TIGER

Journal Articles: 34 results
Molecular Models of Polymers Used in Sports Equipment  William F. Coleman
The Featured Molecules this month are a number of monomers and their associated polymers used in making equipment for a variety of high-impact sports. The molecules provide students with an introduction to an important area of applied chemistry and also enable them to examine complex structures using the models they have seen applied to small molecules.
Coleman, William F. J. Chem. Educ. 2008, 85, 1456.
Molecular Modeling |
Molecular Properties / Structure |
Applications of Chemistry
Molecular Models of Real and Mock Illicit Drugs from a Forensic Chemistry Activity  William F. Coleman
The Featured Molecules for this month have been drawn from a forensic chemistry exercise in which model compounds are used to simulate the behavior of various drugs in a series of chemical tests. The compounds considered include chlorpromazine (Thorazine) and phenothiazine, both involved in the manufacture of antipsychotic drugs.
Coleman, William F. J. Chem. Educ. 2008, 85, 880.
Drugs / Pharmaceuticals |
Forensic Chemistry |
Molecular Properties / Structure |
Molecular Modeling
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Pre-Service Teacher as Researcher: The Value of Inquiry in Learning Science  Janice M. Hohloch, Nathaniel Grove, and Stacey Lowery Bretz
An action research project to reform a chemistry course required of elementary and middle childhood pre-service teachers incorporated a hands-on approach to learning chemistry, modeled teaching science through inquiry, and emphasized the value of research experience.
Hohloch, Janice M.; Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2007, 84, 1530.
Chromatography |
Molecular Properties / Structure |
Nonmajor Courses |
Professional Development |
Undergraduate Research |
Student-Centered Learning |
Standards National / State
Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling  John A. Bumpus, Anne Lewis, Corey Stotts, and Christopher J. Cramer
Four experiments suitable for use in the undergraduate instructional laboratory demonstrate the use of computational chemistry and molecular-modeling procedures to calculate selected physical and chemical properties of several high explosives and other energetic compounds.
Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J. J. Chem. Educ. 2007, 84, 329.
Computational Chemistry |
Gases |
Physical Properties |
Molecular Modeling |
Molecular Properties / Structure
Molecular Model of Zincon  William F. Coleman
The Featured Molecules this month are the tautomeric forms of the colorimetric reagent zincon. The structures could be used as an introduction to the concept of tautomerism, with students being asked to develop a definition of the term based on their observations of the difference(s) in linkage in the two forms.
Coleman, William F. J. Chem. Educ. 2007, 84, 305.
Biological Cells |
Calorimetry / Thermochemistry |
Water / Water Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Molecular Properties / Structure
Molecular Model of Creatine Synthesis  William F. Coleman
The Featured Molecules for this month come from the synthesis of creatine and illustrate some of the limitations associated with the computation of molecular structure.
Coleman, William F. J. Chem. Educ. 2006, 83, 1657.
Molecular Modeling |
Molecular Properties / Structure |
Bioorganic Chemistry
The Use of the Free, Open-Source Program Jmol To Generate an Interactive Web Site To Teach Molecular Symmetry  Marion E. Cass and Henry S. Rzepa
Describes the use of Jmol, a free, open-source code program, for the presentation of interactive materials to teach molecular symmetry.
Cass, Marion E.; Rzepa, Henry S. J. Chem. Educ. 2005, 82, 1736.
Group Theory / Symmetry |
Molecular Properties / Structure
Simple Dynamic Models for Hydrogen Bonding Using Velcro-Polarized Molecular Models  Emeric Schultz
This article describes the use of models that dynamically illustrate the unique characteristics of weak intermolecular interactions, specifically hydrogen bonds. The models clearly demonstrate that H-bonds can break and reform while covalent bonds stay intact. The manner in which the models form and break H-bonds reflects the geometric and statistical manner in which H-bonding actually occurs and is not contrived. The use of these models addresses a significant area of student misconceptions. The construction of these molecular models is described.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 401.
Molecular Properties / Structure |
Molecular Modeling |
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
Exploring the Structure–Function Relationship of Macromolecules at the Undergraduate Level  Belinda Pastrana-Rios
The undergraduate teaching initiatives discussed in this manuscript take advantage of a state-of-the-art visualization center devoted to teaching and research activities.
Pastrana-Rios, Belinda. J. Chem. Educ. 2004, 81, 837.
Molecular Properties / Structure |
Biophysical Chemistry |
Biotechnology
Laboratory Sequence in Computational Methods for Introductory Chemistry  Jason A. Cody and Dawn C. Wiser
Description of a four-week laboratory sequence that exposes students to instrumentation (FT-NMR, GC) and computational chemistry.
Cody, Jason A.; Wiser, Dawn C. J. Chem. Educ. 2003, 80, 793.
Chromatography |
Computational Chemistry |
Noncovalent Interactions |
MO Theory |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
NMR Spectroscopy |
Gas Chromatography
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
Structure and Nuclear Magnetic Resonance. An Experiment for the General Chemistry Laboratory  Rosa M. Dávila and R. K. Widener
Lab exercise to introduce first-year students to the concepts of functional groups and isomerism, as well as using NMR spectroscopy to determine simple molecular structures.
