TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
3 Assessment Questions
8 Molecular Structures
11 Journal Articles
9 Other Resources
Assessment Questions: 3 results
Molecular_Structure : Hybridization (10 Variations)
Which of the following molecules/ions have sp hybridization around the indicated atom?
Covalent Bonding |
MO Theory
Conjugation (1 Variations)
A collection of 1 assessment questions about Conjugation
MO Theory |
Aromatic Compounds
MO Theory (11 Variations)
A collection of 11 assessment questions about MO Theory
MO Theory |
Reactions |
Addition Reactions |
Free Radicals |
Alkenes |
UV-Vis Spectroscopy
Molecular Structures: First 3 results
Peroxide Ion O22-

3D Structure

Link to PubChem

Ionic Bonding |
MO Theory

Triiodide Ion I3-

3D Structure

Link to PubChem

VSEPR Theory |
MO Theory |
Nonmetals

Phosphorus Pentachloride PCl5

3D Structure

Link to PubChem

VSEPR Theory |
Nonmetals |
MO Theory

View all 8 results
Journal Articles: First 3 results.
Pedagogies:
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet  Bruce Mattson
When a neodymium magnet is brought near a suspended glass tube containing a small amount of liquid oxygen, the tube is attracted to the magnet, demonstrating oxygen's paramagnetism. In larger quantities the blue color of liquid oxygen is readily observable.
Mattson, Bruce. J. Chem. Educ. 2007, 84, 1296.
Descriptive Chemistry |
Gases |
Magnetic Properties |
MO Theory |
Molecular Properties / Structure
Moving Beyond the Single Center—Ways To Reinforce Molecular Orbital Theory in an Inorganic Course  Marion E. Cass and William E. Hollingsworth
Rather than ending the discussion of molecular orbital (MO) theory in an inorganic chemistry course with molecules such as octahedral ML6 or square planar ML4, we suggest moving beyond the single-atom center to include the MO diagram of ethene (C2H4).
Cass, Marion E.; Hollingsworth, William E. J. Chem. Educ. 2004, 81, 997.
MO Theory |
Molecular Modeling
View all 11 articles
Other Resources: First 3 results
Interactive Molecular Orbitals  William F. Coleman
The majority of Introductory Chemistry texts provide students with an adequate introduction to the visual aspects of the molecular orbital model for homonuclear diatomic molecules. The treatment of heteronuclear diatomic and polyatomic molecules is less uniform. Heteronuclear diatomics, when mentioned, are invariably treated as being derived from homonuclear diatomics. While the atomic orbital energy level differences in heteronuclear diatomics is sometimes pictured, the consequences of those differences for the resultant molecular orbitals are rarely discussed. The discussion of polyatomic molecular orbitals in these texts is limited to showing that parallel p-orbitals produce delocalized pi molecular orbitals. The molecules typically mentioned in this context are benzene, nitrate ion and carbonate ion. However, It is rarely pointed out that the six p-orbitals in benzene would form 6 pi molecular orbitals, and that only one of these orbitals would look like the picture in the text.These interactive modules are designed to clarify this subject.
MO Theory
Molecular Orbitals  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
MO Theory |
Magnetic Properties
Delocalized Electrons  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Resonance Theory |
MO Theory
View all 9 results