kinetics Experiment  Josefina Arce, Rosa Betancourt, Yamil Rivera, and Joan Pijem
The kinetics of the reaction of the food colorant FD&C Blue #1 with sodium hypochlorite (Clorox) is described in a student-designed experimental format. In this format, students are guided- by means of questions- to make decisions regarding concentration of reagents, choice of equipment, and actual laboratory procedures to be followed.
Arce, Josefina; Betancourt-Perez, Rosa; Rivera, Yamil; Pijem, Joan. J. Chem. Educ. 1998, 75, 1142.
Kinetics |
UV-Vis Spectroscopy |
Dyes / Pigments
Chemistry Time: Factors Affecting the Rate of a Chemical Reaction  
This activity can be used to introduce a unit on chemical kinetics, but it is simple enough to be used in a discussion of chemical reactions or experimental methods/procedures during the first weeks of the semester. The activity involves reacting bicarbonate with acid, a reaction with practical applications in everyday life.
J. Chem. Educ. 1998, 75, 1120A.
Kinetics |
Rate Law
Limiting Reagent and Kinetics: Social Implications and Malthus' Prediction  L. H. Holmes Jr.
Robert Malthus predicted in the early 1800s that man would outstrip his food supply. The amount of carbon on earth is the ultimate limiting reagent for the number of people the earth can have and in the sense that carbon is our "food", Malthus was right. However, the land area of the earth is a "limiting reagent" that will limit our population before carbon does. These concepts are discussed in the context of limiting reagents and chemical kinetics to show that if the rate of increase of population remains at what it is now, we have less than a thousand years to "solve" the problem.
Holmes, L. H., Jr. J. Chem. Educ. 1998, 75, 1004.
Kinetics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics  I. A. Leenson
The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century.
Leenson, I. A. J. Chem. Educ. 1998, 75, 998.
Learning Theories |
Nuclear / Radiochemistry |
Kinetics
A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students  Christine L. Copper and Edward Koubek
By modifying the iodine clock reaction, students can use the initial rate method to observe the role of a catalyst in a chemical reaction via activation energy calculations and evaluate a proposed mechanism. They can also determine the order with respect to each reactant and the rate constants of the noncatalyzed and catalyzed reactions.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1998, 75, 87.
Catalysis |
Kinetics |
Mechanisms of Reactions
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
Kinetics Studies in a Washing Bottle  John Teggins and Chris Mahaffy
The kinetics of the decomposition of hydrogen peroxide using iodide ion in aqueous solution is studied in sealed completely-filled washing bottles.
Teggins, John; Mahaffy, Chris. J. Chem. Educ. 1997, 74, 566.
Kinetics |
Aqueous Solution Chemistry |
Gases
The Coupling of Related Demonstrations to Illustrate Principles in Chemical Kinetics and Equilibrium  Richard A. Pacer
Two very simple lecture demonstrations, both involving the reaction of magnesium with one or more dilute acids, are linked together to illustrate principles in chemical kinetics and equilibrium.
Pacer, Richard A. J. Chem. Educ. 1997, 74, 543.
Learning Theories |
Acids / Bases |
Equilibrium |
Kinetics |
Rate Law |
Reactions
Dice Shaking as an Analogy for Radioactive Decay and First Order Kinetics  Emeric Schultz
An experiment involving the shaking of sets of different sided dice is described. Dice of 4, 6, 8, 10, 12 and 20 sides are readily available. This experiment serves as an easily understood analogy for radioactive decay and for the more general case of first order kinetics.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 505.
Kinetics |
Nuclear / Radiochemistry
Inflation Rates, Car Devaluation, and Chemical Kinetics  Lionello Pogliani, Màrio N. Berberan-Santos
The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions.
Pogliani, Lionello; Berberan-Santos, Màrio N. J. Chem. Educ. 1996, 73, 950.
Kinetics |
Rate Law
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Kinetics of Chemical Reactions: A Low-Cost and Simple Appartus  Papageorgiou, G.; Ouzounis, K.; Xenos, J.
Description, applications, and experiments for a simple and inexpensive apparatus to help students understand kinetics.
Papageorgiou, G.; Ouzounis, K.; Xenos, J. J. Chem. Educ. 1994, 71, 647.