Dávila, Rosa M.; Widener, R. K. J. Chem. Educ. 2002, 79, 997.
NMR Spectroscopy |
Molecular Properties / Structure |
Instrumental Methods
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
Using Computer-Based Visualization Strategies to Improve Students' Understanding of Molecular Polarity and Miscibility  Michael J. Sanger and Steven M. Badger II
Study of how the use of visualization strategies associated with dynamic computer animations and electron density plots affect students' conceptual understanding of molecular polarity and miscibility.
Sanger, Michael J.; Badger, Steven M., II. J. Chem. Educ. 2001, 78, 1412.
Molecular Properties / Structure |
Solutions / Solvents |
Molecular Modeling |
Molecular Mechanics / Dynamics
A Novel Multipurpose Model Set for Teaching General Chemistry  H. O. Gupta and Brahm Parkash
Teaching general chemistry requires a simple and inexpensive model set capable of demonstrating all the common structures in organic, inorganic, and physical chemistry. This paper describes our endeavour to develop such a model set.
Gupta, H. O.; Parkash, Brahm. J. Chem. Educ. 1999, 76, 204.
Molecular Properties / Structure |
Molecular Modeling
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
Low Cost 3-D Viewing of Chemical Structures  Wong, Yue-Ling; Yip, Ching-Wan
Generating 3-D stereoscopic projections using a anaglyphic (red-blue) pair processed with Adobe PhotoShop.
Wong, Yue-Ling; Yip, Ching-Wan J. Chem. Educ. 1995, 72, A237.
Molecular Modeling |
Molecular Properties / Structure
Animation of Imaginary Frequencies at the Transition State  Robert H. Higgins
176. Software tutorial for strengthening spatial skills and an understanding of stereochemistry in exploring molecular structures.
Higgins, Robert H. J. Chem. Educ. 1995, 72, 699.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Molecular models for the do-it-yourselfer  Birk, James P.; Foster, John
Instructions for making molecular models from styrofoam balls and wooden dowels.
Birk, James P.; Foster, John J. Chem. Educ. 1989, 66, 1015.
Molecular Modeling |
Molecular Properties / Structure |
VSEPR Theory
Use of Plexiglas planes with molecular model kits  Fulkrod, John E.
Using Plexiglass to serve as a plane of reference in molecular models of organic molecules.
Fulkrod, John E. J. Chem. Educ. 1984, 61, 773.
Molecular Modeling |
Molecular Properties / Structure
Infrared spectrum of methanol: A first-year student experiment  Boehm, Garth; Dwyer, Mark
This paper describes an experiment in infrared spectroscopy designed to complement an alternative course, and the audiovisual system which supports this experiment.
Boehm, Garth; Dwyer, Mark J. Chem. Educ. 1981, 58, 809.
MO Theory |
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
A simple demonstration of enantiomerism  Richards, K. E.
Design for a wooden box containing a mirror that uses a molecular model to demonstrate enantiomerism.
Richards, K. E. J. Chem. Educ. 1973, 50, 632.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Overhead projection of stereographic images  Crozat, Madeleine M.; Watkins, Steven F.
A simple technique that employs an overhead projector, colored filters, and colored transparent overlays to create three-dimensional images of molecules for viewing by up to thirty students simultaneously.
Crozat, Madeleine M.; Watkins, Steven F. J. Chem. Educ. 1973, 50, 374.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
Some reflections on the use and abuse of molecular models  Peterson, Quentin R.
Examines the history of the application of molecular models and model types, and proposes the construction of a new type of model.
Peterson, Quentin R. J. Chem. Educ. 1970, 47, 24.
Molecular Properties / Structure |
Molecular Modeling
Framework molecular models to illustrate Linnett's double quartet theory  Bumgardner, Carl L.; Wahl, George H., Jr.
Presents a convenient method for depicting electron arrangements using molecular models.
Bumgardner, Carl L.; Wahl, George H., Jr. J. Chem. Educ. 1968, 45, 347.
Molecular Modeling |
Molecular Properties / Structure
Inexpensive space-filling display models  Kellett, J. C., Jr.; Martin, A. N.
Using rubber molds to reproduce existing models in plaster.
Kellett, J. C., Jr.; Martin, A. N. J. Chem. Educ. 1966, 43, 374.
Molecular Modeling |
Molecular Properties / Structure
A magnetic molecular model  Meszaros, Lajos
This short note describes a model of the ethane molecule that demonstrates qualitatively the low energy barrier in free rotation about the carbon-carbon bond.
Meszaros, Lajos J. Chem. Educ. 1964, 41, 50.
Molecular Modeling |
Molecular Properties / Structure
New molecular models showing charge distribution and bond polarity  Sanderson, R. T.
Describes a new type of two- and three-dimensional molecular models that show charge distribution and bond polarity through the use of colors.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 195.
Molecular Modeling |
Molecular Properties / Structure