TIGER

Journal Articles: 11 results
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet  Bruce Mattson
When a neodymium magnet is brought near a suspended glass tube containing a small amount of liquid oxygen, the tube is attracted to the magnet, demonstrating oxygen's paramagnetism. In larger quantities the blue color of liquid oxygen is readily observable.
Mattson, Bruce. J. Chem. Educ. 2007, 84, 1296.
Descriptive Chemistry |
Gases |
Magnetic Properties |
MO Theory |
Molecular Properties / Structure
Moving Beyond the Single Center—Ways To Reinforce Molecular Orbital Theory in an Inorganic Course  Marion E. Cass and William E. Hollingsworth
Rather than ending the discussion of molecular orbital (MO) theory in an inorganic chemistry course with molecules such as octahedral ML6 or square planar ML4, we suggest moving beyond the single-atom center to include the MO diagram of ethene (C2H4).
Cass, Marion E.; Hollingsworth, William E. J. Chem. Educ. 2004, 81, 997.
MO Theory |
Molecular Modeling
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
The Caltech chemistry animation project   Lewis, Nathan S.
Animations are being produced on subjects such as: atomic and molecular orbitals, lattices, VSPER, nucleophilic substitution, stereochemistry, sigma and pi bonding, and many more.
Lewis, Nathan S. J. Chem. Educ. 1993, 70, 739.
Stereochemistry |
Atomic Properties / Structure |
Molecular Modeling |
MO Theory |
Crystals / Crystallography
There are no such things as orbitals-Act two!  Simons, Jack
What is the role of molecular orbital theory in chemistry instruction?
Simons, Jack J. Chem. Educ. 1991, 68, 131.
MO Theory |
Atomic Properties / Structure |
Quantum Chemistry
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
A simple demonstration model for molecular orbital theory  Druding, Leonard F.
Using two bar magnets and iron filings to demonstrate the formation of molecular bonding and anti-bonding orbitals.
Druding, Leonard F. J. Chem. Educ. 1972, 49, 617.
MO Theory
Hybrid orbitals in molecular orbital theory  Cohen, Irwin; Del Bene, Janet
Reviews, for the nonspecialist, the basis of hybrid orbitals in terms of molecular orbital theory, to show how the chemical bond is most closely approximated in orbital theory, and to present some new orbital diagrams.
Cohen, Irwin; Del Bene, Janet J. Chem. Educ. 1969, 46, 487.
MO Theory |
Transition Elements
Atomic orbital molecular models  Martins, George
Atomic orbital molecular models are constructed using molded white expanded polystyrene in the form of spheres and teardrops.
Martins, George J. Chem. Educ. 1964, 41, 658.
Atomic Properties / Structure |
MO Theory
Molecular models featuring molecular orbitals  Brumlik, George C.
Molecular models have been constructed that attempt to represent atomic and molecular orbitals as accurately as the current theories of valence and pertinent experimental evidence permit.
Brumlik, George C. J. Chem. Educ. 1961, 38, 502.
Molecular Modeling |
Atomic Properties / Structure |
MO Theory