Laboratory Equipment / Apparatus |
Reactions |
Kinetics
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
The activation energy of a slap bracelet   Kramer, F. Axtell.
This accessory/toy can be used to help students understand activation energy.
Kramer, F. Axtell. J. Chem. Educ. 1993, 70, 1002.
Kinetics |
Reactions |
Calorimetry / Thermochemistry
Photodegradation of methylene blue: Using solar light and semiconductor (TiO2)  Nogueira, Raquel F. P.; Jardim, Wilson F.
An experiment that can be used to introduce or explore concepts such as photochemistry, semiconductors, and kinetics.
Nogueira, Raquel F. P.; Jardim, Wilson F. J. Chem. Educ. 1993, 70, 861.
Semiconductors |
Photochemistry |
Kinetics |
Catalysis |
MO Theory
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Monitoring self-association of a hydrophobic peptide with high performance liquid chromatography: An undergraduate kinetic experiment using the antibiotic gramicidin A  Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin
The authors propose a kinetic experiment that uses high performance liquid chromatography to determine the rate and equilibrium constants in a very simple manner, and separate the molecular species under study.
Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin J. Chem. Educ. 1992, 69, A113.
HPLC |
Kinetics |
Proteins / Peptides |
Rate Law |
Equilibrium
Simple and inexpensive kinetics: A student laboratory experiment and demonstration   Erwin, David K.
Laboratory experimentation, as well as in-class demonstration, involving the study of chemical kinetics can be performed using this safe, simple, and inexpensive apparatus. This apparatus requires only that systems to be studied must produce a gaseous product that can displace water.
Erwin, David K. J. Chem. Educ. 1992, 69, 926.
Kinetics |
Qualitative Analysis |
Quantitative Analysis |
Rate Law |
Laboratory Equipment / Apparatus
Three methods for studying the kinetics of the halogenation of acetone.  Birk, James P.; Walters, David L.
Three methods for carrying out a kinetic study of the reaction between propanone and elemental iodine.
Birk, James P.; Walters, David L. J. Chem. Educ. 1992, 69, 585.
Aldehydes / Ketones |
Kinetics |
Spectroscopy |
Rate Law
Some provocative opinions on the terminology of chemical kinetics  Reeve, John C.
Textbooks perpetuate a misunderstanding to students that reaction rates are inherent to the reaction, rather than being the product of experiments.
Reeve, John C. J. Chem. Educ. 1991, 68, 728.
Kinetics |
Rate Law
A study of some 2-chloro-2-methylpropane kinetics using a computer interface  Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot
Examining the effects of a few variables on the rate of a chemical reaction using specialized software.
Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot J. Chem. Educ. 1991, 68, 609.
Kinetics |
Rate Law |
Acids / Bases |
Laboratory Computing / Interfacing
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics
Ants and chemical kinetics  Myers, R. Thomas
Data regarding the speed of ants at various temperatures are amenable to standards treatment on chemical kinetics.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 761.
Kinetics |
Rate Law
A simple second-order kinetics experiment  Weiss, Hilton M.; Touchette, Kim
The reaction studied in this experiment is the (reversible) dimerization of 2,5-dimethyl-3,4-diphenylcyclopentadienone; the monomer is colored while the dimer is not, so monitoring the reaction with a simple spectrophotometer provides the concentration of the monomer and therefore the rate of its disappearance.
Weiss, Hilton M.; Touchette, Kim J. Chem. Educ. 1990, 67, 707.
Kinetics |
Spectroscopy |
Aromatic Compounds
Reduction of permanganate: A kinetics demonstration for general chemistry  Steffel, Margaret J.
Using the reduction of MnO4- to Mn2+ in aqueous solution to demonstrate the four factors that control reaction rates in solution: the natures of the reactants, concentrations of the reactants, temperature, and the presence of a catalyst.
Steffel, Margaret J. J. Chem. Educ. 1990, 67, 598.
Kinetics |
Rate Law |
Catalysis |
Oxidation / Reduction
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Polarized light and rates of chemical reactions  Weir, John J.
