TIGER

Journal Articles: 35 results
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
A Pedagogical Simulation of Maxwell's Demon Paradox  D. López and C. Criado
Teaching thermodynamics from the microscopic point of view can help students develop an intuitive understanding of its concepts. This program simulates, at the microscopic level, two gas chambers with an opening between them. The program allows students or their instructors to set up simulations that illustrate the thermodynamics and statistical behavior of the system. The user determines the basis for whether the demon permits or denies passage of particles through the opening using information from the microscopic level, such as specific particle velocity. Students can track and analyze how this affects particle distribution, thermal equilibrium, relaxation time, diffusion, and distribution of particle velocities.
López, D.; Criado, C. J. Chem. Educ. 2004, 81, 1679.
Statistical Mechanics |
Thermodynamics
Playing Card Equilibrium  Frank L. Lambert
From experience, I am hypersensitive to the misconceptions of students and instructors that can be caused when playing cards are used in teaching chemistry. The root of such errors lies in overlooking the non-mobile, non-energetically-interacting nature of pieces of cardboard. Only if they are being shuffled can cards serve as some sort of analogy to molecular behavior in chemistry.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 1569.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Entropy and Constraint of Motion  Frank L. Lambert
William Jensen's presentation of entropy increase as solely due to kinetic energy dispersion is stimulating.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 640.
Thermodynamics
Entropy and Constraint of Motion   William B. Jensen
I would like to make several observations supplementing and supporting the article by Frank Lambert on entropy as energy dissipation, since this is an approach that I have also used for many years when teaching a qualitative version of the entropy concept to students of general and introductory inorganic chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 639.
Thermodynamics
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Ch¬Ětelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Thermodynamics
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Visualizing Entropy  Joseph H. Lechner
This report describes two classroom activities that help students visualize the abstract concept of entropy and apply the second law of thermodynamics to real situations.
Lechner, Joseph H. J. Chem. Educ. 1999, 76, 1382.
Statistical Mechanics |
Thermodynamics
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
Chemical Equilibrium (the author replies)  Banerjee, Anil
Item 7 deserves a fuller answer than was provided.
Banerjee, Anil J. Chem. Educ. 1996, 73, A262.
Equilibrium |
Thermodynamics
Chemical Equilibrium  Logan, S. R.
Item 7 deserves a fuller answer than was provided.
Logan, S. R. J. Chem. Educ. 1996, 73, A261.
Equilibrium |
Thermodynamics
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Thermodynamics
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Entropy rules in my class too!  White, Alvan D.
A simple analogy that will help students understand entropy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Thermodynamics
Be a millionaire - Get with the action!  White, Alvan D.
When talking about the distribution of molecular velocities, we can use money as an analogy.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Reactions |
Thermodynamics
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Thermodynamics, folk culture, and poetry  Smith, Wayne L.
The principles of the first, second, and third laws of thermodynamics are illustrated in songs and poems.
Smith, Wayne L. J. Chem. Educ. 1975, 52, 97.
Thermodynamics
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
Demonstrating concepts of statistical thermodynamics: More on the Maxwell Demon bottle  Sussman, M. V.
The Maxwell Demon bottle can illustrate the nature of entropy, the difference between a work effect and a heat effect, the difference between reversible and irreversible work effects, the mechanical equivalent of heat, and similar intangibles.
Sussman, M. V. J. Chem. Educ. 1966, 43, 105.
Thermodynamics
Teaching the entropy concept  Plumb, Robert C.
Presents a macroscopic lecture demonstration illustrating both potential energy and entropy driving forces and showing their interrelationship.
Plumb, Robert C. J. Chem. Educ. 1964, 41, 254.
Thermodynamics |
Statistical Mechanics
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Maxwell's demon demonstrator  Sussman, M. V.
Describes a simple device used to illustrate the concept of irreversibility.
Sussman, M. V. J. Chem. Educ. 1963, 40, 49.
Thermodynamics
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics