TIGER

Journal Articles: 40 results
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  Norman C. Craig
I am pleased that CampbellĀs rule for estimating entropy changes in gas-consuming and gas-producing chemical reactions has attracted immediate interest.
Craig, Norman C. J. Chem. Educ. 2004, 81, 1571.
Gases |
Thermodynamics
Campbell's Rule for Estimating Entropy Changes  William B. Jensen
In a recent article Norman Craig has proposed the rule-of-thumb that the approximate value of the entropy of reaction is related to the net moles of gas consumed or generated in the reaction .
Jensen, William B. J. Chem. Educ. 2004, 81, 1570.
Gases |
Thermodynamics
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Boerhaave on Fire  Damon Diemente
This article offers a selection of passages from Boerhaave's chapter on fire. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas.
Diemente, Damon. J. Chem. Educ. 2000, 77, 42.
Calorimetry / Thermochemistry |
Thermodynamics
Visualizing Entropy  Joseph H. Lechner
This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations.
Lechner, Joseph H. J. Chem. Educ. 1999, 76, 1382.
Statistical Mechanics |
Thermodynamics
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
A Brief History of Thermodynamics Notation  Rubin Battino, Laurence E. Strong, Scott E. Wood
This paper gives a brief history of thermodynamic notation for the energy, E, enthalpy, H, entropy, S, Gibbs energy, G, Helmholtz energy, A, work, W, heat, Q, pressure, P, volume, V, and temperature, T. In particular, the paper answers the question, "Where did the symbol S for entropy come from?"
Battino, Rubin; Strong Laurence E.; Wood, Scott E. J. Chem. Educ. 1997, 74, 304.
Thermodynamics
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
Two multipurpose thermochemical experiments for general chemistry  Wentworth, R. A. D.
Two multipurpose thermochemical experiments are described in this paper.
Wentworth, R. A. D. J. Chem. Educ. 1988, 65, 1022.
Thermodynamics
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Le Châtelier's principle, temperature effects, and entropy  Campbell, J. Arthur
A useful extension of Le Chatelier's Principle to predict concentration, pressure, and temperature effects solely from the equation for the net reaction.
Campbell, J. Arthur J. Chem. Educ. 1985, 62, 231.
Equilibrium |
Thermodynamics
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Paradigms and paradoxes  Campbell, J. A.
Examines the commonly held tenets "systems tend to a minimum potential energy," "the entropy of a shuffled deck of cards is greater than that of a new deck," and "energy is the ability to do work."
Campbell, J. A. J. Chem. Educ. 1980, 57, 41.
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Thermodynamics, folk culture, and poetry  Smith, Wayne L.
The principles of the first, second, and third laws of thermodynamics are illustrated in songs and poems.
Smith, Wayne L. J. Chem. Educ. 1975, 52, 97.
Thermodynamics
The first law. For scientists, citizens, poets and philosophers  Bent, Henry A.
Practical experiences and phenomena that serve to illustrate the first law of thermodynamics.
Bent, Henry A. J. Chem. Educ. 1973, 50, 323.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Lectures on Matter and Equilibrium (Hill, Terrell L.)  Rosenburg, Robert

Rosenburg, Robert J. Chem. Educ. 1966, 43, A1086.
Thermodynamics |
Enrichment / Review Materials
The fundamental assumptions of chemical thermodynamics  MacRae, Duncan
Examines the fundamental terms, definitions, and assumptions of chemical thermodynamics.
MacRae, Duncan J. Chem. Educ. 1966, 43, 586.
Thermodynamics
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Entropy: The significance of the concept of entropy and its applications in science and technology (Fast, J. D.)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1963, 40, 442.
Thermodynamics
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
Praseodymium tetrafluoride  Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R.
In spite of the experimental failures to prepare praseodymium tetrafluoride, there is strong evidence for its possible formation to be found by calculating the equilibrium constants for some of the reactions by which this compound might be prepared.
Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R. J. Chem. Educ. 1953, 30, 402.
Oxidation State |
Equilibrium |
Thermodynamics