This experiment provides the opportunity to introduce the principles of reaction kinetics, polarized light, and the chemistry of optically active compounds; the rate of the acid-catalyzed hydrolysis of sucrose to glucose and fructose is determined.
Weir, John J. J. Chem. Educ. 1989, 66, 1035.
Rate Law |
Kinetics |
Chirality / Optical Activity |
Carboxylic Acids
Computer simulation of chemical equilibrium  Cullen, John F., Jr.
108. The "Great Chemical Bead Game" requires no instruments and presents the concepts of equilibrium and kinetics more clearly than an experiment. [October and November Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Cullen, John F., Jr. J. Chem. Educ. 1989, 66, 1023.
Equilibrium |
Kinetics |
Rate Law
The iodine clock reaction: A surprising variant  Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L.
Substituting malonic acid for sulfuric acid.
Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L. J. Chem. Educ. 1989, 66, 852.
Reactions |
Kinetics |
Mechanisms of Reactions
Kinetics of the fading of phenolphthalein in alkaline solution  Nicholson, Lois
The fading of phenolphthalein in alkaline solution can serve as the basis for an experiment illustrating first-order kinetics.
Nicholson, Lois J. Chem. Educ. 1989, 66, 725.
Acids / Bases |
Kinetics
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
Chemical principles for the introductory laboratory, CHM 384 (Johnson, James F.)  Wegner, Carol
A comprehensive review of the title program which overviews basic techniques and concepts presented in introductory laboratory courses. Topics include: titration, equilibrium, Ksp, solubility, Beer's law, coordination complexes and first-order rates of reaction.
Wegner, Carol J. Chem. Educ. 1988, 65, A47.
Acids / Bases |
Titration / Volumetric Analysis |
UV-Vis Spectroscopy |
Equilibrium |
Solutions / Solvents |
Coordination Compounds |
Kinetics
The study of a simple redox reaction as an experimental approach to chemical kinetics  Elias, Horst; Zipp, Arden P.
The authors present a kinetics experiment based on the oxidation of iodide ions that, like the iodine clock, is quick and easy to perform but has the advantage of being followed directly rather than indirectly.
Elias, Horst; Zipp, Arden P. J. Chem. Educ. 1988, 65, 737.
Kinetics |
Reactions |
Rate Law
A "stationery" kinetics experiment   Hall, L.; Goherdhansingh, A.
The simple redox reaction that occurs between potassium permanganate and oxalic acid can be used to prepare an interesting disappearing ink that is the basis for a kinetics experiment for an introductory chemistry class.
Hall, L.; Goherdhansingh, A. J. Chem. Educ. 1988, 65, 142.
Kinetics
An example of a constant rate reaction  Tawarab, Khalid M.
A simple experiment whose rate of reaction (a burning candle) proceeds at constant conditions.
Tawarab, Khalid M. J. Chem. Educ. 1987, 64, 534.
Rate Law |
Kinetics
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
The cola clock: A new flavor to an old classic  Russell, Richard A.; Switzer, Robert W.
The classic iodine clock reaction with Vitex replacing starch as the indicator.
Russell, Richard A.; Switzer, Robert W. J. Chem. Educ. 1987, 64, 445.
Kinetics |
Reactions
Kinetics and mechanism of the iodine azide reaction: A videotaped experiment  Haight, Gilbert P.; Jones, Loretta L.
A clock reaction suitable for videotaping and presenting to a large lecture class of general chemistry for analysis.
Haight, Gilbert P.; Jones, Loretta L. J. Chem. Educ. 1987, 64, 271.
Kinetics |
Mechanisms of Reactions |
Rate Law
Doing the dishes: An analogy for use in teaching reaction kinetics  Last, Arthur M.
An analogy between doing dishes and a two-step reaction.
Last, Arthur M. J. Chem. Educ. 1985, 62, 1015.
Kinetics |
Reactions
Windowsill kinetics: A spectrophotometric study of the photochromism of mercury dithizonate  Petersen, Richard L.; Harris, Gaylon L.
Mercury dithizonate undergoes a color change from orange to an intense royal blue upon irradiation with visible light.
Petersen, Richard L.; Harris, Gaylon L. J. Chem. Educ. 1985, 62, 802.
