TIGER

Journal Articles: 27 results
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Effectiveness of Conceptual Change-Oriented Teaching Strategy To Improve Students' Understanding of Galvanic Cells  Ali Riza Özkaya, Musa Üce, Hakan Sariçayir, and Musa Sahin
This article presents efforts to develop a conceptual change-oriented strategy to teaching galvanic cells in electrochemistry. The objective is to assess the effectiveness of conceptual change-oriented instruction relative to conventional instruction using statistical comparisons.
Özkaya, Ali Riza; Üce, Musa; Sariçayir, Hakan; Sahin, Musa. J. Chem. Educ. 2006, 83, 1719.
Electrochemistry |
Equilibrium |
Oxidation / Reduction |
Undergraduate Research
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
Isolation of Copper from a 5–Cent Coin. An Example of Electrorefining  Steven G. Sogo
The United States 5¬Ěcent coin, commonly known as a "nickel", is made of an alloy containing 75% copper and 25% nickel. The experiment is a visually appealing illustration of the process of electrorefining using selective reduction.
Sogo, Steven G. J. Chem. Educ. 2004, 81, 530.
Electrochemistry |
Oxidation / Reduction |
Metals
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
An Analysis of College Chemistry Textbooks As Sources of Misconceptions and Errors in Electrochemistry  Michael J. Sanger and Thomas J. Greenbowe
The oxidation-reduction and electrochemistry chapters of 10 introductory college chemistry textbooks were reviewed for misleading or erroneous statements, using a list of student misconceptions. As a result of this analysis, we provide suggestions for chemistry instructors and textbook authors.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1999, 76, 853.
Electrochemistry |
Oxidation / Reduction |
Learning Theories
The Nernst Equation: Determination of Equilibrium Constants for Complex Ions of Silver  Martin L. Thompson and Laura J. Kateley
The experiment requires a voltmeter capable of recording millivolts (or a good pH meter) and inexpensive chemicals. It allows students to check the validity of the Nernst equation and compare their experimental Kform values to reported ones.
Thompson, Martin L.; Kateley, Laura J. J. Chem. Educ. 1999, 76, 95.
Equilibrium |
Coordination Compounds |
Electrochemistry |
Oxidation / Reduction
Use of Electrochemical Concentration Cells to Demonstrate the Dimeric Nature of Mercury(I) in Aqueous Media  Bhattacharya, Deepta; Peters, Dennis G.
Experimental procedure for demonstrating that divalent mercury is monovalent in aqueous solution; includes data and analysis.
Bhattacharya, Deepta; Peters, Dennis G. J. Chem. Educ. 1995, 72, 64.
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Chem 1 concept builder (Lower, Steve with Instructional Software)  Hair, Sally R.
A review of a software package designed for tutorial and drill.
Hair, Sally R. J. Chem. Educ. 1991, 68, A19.
Acids / Bases |
Oxidation / Reduction |
Stoichiometry |
Atomic Properties / Structure
Redox demonstrations and descriptive chemistry: Part 3. Copper (I)-copper(II) equilibria   Ophardt, Charles E.
The unusual redox properties of copper (I) and copper (II) ions explained and illustrated.
Ophardt, Charles E. J. Chem. Educ. 1991, 68, 248.
Descriptive Chemistry |
Oxidation State |
Oxidation / Reduction
Redox demonstrations and descriptive chemistry: Part 2. Halogens  Ophardt, Charles E.
Oxidation states of bromine and iodine.
Ophardt, Charles E. J. Chem. Educ. 1987, 64, 807.
Oxidation / Reduction |
Descriptive Chemistry |
Oxidation State
Redox demonstrations and descriptive chemistry: Part 1. Metals  Ophardt, Charles E.
The oxidation states of iron, tin, and mercury.
Ophardt, Charles E. J. Chem. Educ. 1987, 64, 716.
Metals |
Descriptive Chemistry |
Oxidation / Reduction |
Oxidation State
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Acid-base half-reactions - A useful formalism for review lessons  Atkinson, G. F.
An effective way to draw analogies between acid-base and redox effects while reviewing both.
Atkinson, G. F. J. Chem. Educ. 1979, 56, 238.
Oxidation / Reduction |
Reactions |
Acids / Bases |
Enrichment / Review Materials
A novel approach for qualitative analysis  Ophadt, Charles E.
This qualitative analysis series allows students to spend a semester exploring the behavior of one ion during the course of a semester that might not be readily learned from a textbook.
Ophadt, Charles E. J. Chem. Educ. 1974, 51, 415.
Descriptive Chemistry |
Metals |
Oxidation / Reduction
Free energies of formation measurements on solid-state electrochemical cells  Rollino, J. A.; Aronson, S.
This experiment demonstrates in a direct fashion the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell.
Rollino, J. A.; Aronson, S. J. Chem. Educ. 1972, 49, 825.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Solid State Chemistry |
Organometallics
The bombardier beetle  Plumb, Robert C.; Erickson, Karen L.
The chemistry behind the bombardier beetle's chemical defenses illustrates the principles of reaction rates, catalysis, and laboratory safety.
Plumb, Robert C.; Erickson, Karen L. J. Chem. Educ. 1972, 49, 705.
Applications of Chemistry |
Natural Products |
Rate Law |
Catalysis |
Oxidation / Reduction |
Aromatic Compounds
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Common sources of confusion; Electrode sign conventions  Anson, Fred C.
Examines common sources of confusion with respect to electrode signs and recommends new conventions.
Anson, Fred C. J. Chem. Educ. 1959, 36, 394.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Letters  Hackney, J. C.
The author elaborates on the source of a fallacy in the calculation of an overall redox potential by combination of two half-cell potentials.
Hackney, J. C. J. Chem. Educ. 1952, 29, 472.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Oxidation / Reduction
Combining half-reactions and their standard electrode potentials  Miller, Sidney I.
To increase the value of standard electrode potential tables, a new method of combination of half-cell reactions is proposed.
Miller, Sidney I. J. Chem. Educ. 1952, 29, 140.
Electrochemistry |
Aqueous Solution Chemistry |
Electrolytic / Galvanic Cells / Potentials