Photochemistry |
Spectroscopy |
Kinetics |
Coordination Compounds |
Raman Spectroscopy
Change in concentration with time  Umland, Jean B.
Shows how the rate of a reaction is fast at first and then gradually decreases to zero when one reactant has been used up.
Umland, Jean B. J. Chem. Educ. 1985, 62, 153.
Solutions / Solvents |
Kinetics |
Rate Law
Kinetics and mechanism-a games approach  Harsch, Gunther
Using statistical games to simulate and illustrate a variety of chemical kinetics.
Harsch, Gunther J. Chem. Educ. 1984, 61, 1039.
Kinetics |
Mechanisms of Reactions |
Catalysis |
Rate Law
Iodine clock reaction mechanisms  Lambert, Jack L.; Fina, Gary T.
Outlines the mechanism for the simple iodine clock reaction and the "Old Nassau" modification.
Lambert, Jack L.; Fina, Gary T. J. Chem. Educ. 1984, 61, 1037.
Mechanisms of Reactions |
Reactions |
Kinetics |
Oxidation / Reduction
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Cooking with chemistry  Grosser, Arthur E.
Two demonstrations involving cooking eggs and suggestions for many more examples of cooking that illustrate important principles of chemistry. From the "State-of-the-Art Symposium for Chemical Educators: Chemistry of the Food Cycle".
Grosser, Arthur E. J. Chem. Educ. 1984, 61, 362.
Food Science |
Gases |
Acids / Bases |
Equilibrium |
Kinetics
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
Computer simulation of elementary chemical kinetics   Nase, Martha L.; Seidman, Kurt
44. Bits and pieces, 16. The authors have developed several computer programs that simulate chemical kinetics for elementary first and second order processes. These programs can be used to generate kinetic data that can then be analyzed by the student in a variety of ways.
Nase, Martha L.; Seidman, Kurt J. Chem. Educ. 1983, 60, 734.
Kinetics |
Rate Law
The kinetics of photographic development: A general chemistry experiment  Byrd, J. E.; Perona, M. J.
An experiment that uses black and white photographic equipment to illustrate the determination of reaction rate, kinetic order of reactant, and activation energy.
Byrd, J. E.; Perona, M. J. J. Chem. Educ. 1982, 59, 335.
Kinetics |
Applications of Chemistry |
Photochemistry |
Rate Law
"Scientific method" through laboratory experience  Hanson, Allen L.
The laboratory presented here will give the students some practice in scientific laboratory habits and general scientific habits of mind.
Hanson, Allen L. J. Chem. Educ. 1981, 58, 434.
Kinetics
Some kinetic aspects relevant to contemporary analytical chemistry  Mottola, Horacio A.
Fundamental concepts of kinetics tend to get diluted or ignored in contemporary treatments of the subject.
Mottola, Horacio A. J. Chem. Educ. 1981, 58, 399.
Kinetics
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
What is the rate-limiting step of a multistep reaction?  Murdoch, Joseph R.
The purpose of this paper is to point out the circumstances where analogies can be used successfully and to develop a generalization which can be used for all reactions, including those with polymolecular steps.
Murdoch, Joseph R. J. Chem. Educ. 1981, 58, 32.
Kinetics |
Reactions |
Rate Law
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
Photochemical reactions of tris(oxalato)iron (III): A first year chemistry experiment  Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M.
An experiment based on the photoreduction of potassium ferrioxalate.
Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M. J. Chem. Educ. 1980, 57, 314.
Photochemistry |
Kinetics |
Reactions
An introductory level kinetics investigation  McGarvey, J. E. B.; Knipe, A. C.
A kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid.
McGarvey, J. E. B.; Knipe, A. C. J. Chem. Educ. 1980, 57, 155.
Kinetics |
Rate Law |
Mechanisms of Reactions
The kinetics of running  Larsen, Russell D.
The consideration of running as a rate process has several advantages for a student studying chemical kinetics for the first time.
Larsen, Russell D. J. Chem. Educ. 1979, 56, 651.
Kinetics |
Rate Law
The temperature dependence of the equilibrium constant  Burness, James H.
This exam question tests a student's ability to derive the temperature dependence of an equilibrium constant not by qualitatively applying Le Chatelier's principle, but by understanding the relationship between the kinetics of the equation and the value of Keq.
Burness, James H. J. Chem. Educ. 1979, 56, 395.
Equilibrium |
Kinetics
Rates of reaction - Analogies  Smith, Douglas D.
Demonstrations of / analogies for zero- and first-order reactions.
Smith, Douglas D. J. Chem. Educ. 1979, 56, 47.
Rate Law |
Kinetics
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Dissolving iron nails: A kinetics experiment  Monaghan, Charles P.; Fanning, James C.
These authors share a kinetics experiment that appeals to students due to its familiarity.
Monaghan, Charles P.; Fanning, James C. J. Chem. Educ. 1978, 55, 400.
Oxidation / Reduction |
Kinetics
Reaction rates for a homogeneously catalyzed reaction  Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome
The reaction of KMnO4 with hydrogen in an acidic medium is an example of a homogeneously catalyzed reaction that can be performed by college freshmen.
Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome J. Chem. Educ. 1977, 54, 775.
Rate Law |
Kinetics |
Catalysis
Water dipping kinetics. A physical analog for chemical kinetics  Birk, James P.; Gunter, S. Kay
Physical analogs of zero-, first, and second-order kinetics using the volume of water transferred by a dipper oriented in different directions with respect to a basin of water.
Birk, James P.; Gunter, S. Kay J. Chem. Educ. 1977, 54, 557.
Kinetics |
Equilibrium |
Rate Law
Spot plate chemistry. General chemistry experiments in a depression  Birk, James P.; Ronan, Thomas H.
Examples of spot plate chemistry involving the chemical composition of insoluble salts, colorimetric analysis, and kinetics.
Birk, James P.; Ronan, Thomas H. J. Chem. Educ. 1977, 54, 328.
Kinetics
Faster than a speeding bullet. A freshman kinetics experiment  Cassen, T.
A description of a "clock" experiment that is useful for a freshman level experiment dealing with kinetics.
Cassen, T. J. Chem. Educ. 1976, 53, 197.
Kinetics
Coffee cup kinetics. A general chemistry experiment  Birk, James P.
This laboratory activity attempts to fill the void of a lack of kinetics experiments in general chemistry.
Birk, James P. J. Chem. Educ. 1976, 53, 195.
Kinetics
A simple general chemistry kinetics experiment  Gellender, Martin
The oxidation of iodide ion by persulfate provides a gradual and clearly distinguishable appearance of color as the reaction proceeds.
Gellender, Martin J. Chem. Educ. 1975, 52, 806.
Kinetics |
Rate Law |
Reactions |
Oxidation / Reduction
Capillary flow. A versatile analog for chemical kinetics  Davenport, Derek A.
A number of novel ways in which capillary flow can be used as a mechanical analog for chemical kinetics.
Davenport, Derek A. J. Chem. Educ. 1975, 52, 379.
Kinetics
Kinetics simulation program  Breneman, G. L.
A Basic program that simulates the spectrophotometric study of a reaction and allows the determination of rate law values from absorbance data.
Breneman, G. L. J. Chem. Educ. 1975, 52, 106.
Kinetics |
Rate Law
A stabilized linear direct reading conductance apparatus. The solvolysis of t-butyl chloride  Cyr, T.; Prudhomme, J.; Zador, M.
A simple ac conductivity apparatus for experiments in chemical kinetics is described; the instrument is sufficiently reliable that it can be used by first year students and assembled in a few hours.
Cyr, T.; Prudhomme, J.; Zador, M. J. Chem. Educ. 1973, 50, 572.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Electrochemistry |
Kinetics
A mini-computer generated freshman kinetics experiment  Cummins, Jack D.; Wartell, M. A.
The intent of this exercise is to teach simple solution kinetics and expose students to the basics of computer programming.
Cummins, Jack D.; Wartell, M. A. J. Chem. Educ. 1973, 50, 544.
Kinetics
Kinetics program for iron(III) catalyzed decomposition of hydrogen peroxide  Merrer, Robert J.
A computer program for use in general chemistry has been written in Basic that calculates rate constants and activation energy for the iron(III) catalyzed decomposition of hydrogen peroxide.
Merrer, Robert J. J. Chem. Educ. 1973, 50, 514.
Kinetics |
Rate Law |
Catalysis
Cooking Succulent Roasts  Plumb, Robert C.; Davis, Adelle
Allowing a roast to gradually warm to the desired internal temperature produces superior results.
Plumb, Robert C.; Davis, Adelle J. Chem. Educ. 1973, 50, 425.
Consumer Chemistry |
Food Science |
Kinetics |
Equilibrium |
Rate Law |
Applications of Chemistry
Cooking Succulent Roasts  Plumb, Robert C.; Davis, Adelle
Allowing a roast to gradually warm to the desired internal temperature produces superior results.
Plumb, Robert C.; Davis, Adelle J. Chem. Educ. 1973, 50, 425.
Consumer Chemistry |
Food Science |
Kinetics |
Equilibrium |
Rate Law |
Applications of Chemistry
Pseudo first-order kinetics  Corbett, John F.
A kinetic study of second-order reactions under first-order conditions can yield accurate second-order rate constants provided an empirical allowance is made for the depletion of the reactant in excess.
Corbett, John F. J. Chem. Educ. 1972, 49, 663.
Kinetics |
Reactions |
Rate Law
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
The hydroxylaminolysis of penicillin G. A kinetic experiment  Stuckwisch, C. G.
Penicillin reacts with hydroxylamine to yield a hydroxamic acid, which gives a colored complex with iron (III).
Stuckwisch, C. G. J. Chem. Educ. 1972, 49, 539.
Kinetics |
Rate Law |
Titration / Volumetric Analysis
Passage of fruit flies through a hole. A model for a reversible chemical reaction  Runquist, Elizabeth A.; Runquist, Olaf
The passage of fruit flies through a single orifice provides an excellent model for illustrating the principles of equilibrium and chemical dynamics; the results are found to be temperature dependent and reproducible.
Runquist, Elizabeth A.; Runquist, Olaf J. Chem. Educ. 1972, 49, 534.
Reactions |
Equilibrium |
Kinetics |
Rate Law
Aquation of tris-(1,10-phenanthroline) iron(II) in acid solution. A kinetics experiment  Twigg, Martyn V.
The aquation of tris-(1,10-phenanthroline) iron(II) in acid solution is a reaction for which reliable kinetic data are available and it has an easily measured rate at accessible temperatures.
Twigg, Martyn V. J. Chem. Educ. 1972, 49, 371.
Kinetics |
Rate Law
The color blind traffic light. An undergraduate kinetics experiment using an oscillating reaction  Lefelhocz, John F.
This kinetics experiment involves the student with a qualitative study of the influence of chemical and physical variables on the rate of a specific reaction.
Lefelhocz, John F. J. Chem. Educ. 1972, 49, 312.
Kinetics |
Reactions |
Rate Law
Oxidation of ethanol by chromium(VI). A kinetics experiment for freshmen  Finlayson, Muriel E.; Lee, Donald G.
The experiment presented here generates a good deal of interest and gives clear cut results without the necessity of using elaborate equipment.
Finlayson, Muriel E.; Lee, Donald G. J. Chem. Educ. 1971, 48, 473.
Kinetics |
Oxidation / Reduction |
Alcohols
A study of the physical and chemical rates of CaCO3 dissolution in HCl  Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben
The authors describe the experimental procedure and a discussion of results for a study of the physical and chemical rates of CaCO3 dissolution in HCl.
Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben J. Chem. Educ. 1971, 48, 327.
Acids / Bases |
Kinetics |
Reactions |
Rate Law
Hydrolysis of benzenediazonium ion  Sheats, John E.; Harbison, Kenneth G.
Presents a more convenient approach to studying the kinetics of the hydrolysis of benzenediazonium ion.
Sheats, John E.; Harbison, Kenneth G. J. Chem. Educ. 1970, 47, 779.
Aromatic Compounds |
Nucleophilic Substitution |
Kinetics
The Methanol Lighter  Bailar, John C., Jr.
The methanol lighter illustrates the roles that thermodynamics, kinetics, and catalysis play in determining if a reaction will take place.
Bailar, John C., Jr. J. Chem. Educ. 1970, 47, 272.
Thermodynamics |
Kinetics |
Catalysis |
Consumer Chemistry |
Applications of Chemistry
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
The thermal decomposition of 2,5-dihydrofuran vapor: An experiment in gas kinetics  Rubin, Jay A.; Filseth, Stephen V.
Describes an experiment designed to illustrate manipulations with a vacuum system and the conduct of kinetic measurements.
Rubin, Jay A.; Filseth, Stephen V. J. Chem. Educ. 1969, 46, 57.
Kinetics |
Gases
Probabilistic derivation of the kinetic rate equations  Lee, Tieh-Sheng; Kuffner, Roy J.
The use of the probabilistic approach is readily applicable to reaction kinetics if one considers the probability of the survival of the reactant molecule instead of the survival of a radioactive nucleus.
Lee, Tieh-Sheng; Kuffner, Roy J. J. Chem. Educ. 1968, 45, 430.
Kinetics
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
The revolution in elementary kinetics and freshman chemistry  Wolfgang, Richard
New developments in kinetics so fundamentally affect our most elementary conception of chemical change that they must inevitably be reflected in beginning courses in chemistry; includes an outline for freshmen on elementary chemical dynamics.
Wolfgang, Richard J. Chem. Educ. 1968, 45, 359.
Kinetics |
Rate Law |
Mechanisms of Reactions
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
Alcohols to alkyl halides: A kinetics experiment for elementary chemistry courses  Cooley, J. H.; McCown, J. D.; Shill, R. M.
The rate measurement in this procedure is accomplished by direct observation of the change in length or volume of the insoluble layer of an alkyl bromide that is formed from a mixture of alcohol, hydrobromic acid, and sulfuric acid.
Cooley, J. H.; McCown, J. D.; Shill, R. M. J. Chem. Educ. 1967, 44, 280.
Alcohols |
Synthesis |
Kinetics |
Rate Law
The dissolution of tin in solutions of iodine  Davies, J. F.; Trotman-Dickenson, A. F.
The progress of this reaction can be followed by the loss of weight of a tin disc.
Davies, J. F.; Trotman-Dickenson, A. F. J. Chem. Educ. 1966, 43, 483.
Solutions / Solvents |
Precipitation / Solubility |
Kinetics |
Gravimetric Analysis
Acid-catalyzed hydrolysis of sucrose: A student study of a reaction mechanism  Dawber, J. G.; Brown, D. R.; Reed, R. A.
By extending the experimental work in a kinetic study of the hydrolysis of sucrose, the beginning student in chemistry can gather some insight into the mechanism of the reaction.
Dawber, J. G.; Brown, D. R.; Reed, R. A. J. Chem. Educ. 1966, 43, 34.
Kinetics |
Mechanisms of Reactions |
Reactions |
Carbohydrates
The tin(II)-methyl orange reaction: A kinetics experiment for introductory chemistry  Haight, G. P., Jr.
The tin(II)-methyl orange reaction is followed with a Spec 20 to determine the order with respect to tin and methyl orange.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 478.
Kinetics |
Dyes / Pigments
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Infrared spectrometry to study second order reaction kinetics  Gastambide, B.; Blanc, J.; Allamagny, Y.
The change studied is a synthesis reaction between menthol and phenyl isocyanate.
Gastambide, B.; Blanc, J.; Allamagny, Y. J. Chem. Educ. 1964, 41, 613.
Spectroscopy |
IR Spectroscopy |
Reactions |
Kinetics |
Synthesis
The hydration of carbon dioxide: A double clock experiment  Jones, P.; Haggett, Max L.; Longridge, Jethro L.
This extension of the "Soda Water Clock" experiment provides a quantitative kinetics investigation.
Jones, P.; Haggett, Max L.; Longridge, Jethro L. J. Chem. Educ. 1964, 41, 610.
Reactions |
Rate Law |
Kinetics |
pH |
Acids / Bases |
Aqueous Solution Chemistry
A kinetics experiment for first year chemistry  Shaefer, William P.
The exchange of iodine atoms between organic and inorganic iodides serves as a kinetics experiment for first year chemistry.
Shaefer, William P. J. Chem. Educ. 1964, 41, 558.
Kinetics |
Isotopes |
Rate Law
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
A second order kinetics experiment  Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M.
Investigates the nucleophilic displacement reaction of ethyl p-toluenesulfonate by iodide in acetone.
Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M. J. Chem. Educ. 1964, 41, 161.
Kinetics |
Nucleophilic Substitution
Colorimetric chemical kinetics experiment  Corsaro, Gerald
This article describes an experiment in which a photocolorimetric technique is employed to follow a bimolecular reaction rate; the reactants are crystal violet and the hydroxide ion.
Corsaro, Gerald J. Chem. Educ. 1964, 41, 48.
Kinetics |
Rate Law |
Reactions
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Kinetics for the undergraduate: Introduction  King, Edward L.
Introduces the ACS symposium entitled "Kinetics in the Undergraduate Curriculum."
King, Edward L. J. Chem. Educ. 1963, 40, 573.
Kinetics
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Heterogeneous equilibria in general chemistry  Grotz, Leonard C.
Presents suggestions for approaching the subject of heterogeneous equilibria in general chemistry.
Grotz, Leonard C. J. Chem. Educ. 1963, 40, 479.
Equilibrium |
Kinetics
A simple kinetics experiment for general chemistry laboratory  Cone, W. H.; Hermens, R. A.
This simple kinetics experiment examines the oxidation of benzoic acid by potassium peroxodisulfate in the presence of catalytic amounts of silver ion.
Cone, W. H.; Hermens, R. A. J. Chem. Educ. 1963, 40, 421.
Kinetics |
Rate Law |
Oxidation / Reduction |
Catalysis
Some aspects of chemical kinetics for elementary chemistry  Benson, Sidney W.
The author suggests greater efforts to address the issue of kinetics and reaction mechanisms in introductory chemistry.
Benson, Sidney W. J. Chem. Educ. 1962, 39, 321.
Kinetic-Molecular Theory |
Gases |
Kinetics |
Mechanisms of Reactions |
Descriptive Chemistry
Determination of reaction rates with an A.C. conductivity bridge: A student experiment  Chesick, J. P.; Patterson, A., Jr.
Describes a quantitative experiment in chemical kinetics suitable for advanced freshmen or physical chemistry; it involves a study of the solvolysis of tertiary butyl chloride by means of conductance measurements.
Chesick, J. P.; Patterson, A., Jr. J. Chem. Educ. 1960, 37, 242.
Conductivity |
Kinetics |
Rate Law
Use of radioisotopes in the college chemistry laboratory  Phillips, David; Maybury, Robert H.
Provides experiments and experiences working with constructed Geiger counters and radioisotopes.
Phillips, David; Maybury, Robert H. J. Chem. Educ. 1959, 36, 133.
Nuclear / Radiochemistry |
Isotopes |
Instrumental Methods |
Qualitative Analysis |
Kinetics
A graphical method for determining the order of homogeneous reactions  Wright, J. H.; Black, J. H.; Coull, James
Provides a review of classical kinetics, derivation of the reaction order equation, and the determination of reaction order using a graph provided.
Wright, J. H.; Black, J. H.; Coull, James J. Chem. Educ. 1956, 33, 542.
Kinetics |
Chemometrics
Textbook errors: VII. The laws of reaction rates and of equilibrium  Mysels, Karol J.
Examines the frequently misplaced emphasis on the rate law of mass action, its fallacious use to prove the existence and form of equilibrium constants, and the occasional confusion of the two concepts.
Mysels, Karol J. J. Chem. Educ. 1956, 33, 178.
Kinetics |
Rate Law |
Equilibrium
The formaldehyde clock reaction  Barrett, Richard L.
The formaldehyde clock reaction has some advantages over the familiar iodine clock and deserves to be better known.
Barrett, Richard L. J. Chem. Educ. 1955, 32, 78.
Reactions |
Kinetics |
Rate Law |
Aldehydes / Ketones
A kinetic analogy  Lemlich, Robert
This analogy, which clearly demonstrates the principles involved in a first-order reaction, is based on Poiseuille's law for the viscous flow of fluids.
Lemlich, Robert J. Chem. Educ. 1954, 31, 431.
Kinetics